MATEMATICKÉ MODELOVÁNÍ VÝBUCHU METANU V RODINNÉM DOMKU V KAMENNÉ POMOCÍ SW FLUENT

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATICKÉ MODELOVÁNÍ VÝBUCHU METANU V RODINNÉM DOMKU V KAMENNÉ POMOCÍ SW FLUENT"

Transkript

1 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 MATEMATICKÉ MODELOVÁNÍ VÝBUCHU METANU V RODINNÉM DOMKU V KAMENNÉ POMOCÍ SW FLUENT MATHEMATICAL MODELLING EXPLOSION METHAN IN FAMILY HOUSE IN KAMENNA USING FLUENT SOFTWARE Milada KOZUBKOVÁ, Jaroslav KRUTIL, Marian BOJKO, Otto DVOŘÁK Došlo , přiato Dostpné na attachments/04_vol4n_kozbkova_krtil_boko_dvorak.pdf. Abstract This paper describes the isses of risks conditions associated with the eplosion of gaseos mitres. Method of mathematical modeling by ANSYS FLUENT software for solving is sed. The work contains two alternatives of soltion. Variant A not considering damage room, and variant B considering destrction room, in which the blast was initiated. Problem soltion cased by the generation of eplosion pressre waves is not easy. It shold be mentioned that it is very important to orient oneself on physical knowledge, related to flid flow, technical drawings, thermophysical properties and material knowledge. It is important to note that a maor impact on solving of similar tasks depends on correct determination of chemical reaction constants as activation energy and pre-eponential factor. These constants have significantly inflence on chemical reaction of gaseos fel with an oidizer. In the final smmary the comparison of calclated data with the reslts of both eperimental measrements and also with other problem oriented nmerical software (FLACS) is evalated. The essence of sch works is verification of mathematical models for the fire technical epertise. This work shold also contribte to better nderstanding of brning behavior of gaseos fel mitres in confined spaces and thereby significantly redce the risk of sch sitations or prevent them. Keywords ANSYS FLUENT, CFD, eplosion, methane, nmerical simlation. ÚVOD Tento článek podává informace o tvorbě matematického model a následné simlaci výbch rodinného domk. Matematický model se snaží co nevěrohodněi napodobit sktečno velkorozměrovo požární zkošk rodinného

2 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY dom v Kamenné Milína, která byla provedena dne společně institcemi MV GŘ HZS ČR, TÚPO a VŠB TUO, FBI []. Úkolem této práce e tvorba matematického model v program ANSYS FLUENT pro stanovení vývin/šíření tlakových vln a eich ničivých účinků. Cílem této práce e ověření těchto modelů s výsledky získanými prostřednictvím eperiment a výsledky simlace provedenými v program FLACS. Jádrem samotného matematického modelování e řešení hoření směsi plynného paliva a z toho vyplývaící generace tlakové vlny, přestp tepla, prodění plynů a zkomání teplotních polí v zasažené oblasti. Problematika modelování výbch e velmi složitá a v program ANSYS FLUENT eiste několik možných přístpů k eí realizaci (akstický model, řešení pomocí přetlakového signál, model vyžívaící chemických reakcí). V tomto případ, kdy dochází ke generaci tlakové vlny v důsledk hoření plynné směsi, přichází v úvah poze možnost s vyžitím obecného model prodění plynů s chemicko reakcí (species transport and chemical reaction model). Avšak tato varianta byla rozpracována do dvo dílčích bodů. V první části byla úloha řešena tak, že nebylo važováno poškození střechy, oken a dveří v důsledk vznik tlakové vlny (což bylo pozorováno v eperiment). V drhé variantě bylo toto poškození važováno pomocí tzv. porézní vrstvy. V této části řešení e také popsána teorie porézní vrstvy a vysvětleno eí požití. TEORIE. Matematický model prodění s přestpem tepla Při výpočtech trblentního prodění se praktických inženýrských úloh vyžívá časově středovaných veličin, ež so v následných odstavcích a rovnicích označeny prhem nad dano fyzikální veličino. Je to způsobeno faktem, že při vysokých hodnotách Reynoldsova čísla nelze s ohledem na ntný počet bněk sítě a možnosti výpočetní techniky požít metod DNS [].. Rovnice kontinity pro prodění stlačitelné tektiny Rovnice vyadřící zákon zachování hmotnosti se nazývá rovnicí kontinity. Pro nestálené, tedy časově závislé prodění stlačitelných tektin i lze v diferenciálním tvar vyádřit takto: ρ t kde ( ρ ) = 0, i e časově středovaná složka rychlosti prodění. ()

3 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0. Pohybové rovnice pro prodění stlačitelné tektiny Rovnice vyadřící zákon zachování hybnosti se nazývaí Navier- Stokesovy rovnice. Pro výpočty trblentního prodění e však potřeba požít časově středovaných veličin. Po dosazení časově středovaných veličin do Navier- Stokesových rovnic nabývaí tyto rovnice tvar tzv. Reynoldsových rovnic. Rovnice pro přenos hybnosti stlačitelných tektin maí tedy tvar: ( ) ( ) i c i i t i i i f f g p t ρ ε ρ ρδ μ ρ ρ =, () což odpovídá diferenciálním tvar rovnice pro přenos hybnosti, kde 9,8 = s m g e gravitační zrychlení v případě účasti vztlakových sil. Rovnicemi pro vyádření trblentních veličin so myšleny rovnice pro trblentní kineticko energii k a rychlost disipace ε. Rovnici pro k lze odvodit z Navier-Stokesových rovnic a má tvar: l l l l l l l k p k t k ν ν ρ δ = () Trblentní kinetická energie k e vedená v rovnici () a e definována ako: ( ) k = = (4) Rovnici pro ε lze opět odvodit z Navier-Stokesových rovnic a má tvar: k C C t l l l t t. ε ν ε σ ν ε ε ε ε ε = (5) Vztah pro trblentní viskozit t ν e pak definován takto: ε ν ν k C t = (6).. Rovnice energie Rovnice energie vyadře zákon zachování energie, podle kterého e celková změna energie E tektiny v rčitém obem V dána změno

4 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY vnitřní energie a kinetické energie a tokem obo energií plocho S omezící obem V. Výsledná rovnice má tvar: t [ ρe ] [ ρ E ] = ρ f ( p ) ( τ ) l l q S.. Transportní rovnice pro přenos příměsí FLUENT počítá v model časově středované hodnoty lokálních hmotnostních zlomků příměsí Y i, které so popsány podobno bilanční rovnicí, ako e tom rovnice energie (7) zahrnící řešení konvektivní a difúzní složky přenos. Je vyžíváno vztah, který má v konzervativní formě tvar: ( ρ Yi ) ( ρ Yi ) = J, i Ri Si, (8) t i kde i e časově středovaná složka rychlosti prodění a na pravé straně e R i rychlost prodkce příměsí i vlivem chemické reakce a S i rychlost tvorby přírůstk z distribované příměsi. Výše vedená rovnice platí pro N příměsí, kde N e úplný počet komponent prezentovaných v matematickém model. Distribce příměsí může být realizována za různých podmínek, obecně lze rozlišovat distribci za laminárního nebo trblentního prodění. J, i představe difúzní tok i -té komponenty směsi. Při trblentním prodění FLUENT pro vyádření difúzního tok i -té složky platňe vztah: h (7) J i μt Y = Sc t i, (9) kde Sc t e Schmidtovo trblentní číslo (přednastaveno na hodnot 0,7)..4 Matematický model řešení chemických reakcí FLUENT požívá pro řešení rychlosti prodkce příměsí i vlivem chemické reakce několika modelů: laminární model (Laminar finite-rate model), trblentní model (Eddy-Dissipation model), kombinovaný model (Finiterate/Eddy-Dissipation model) a EDC trblentní model (Eddy-Dissipation- Concept). Každý z těchto modelů e vhodný pro rčité podmínky průběh chemické reakce [], [0]. 4

5 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0.4. Laminar finite-rate model (laminární model) Model počítá chemické zdroové členy žitím Arrheniova vyádření, kdy trblentní flktace so zanedbatelné. Laminární model e dostatečně přesný pro spalování s relativně pomalo dobo vlastní chemické reakce a zanedbatelnými trblentními flktacemi ako e nadzvkové hoření. Zdroový člen R i z důvod chemické reakce v rovnici pro příměs i e počítán ako sočet N R reakčních zdroových členů příměsí, které se na reakci podíleí R Ek N N ( ) βk RT η, k ν ν A T e [ C ] k [ C ] NR η, k i = M i i, k i, k k b, k 44 k= = = k f, k, (0) i, k kde N e počet chemických příměsí, ν stechiometrický koeficient pro reaktant i v k -té reakci, ν i, k stechiometrický koeficient pro prodkt i v k -té reakci, M i e molární hmotnost příměsi i, k f, k rychlostní konstanta pro k -to přímo (dopředno) reakci, k b, k rychlostní konstanta pro k -to zpětno reakci, C látková koncentrace každého reaktant a prodkt příměsi v k -té reakci, η,k rychlostní eponent (řád reakce) pro reaktant a prodkt v k -té přímé reakci, η,k rychlostní eponent pro reaktant a prodkt v k -té zpětné reakci, A k preedeponenciání faktor Arrheniova výraz, β k e teplotní eponent, E k aktivační energie reakce, R niverzální plynová konstanta a T teplota. Reakce může probíhat v homogenní fázi, mezi fázemi ednotlivých příměsí, nebo na povrch, eíž výsledkem e sazování nebo vznik fáze [4], [0]..4. Eddy-Dissipation model (trblentní model) Probíhá-li chemická reakce rychle, tak celková rychlost reakce e řízená trblentním směšováním. Rozlišeme dva typy reakcí, s nepromíchanými a promíchanými reaktanty. FLUENT poskyte model chemické trblentní interakce založeného na Magnssen a Hertager (nazvaný eddy-dissipation model) [4]. Střední rychlost chemické reakce tvorby prodkt i -té příměsí v k -té reakci e dána menší hodnoto ze dvo vyádření R i = M N R i k= min ν i ε YR Aρ min k R ν M, k, R, k i, R ν i, k ε ABρ k N P ν Y, k P M, () 5

6 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY kde Y P e hmotnostní zlomek ednotlivých prodktů příměsí ( P ), Y R e hmotnostní zlomek konkrétních reaktantů (R ), A e empirická konstanta (rovna 4) a B e empirická konstanta (rovna 0,5). ρ e měrná hmotnost i -té příměsi. Rychlost chemické reakce e řízená časovým měřítkem k / ε směšování velkých vír na základě Spaldingova model eddy-breakp (rozpad vír). Proces chemické reakce probíhá, estliže e prodění trblentní ( ε / k < 0 ) [4], [0]..4. Finite-rate/Eddy-Dissipation model (kombinovaný model) Dále e možno važovat kombinovaný finite-rate/eddy-dissipation model, kdy se rychlost reakce rčí ak podle Arrhenia (0), tak podle Eddy-dissipation rovnice (). Lokální rychlost reakce e dávána ako minimální hodnota z těchto dvo rovnic [4]. Přestože FLUENT dovole několika stpňové reakční mechanismy pro eddy-dissipation a finite-rate/eddy-dissipation model, lze reakčních mechanizmů vyšších řádů očekávat ne příliš přesné řešení. Příčino e, že několika stpňové reakční mechanizmy so založeny na Arrheniových rychlostech, které so rozdílné pro každé reakce. V eddy-dissipation model maí všechny reakce steno rychlost, proto by měl být tento model požit poze pro ednokrokové (reaktant prodkt) nebo dvokrokové (reaktant přechodný prodkt prodkt) obecné rovnice. Model nemůže předpokládat kineticko kontrol příměsí, ako so radikály [4], [0]..4.4 Eddy-Dissipation-Concept (EDC) model (trblentní model) V tomto model e zahrnta kinetika několika krokového chemického mechanism v trblentním prodění. Předpokládá chemické reakce, eichž dě probíhá v malých trblentních strktrách, zvaných fine scaled. Zdroový člen R i vlivem chemické reakce pro příměs i e počítán podle (7), kde Y i e hmotnostní * Y i hmotnostní zlomek příměsi i pro fine scaled [4], C ξ e zlomek příměsi i, konstanta obemového zlomk (,77), (0,408), ν e kinematická viskozita [0]. C r e konstanta časového měřítka R * ( Y Y ) C ν ε ρcξ k ν ν ε Cξ ε k i = i i. 5 r,5 () Pokd so modelovány laminární reakční systémy žitím laminárního finite-rate model, bdeme pravděpodobně vyžívat řešič s názvem copled, 6

7 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 pokd bde/nebde výpočet konvergovat. V EDC model e ntné nastavit: pravděpodobnost limitní rychlosti pro teplot (formle změn mezi teploto vypočteno a teploto z předchozího krok výpočt, implicitně nastaveno na 0,), časový krok teplotního redkčního faktor (limit pro lokální CFL číslo, pro případ, kdy e změna teploty příliš výrazná, přednastaveno na 0,5) a přípstné maimm poměr časové měřítko/chemické časové měřítko (limitní lokální hodnota CFL čísla, přednastaveno na 0,9). Implicitně nastavené hodnoty so vhodné pro velko škál modelů [4], [0]. V matematickém model bylo vyžito rovnice pro dokonalé spalování metan: CH4 O CO H O () Matematické modely řešící chemické reakce plynů so založeny na řešení transportních rovnic pro hmotnostní zlomky příměsi s definovaným reakčním mechanismem chemické reakce. Rychlosti reakce, která se obeví ako zdroové členy v rovnicích pro přenos příměsi, so počítány v případech laminárního prodění z Arrheniových výrazů pro rychlost, v případech trblentního prodění z model trblentní (eddy) disipace dle Magnssena Hertagera nebo z EDC (Eddy-dissipation-concept) model [5]. Proto maí zásadní vliv na správno realizaci výpočt konstanty aktivační energie a pre-eponenciálního faktor. V odborné literatře e mnoho variací těchto konstant např. Zambon Chelliah (ZC), Pri-Seshadri (PS), WD (Andersen-et-al), CM (Bibrzycki-Poinsot) atd V našem případě se nevíce osvědčily konstanty dle Zambon Chelliah, které nabývaí těchto hodnot: Pre-eponencial factor: J.kmol - Activation energy: cal.mol - Řešení matematických modelů e provedeno v program ANSYS FLUENT (CFD - Comptational Flid Dynamics). Tento program e založen na metodě konečných obemů a řešení základních rovnic možňící komplení řešení úloh z oblasti trblence, přenos tepla atd..5 Fyzikální vlastnosti U hstoty byl nastaven parametr ideal-gas. To znamená, že hstota plyn e počítána podle stavové rovnice. p V T r i = konst (4) Ostatní fyzikální veličiny se definí v závislosti na teplotě eperimentálně zištěnými závislostmi, ako polynom, tablka atd. Podle kinetické energie [6] ideálního plyn moho být definovány následící fyzikální vlastnosti ednotlivých plynů a parametry [7]: 7

8 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY viskozita, tepelná vodivost, měrná tepelná kapacita, koeficienty difúze hmoty (pro mlti-speciální drhy směsi). Definice dynamické viskozity μ i při žití kinetické teorie e následící: MT μi =.67e 6 σ Ω μ, i, (5) kde * ( ) Ω a μ, i = Ωμ T T * = T ( ε / ) k B. (6) Fnkce Ω μ, i e eperimentálně rčeno závislostí na bezrozměrné teplotě, např. [8]: Ω, = i.678 * * * ( T ) ep( 0.770T ) ep(.4787t ) μ (7) Vzorec pro měrno tepelno kapacit plynů polynomem n-tého řád: c p i 4 ( T ) A A T A T A T A c p, i, 4 5 T, e vyádřen ako fnkce teploty = (8) Tepelná vodivost λ i při žití kinetické teorie e vyádřena takto: 5 R 4 c, M = 4 p i M 5 R i μ i λ (9) Fyzikální vlastnosti směsi plynů se pak rčí podle směšovacích zákonů. NUMERICKÉ MODELOVÁNÍ. Definice geometrie a výpočetní sítě oblasti Geometrie a výpočetní síť vychází z přiložené výkresové dokmentace, avšak není zcela totožná. Jelikož e z výsledků eperiment patrné, že v obývacím pokoi dochází en k velmi nepatrným změnám tlak v závislosti na čase, e tato 8

9 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 místnost vynechána z matematického model. Výkresová dokmentace také podává detailní informace o místění tlakových senzorů. Umístění tlakových senzorů v matematickém model e shodné s požární zkoško. Z důvod lepší orientace a čitelnosti při srovnávání výsledků so tyto měřící body na model označeny steně ako tlakové senzory při eperiment. Výpočetní síť dom byla vytvořena v program Workbench.0 s celkovým počtem bněk 750. Jedná se o nestrktrovano síť vytvořeno pomocí prvků mnohostěn různorodých tvarů. Geometrie model byla zednodšena tím, že se nevaže nábytek, příslšenství a vybavení vnitř místností. Naproti tom byly pro variant važící poničení části místnosti vytvořeny specifické oblasti, které bdo definovány ako porézní zóny. Tyto oblasti so místěny podél oken, dveří a pod střecho a bdo v model simlovat vysklení oken, vyražení dveří a nadzdvižení spol s poškozením střechy komory. Geometrie matematického model domk e vyobrazena na obr.. Kde so zeleně vyznačeny porézní zóny. Varianta, které nevažeme poničení, pochopitelně tyto oblasti neobsahe. U této varianty so okna, dveře a část střechy važovány ako tlakové výstpy (pressre otlet). Obr. Geometrie a síť matematického model (vlevo) Detail řez sítě a zobrazení nečetněších tvarů bněk (vpravo). Okraové podmínky V podstatě byly veškeré důležité okraové podmínky pro obě varianty totožné a byly kompletně převzaty z dostpných podkladů o eperiment (tedy z přiložené výkresové dokmentace). Okraové podmínky pro všechny tři výstpy (okno, dveře venkovní, dveře do ložnice) so definovány ako tlakový výstp (pressre otlet) a so označeny červeně, viz obr.. Všechny další stěny so 9

10 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY definovány ako Wall tedy pevné stěny. Teplotní podmínky na výstpech a vnitř řešené oblasti byly definovány z dostpných informací o povětrnostních podmínkách ako T = 0 C. Prodícím médiem celé oblasti e plynná směs vzdch s metanem a e definována tímto složením N = 7,68 %, O = 9, % a CH 4 = 8 %. K nastavení plynné směsi do řešené oblasti bylo vyžito fnkce inicializace.. Definice porézní vrstvy Jak ž bylo vedeno výše, varianty važící i simlace vysklení oken, vyražení dveří a poničení střechy byla řešena za pomoci model prodění média přes porézní vrstv. Tato fnkce v program ANSYS FLUENT zahrne dvě možnosti definování oblasti, přes které se výpočet řeší. A so to tyto: plocha - e možné vyžít plochy dané geometrie a těmto plochám nastavit porézní koeficienty; obem - vyžie se v případech D těles, kde e nezbytné nastavit porézní vrstv o daných koeficientech v celém obem. V našem případě bylo vyžito obemového zadání porézní oblasti. V prostředí ANSYS FLUENT se D porézní zóna řeší v men Cells Zone, kde se vybraná oblast nastaví ako porézní (Poros Zone) [9]. Teorie porézního prostředí vychází z tzv. Darcyho zápis porézního prostředí. V rovnici průtoků pro porézní prostředí e přidaný člen S i složený ze dvo částí laminární a trblentní ztráty. V případě homogenního porézního prostředí má tento tvar [4]: S v α C i μ = ( vi C ρ v vi ) (0) α velikost rychlosti propstnost sočinitel odpor Laminární ztráty v porézním prostředí (Viscos resistence) V případě laminárního prodění skrz porézní vrstv e ztráta tlak úměrná rychlosti a konstanta C e nlová. Model porézního prostředí se poté redke na Darcyho zákon [4], [9]: μ p = v α () Ztráta tlak pro směry, y, z má pak následný tvar: 0

11 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 Δp Δp Δp y z = = = = α = α y = α z μ v Δn μ v Δn μ v Δn z y () /α i položka v matici D složka rychlosti, y, z v n, y, z Δ tlošťky média v osách, y, z Trblentní ztráty v porézním prostředí (Inertial resistence) U případ např. děrovaného plát e možné eliminovat propstnost alfa a požít poze inertní ztráty pro směry, y, z [4], [9]: Δp Δp Δp y z = = = C C C ( ρv ( ρv ( ρv Δn v yδn y v zδnz v ) ) ) () V našem případě byly koeficienty viscos a inertial resistance faktor orientačně odvozeny na základě naměřených hodnot (měření bylo převzato z [9]) rychlosti a ztráty tlak pomocí následícího postp: A) Z naměřených dat rychlosti a tlak prodícího vzdch se vytvoří graf a proloží se rovnicí regrese. Tablka Tablka naměřených hodnot z eperiment v(m.s - ) p (Pa) 0 0,57 5,7 54, , ,6 94

12 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY Graf Závislost rychlosti na tlakové ztrátě B) Z následících vzorců se vypočítaí koeficienty / α a C : μ μ t 6,64 = t α = = m α 6,64 0,006 0,006 = C ρ t C = =, 6686 m ρ t.4 Definice materiálových vlastností V oblasti matematického model so važovány dva základní materiály. Jso to materiály prodícího média (flid) a materiál stěn (solid). Prodícím médiem e važována směs, která odpovídá fyzikálním parametrům o tomto složení N = 7,68 %, O = 9, % a CH 4 = 8 %. Tato směs e definována parametry, které so naznačeny v tab.. Jelikož se směs skládá z ednotlivých plynů, e také nezbytné nadefinovat fyzikální parametry samotných prvků směsi. Definování těchto parametrů e všech prvků směsi totožné a proto so naznačeny materiálové vlastnosti poze pro eden plyn (viz tab. ).

13 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 Pevný materiál (solid), požitý v model, e cihla. Tento materiál e nastaven pro všechny pevné a nepohyblivé části v domě (strop, podlaha a ednotlivé stěny vnitř dom). Fyzikální parametry so detailně popsány v tab. 4. Tablka Fyzikální parametry zadávané do program FLUENT pro prodící směs Složení směsi (vzdch) na vstp obemová % dsík % 7,68 % kyslík % 9, % metan % 8 % Sma % 00 % Hstota směsi (ρ) kg.m - N ideal-gas Specifické teplo (Cp) J.kg -.K - miing-law Tepelná vodivost (λ) W.m -.K - ideal-gas-miing-law Viskozita (η) kg.m -.s - ideal-gas-miing-law Hmotnostní rozptyl (D) m.s - kinetic -theory Koeficient teplotní difúze (D I ) kg.m -.s - kinetic-theory Tablka Fyzikální parametry popisící eden plyn směsi (O kyslík) Specifické teplo (Cp) J.kg -.K - piecewise-polynomial Tepelná vodivost (λ) W.m -.K - kinetic-theory Viskozita (η) kg.m -.s - kinetic-theory Moleklová hmotnost (M r ) kg.kgmol Entalpie (H).kgmol - 0 Entropie (S).kgmol -.k ,9 Referenční teplota (T ref ) K 98,5 L - J charakteristická délka Angstrom,458 L - J energetický parametr K 07,4

14 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY Tablka 4 Fyzikální parametry popisící pevné materiály v model Hstota (ρ) kg.m - N 750 Specifické teplo (Cp) J.kg -.K Tepelná vodivost (λ) W.m -.K - 0,86 VYHODNOCENÍ MATEMATICKÉ SIMULACE VÝBUCHU ŘEŠENÍ ČASOVĚ ZÁVISLÉ ÚLOHY PROUDĚNÍ PLYNŮ S CHEMICKOU REAKCÍ Grafické zhodnocení e založeno na časové závislosti změny teplotních, rychlostních, tlakových atd. polí. Předmětem zám bylo především sledování změn tlakového pole. Byly provedeny dva základní způsoby vyhodnocení dosažených výsledků. V první fázi byly vyhodnoceny formo vyplněných kontr výsledky výpočt, iž výše zmiňovaných polí. Znázornění těchto tlakových polí e pro lepší viditelnost provedeno pomocí vhodně místěných řezů přes modelovano oblast. Byly přidány další veličiny, které označí úbytek hmotnostního zlomk metan vlivem hoření a teplo vznikaící z chemické reakce směsi (místo, kde dochází k hoření metan). Pro variant A e navíc provedeno srovnání průběh výbchového tlak v čase v programech ANSYS FLUENT a program FLACS. A ve variantě B e provedeno srovnání průběh výbchového tlak v program ANSYS FLUENT s eperimentem.. Varianta A nevažící poškození místnosti Na obrázcích až 6 so graficky zobrazeny výsledky varianty, která nevaže poničení oblasti. Porovnání e provedeno v časovém krok 0,5 s a 0,5 s, kdy e nelépe vidět vznik tlakové vlny. 4 Obr. Tlakové pole v čase 0,5 a 0,5 s [Pa]

15 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 Obr. Rychlostní pole v čase 0,5 a 0,5 s [m.s - ] Obr. 4 Teplotní pole v čase 0,5 a 0,5 s [K] 5

16 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY Obr. 5 Úbytek hmotnostního zlomk metan vlivem hoření plynné směsi v čase 0,5 a 0,5 s Obr. 6 Místo hoření plynné směsi v čase 0,5 a 0,5 s (Heat of reaction [W]) 6

17 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 Graf Srovnání průběh výbchového tlak (nahoře ANSYS FLUENT dole FLACS) 7

18 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY. Varianta B važící poškození místnosti Na obrázcích 7 až so znázorněny výsledky matematického model, který zahrne poškození místnosti. Z obrázk 7 e patrný vznik a šíření tlakové vlny v čase 0, s (vlevo) a v čase 0,4 s (obrázek vpravo). Tento průběh potvrzí také rychlostní pole, která so naznačena na obr 8. Rychlostní profily so opět naznačeny ve steném časovém interval. Je také patrné, že se tlaková vlna šíří všemi směry steně. Na snímcích 9, které popisí teplotní pole, e velmi dobře vidět vznik plamene v řešené oblasti. Šíření teploty postpe s mírným zpožděním, než postpe tlaková vlna. Další obrázky 0 a naznačí, ak dochází k úbytk metan v závislosti na hoření plynné směsi, respektive identifikí místo, kde dochází k hoření. Tyto poslední obrázky so zaznamenány v časovém krok 0,4 s a 0,5 s. Obr. 7 Tlakové pole v čase 0, a 0,4 s [Pa] 8

19 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 Obr. 8 Rychlostní pole v čase 0, a 0,4 s [m.s - ] Obr. 9 Teplotní pole v čase 0, a 0,4 s [K] 9

20 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY Obr. 0 Úbytek hmotnostního zlomk metan vlivem hoření plynné směsi v čase 0,4 a 0,5 s Obr. Místo hoření plynné směsi v čase 0,4 a 0,5 s (Heat of reaction [W]) V této části byl vyhodnocen průběh změny tlak v závislosti na čase v místech místění tlakových senzorů. Jak ž bylo vedeno výše, místění tlakových senzorů v eperiment se shode s místěním v nmerickém model. Pro lepší orientaci ve výsledcích e označení tlakových senzorů v matematickém model totožné ako eperiment. Z graf e patrné, že bylo dosaženo velmi dobré shody eperiment s nmerickým modelem, a to neen maimálních hodnot tlak, ale také průběh 0

21 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 tlakové vlny v závislosti na čase. Tlakový snímač s označením PS (zelená křivka) dosahe v matematickém model ve srovnání s eperimentem velmi dobrého maimálního výbchového tlak. V eperiment dosahe maimálních hodnot 800 Pa a v nmerickém model e dosaženo maimální hodnoty 84 Pa. Průběh tlakové vlny v závislosti na čase lze považovat také za zdařilý, neboť maimálních hodnot e v eperiment dosaženo v čase 5, s a v model byl tento čas 5,0 s. Velmi dobře byl zachycen neen začátek tlakové vlny, ale i eí prdký pokles vlivem vysklení oken, vyražení dveří a poničení střechy v závěr vlny. Je potřeba také zmínit, že vznikly mírné nesrovnalosti, které byly zištěny na špičce vlny, kdy v nmerickém model nastal neprve mírný pokles tlak a až posléze bylo dosaženo maimální hodnoty výbchového tlak. Posledního snímače PS (světle fialová křivka) nebylo v model važováno z důvod, že se tlak v závislosti na čase mění en velmi málo. Závěrem lze říci, že dosažené výsledky lze považovat za velmi spokoivé. Graf Srovnání tlakového průběh PS (vlevo nmerická simlace vpravo eperiment) 4 ZÁVĚR Článek řeší výbch směsi metan a vzdch a šíření takto vzniklé tlakové vlny v rodinném domk s vyžitím nmerické simlace. Matematický model domk byl vytvořen na základě eperiment týkaícího se výbch ve sktečném domě v Kamenné Milína. Bylo také vyžito technické dokmentace a meteorologických dat k definici okraových podmínek.

22 THE SCIENCE FOR POPULATION PROTECTION /0 PŘÍSPĚVKY V první části této práce e rozpracován podrobný matematický model celé úlohy, kdy e popsán neprve matematický model prodění s přestpem tepla a ten e následně rozšířen o model řešící chemické reakce v plynech. V této kapitole so popsány základní rovnice, které so vyžity k řešení takového problém a popis fyzikálních vlastností obekt, vzdch a paliva. Následe oddíl zabývaící se geometrií a tvorbo sítě v program ANSYS FLUENT.0. Dále so specifikovány okraové podmínky. Následně so rčeny potřebné koeficienty k definici porézní vrstvy získané měřením. Závěr této sekce e zaměřen na definici materiálových vlastností. Při řešení této úlohy so važovány dvě varianty. Varianta A, která nevaže poničení dom a varianta B, která važe s částečným poničením dom. Pro variant A bylo provedeno vzáemné srovnání dvo softwarů (SW ANSYS FLUENT a SW FLACS). Bylo zištěno, že oba tyto softwary dosahí velmi výrazné shody výbchového tlak v závislosti na čase. Ovšem e ntno podotknot, že se takto řešená úloha výrazně liší od eperiment. Maimální hodnoty tlaků v obo simlacích so shodné s eperimentem, ale eich průběh e výrazně rychleší, než ak tom bylo ve sktečnosti (asi 4 rychleší). Naproti tom varianta s porézní vrstvo dosahe velmi dobré shody v průběh tlakové vlny a v maimálních hodnotách tlak v porovnání s eperimentem. Je potřeba říct, že mírné odchylky výsledků mezi nmerickými a eperimentálními daty byly zištěny. Jso důsledkem špatného odhad konstant porézní vrstvy, což má zásadní vliv na správno realizaci nmerické simlace. Hlavním přínosem práce e získání podrobných informací a dat o vývin/šíření tlakových vln a eich ničivých účinků v obytných obektech. Na základě porovnání vypočtených a naměřených hodnot sledovaných veličin v definovaných pozicích a čase lze takto získané informace dále vyžít a zobecnit pro potřeb technických epertiz, k záchraně lidských životů a zabránění škod na hmotném maetk. Résmé Article solves eplosion of methane and air mitre and spread the reslting pressre waves in a hose sing nmerical simlations. A mathematical model of hose was created based on eperiment concerning to the eplosion in a real hose in Kamenná in Milína. It was also sed technical docmentation and meteorological data to define the bondary conditions. In the first part of this thesis the detailed mathematical model of the entire ob was elaborated. At first the mathematical model of flow with heat transfer was described and then was etended to model solving chemical reactions in gases. This chapter the basic eqations are introdce sed for solving the problem and description of the physical properties of an obect, air and fel. The following section deals with the geometry and mesh generation in ANSYS FLUENT.0. Frther bondary conditions are specified. Sbseqently, the coefficients are needed to define the poros layer and are obtained from

23 PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /0 measrements. The conclsion of this section is focsed on the definition of material properties. In solving this task, two variants are considered. Variant A not considering damage of the hose and variant B, which is considering a partial damage of hose. For variant A the comparison between two software (ANSYS FLUENT software and FLACS) was done. It was fond that both of these softwares reach very strong consenss of eplosion pressre verss time. However, it shold be noted that this solved task significantly differs from the eperiment. Maimm vales of pressres in both simlations are consistent with eperiment, bt their progress is mch faster than it was in fact (abot 4 faster). In contrast, a variant with a poros layer has a very good agreement in the corse of pressre waves and maimm pressre vales in comparison with eperiment. It is necessary to say that a slight deviation between the nmerical reslts and eperimental data has been identified. They reslt from miscalclation of constants poros layer, which fndamentally affects the correct implementation of nmerical simlation. The main contribtion of this work is to obtain detailed information and data on the evoltion / spread of pressre waves and their destrctive effects in residential bildings. Based on the comparison of calclated and measred monitored variables depending on defined position and time ths obtained information can be sed for technical epertise, to save lives and prevent damage to property. Poděkování Tento článek vznikl v rámci výzkmného proekt č. VD00600A07 "Výzkm moderních metod pro ZPP a hodnocení nebezpečných účinků požárů na osoby, maetek a životní prostředí". Literatra [] DVOŘÁK, O., DUDÁČEK, A. Zpráva o výsledcích požární zkošky v rodinném domk v Kamenné Milína dne Praha, Ostrava: TÚPO MV GŘ HZS ČR a FBI VŠB TU Ostrava, s. [] KOZUBKOVÁ, M. Nmerické modelování prodění FLUENT I. [online]. Ostrava: VŠB TU Ostrava, c00.6 s. Poslední revize Dostpné z: <URL:http://www.8.vsb.cz/seznam.htm>. [] PLATOŠ, P. Aplikace model v oblasti ekologie. [Disertační práce]. Ostrava: Katedra hydromechaniky a hydralických zařízení, Faklta stroní VŠB Technická niverzita Ostrava, s. [4] Ansys, Inc. ANSYS FLUENT.0 - Theory Gide. 00. [5] BOJKO, M., KOZUBKOVÁ, M., MICHALEC, Z. Mathematical Model of the Low-Temperatre Oidation of Coal in Coal Stockpiles and Dmps. In Twenty Seventh Annal International Pittsbrgh Coal Conference. Istanbl (Trkey), 00.

MATEMATICKÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V RODINNÉM DOMKU V BOHUMÍNĚ POMOCÍ SW FLUENT

MATEMATICKÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V RODINNÉM DOMKU V BOHUMÍNĚ POMOCÍ SW FLUENT PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION /011 MATEMATICKÉ MODELOVÁNÍ POŽÁRNÍ ZKOUŠKY V RODINNÉM DOMKU V BOHUMÍNĚ POMOCÍ SW FLUENT MATHEMATICAL MODELLING OF FIRE EXPERIMENT IN FAMILY HOUSE IN BOHUMIN

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

Turbulence Modelování proudění - CFX

Turbulence Modelování proudění - CFX Vysoká škola báňská Technická niverzita Ostrava Trblence Modelování prodění - CFX čební text Tomáš Blejchař Ostrava 2010 Recenze: Ing. Sylva Drábková, Ph.D. Název: Trblence-Modelování prodění - CFX Ator:

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

Simulace letního a zimního provozu dvojité fasády

Simulace letního a zimního provozu dvojité fasády Simulace letního a zimního provozu dvojité fasády Miloš Kalousek, Jiří Kala Anotace česky: Příspěvek se snaží srovnat vliv dvojité a jednoduché fasády na energetickou náročnost a vnitřní prostředí budovy.

Více

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,

Více

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě

Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě 12. 14. května 2015 Vlny konečné amplitudy vyzařované bublinou vytvořenou jiskrovým výbojem ve vodě Karel Vokurka Technická univerzita v Liberci, katedra fyziky, Studentská 2, 461 17 Liberec karel.vokurka@tul.cz

Více

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION

PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION PREDIKCE DÉLKY KOLONY V KŘIŽOVATCE PREDICTION OF THE LENGTH OF THE COLUMN IN THE INTERSECTION Lucie Váňová 1 Anotace: Článek pojednává o předpovídání délky kolony v křižovatce. Tato úloha je řešena v programu

Více

Numerická simulace přestupu tepla v segmentu výměníku tepla

Numerická simulace přestupu tepla v segmentu výměníku tepla Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article

Více

Modelování rizikových stavů v rodinných domech

Modelování rizikových stavů v rodinných domech 26. 28. června 2012, Mkulov Modelování rzkových stavů v rodnných domech Mlada Kozubková 1, Marán Bojko 2, Jaroslav Krutl 3 1 2 3 Vysoká škola báňská techncká unverzta Ostrava, Fakulta strojní, Katedra

Více

Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen

Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen Charakteristika matematického modelování procesu spalování dřevní hmoty v aplikaci na model ohniště krbových kamen Michal Branc, Marián Bojko Anotace Příspěvek se zabývá charakteristikou matematického

Více

Ekonomické srovnání dodavatelů dřevodomků pro stanovený etalon rodinného domu

Ekonomické srovnání dodavatelů dřevodomků pro stanovený etalon rodinného domu Vysoké učení technické v Brně Fakulta stavební Studentská vědecká a odborná činnost Akademický rok 2011/2012 Ekonomické srovnání dodavatelů dřevodomků pro stanovený etalon rodinného domu Jméno a příjmení

Více

Cvičení č. 2 NÁVRH TEPLOVODNÍHO PODLAHOVÉHO VYTÁPĚNÍ

Cvičení č. 2 NÁVRH TEPLOVODNÍHO PODLAHOVÉHO VYTÁPĚNÍ SÁLAVÉ A PRŮMYSLOVÉ VYTÁPĚNÍ Cvičení č NÁVRH TEPLOVODNÍHO PODLAHOVÉHO VYTÁPĚNÍ Ing Jindřich Boháč JindrichBohac@fscvtcz +40-435-488 ístnost B1 807 1 Sálavé vytápění = PŘEVÁŽNĚ sálavé vytápění ROZDĚLENÍ

Více

Ing. Pavel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2

Ing. Pavel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2 Ing. vel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2 MODELOVÁNÍ PROUDĚNÍ METANU V PORÉZNÍM PROSTŘEDÍ S JEDNÍM AKTIVNÍM ODPLYŇOVACÍM VRTEM POMOCÍ CFD PROGRAMU FLUENT Abstrakt Článek reaguje

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

- 3 NO X, bude nezbytně nutné sáhnout i k realizaci sekundárních opatření redukce NO X.

- 3 NO X, bude nezbytně nutné sáhnout i k realizaci sekundárních opatření redukce NO X. Název přednášky: Optimalizace primárních a sekundárních metod snižování emisí NO X pro dosažení limitu 200 mg/m 3 Autoři: Michal Stáňa, Ing., Ph.D.; Tomáš Blejchař, Ing., Ph.D., Bohumír Čech, Dr. Ing.;

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry TRANSPORT VODNÍ PÁRY PORÉZNÍM PROSTŘEDÍM: Ve vzduchu obsažená vodní pára samovolně difunduje do míst s nižším parciálním tlakem až

Více

chemického modulu programu Flow123d

chemického modulu programu Flow123d Testovací úlohy pro ověření funkčnosti chemického modulu programu Flow123d Lukáš Zedek, Jan Šembera 20. prosinec 2010 Abstrakt Předkládaná zpráva představuje přehled funkcionalit a výsledky provedených

Více

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ

PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ PARAMETRICKÁ STUDIE VÝPOČTU KOMBINACE JEDNOKOMPONENTNÍCH ÚČINKŮ ZATÍŽENÍ Ing. David KUDLÁČEK, Katedra stavební mechaniky, Fakulta stavební, VŠB TUO, Ludvíka Podéště 1875, 708 33 Ostrava Poruba, tel.: 59

Více

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku

Více

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU. Cíl práce: Roštový kotel o jmenovitém výkonu 00 kw, vybavený automatickým podáváním paliva, je určen pro spalování dřevní štěpky. Teplo z topného okruhu je předáváno

Více

Tvarová optimalizace v prostředí ANSYS Workbench

Tvarová optimalizace v prostředí ANSYS Workbench Tvarová optimalizace v prostředí ANSYS Workbench Jan Szweda, Zdenek Poruba VŠB-Technická univerzita Ostrava, Fakulta strojní, katedra mechaniky Ostrava, Czech Republic Anotace Prezentace je soustředěna

Více

Energie v chemických reakcích

Energie v chemických reakcích Energie v chemických reakcích Energetická bilance reakce CH 4 + Cl 2 = CH 3 Cl + HCl rozštěpení vazeb vznik nových vazeb V chemických reakcích dochází ke změně vazeb mezi atomy. Vazebná energie uvolnění

Více

Zákony ideálního plynu

Zákony ideálního plynu 5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow

NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow NUMERICKÁ SIMULACE PROUDĚNÍ DVOUFÁZOVÉ VLHKÉ PÁRY OHYBEM POTRUBÍ Numerical simulation of two phase wet steam flow in pipeline elbow Šťastný Miroslav 1, Střasák Pavel 2 1 Západočeská univerzita v Plzni,

Více

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9 Nestacionární vedení tepla v rovinné stěně Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM transport vodní páry KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM transport vodní páry Transport vodní páry porézním prostředím: Tepelná vodivost vzduchu: = 0,0262 W m -1 K -1 Tepelná vodivost izolantů: = cca 0,04 W

Více

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1

2. PŘESNOST MĚŘENÍ A1B38EMA P2 1 . ŘESNOST MĚŘENÍ přesnost měření nejistota měření, nejistota typ A a typ B, kombinovaná nejistota, nejistoty měření kazovacími (analogovými) a číslicovými měřicími přístroji, nejistota při nepřímých měřeních,

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT

THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT THE PREDICTION PHYSICAL AND MECHANICAL BEHAVIOR OF FLOWING LIQUID IN THE TECHNICAL ELEMENT PREDIKCE FYZIKÁLNĚ-MECHANICKÝCH POMĚRŮ PROUDÍCÍ KAPALINY V TECHNICKÉM ELEMENTU Kumbár V., Bartoň S., Křivánek

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8 Hana Charvátová, Dagmar Janáčová Zlín 2013 Tento studijní materiál vznikl za finanční podpory

Více

3D CFD simulace proudění v turbinovém stupni

3D CFD simulace proudění v turbinovém stupni 3D CFD simulace proudění v turbinovém stupni Bc. Petr Toms Vedoucí práce: Ing. Tomáš Hyhlík Ph.D. Abstrakt Tato studie se zabývá vlivem přesahu délky oběžné lopatky vůči rozváděcí na účinnost stupně. Přesahem

Více

Počítačová dynamika tekutin (CFD) - úvod -

Počítačová dynamika tekutin (CFD) - úvod - Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

CFD ANALÝZA CHLAZENÍ MOTORU

CFD ANALÝZA CHLAZENÍ MOTORU CFD ANALÝZA CHLAZENÍ MOTORU Ing. Zdeněk PORUBA, Ph.D., VŠB TU Ostrava, zdenek.poruba@vsb.cz Ing. Jan SZWEDA, Ph.D., VŠB TU Ostrava, jan.szweda@vsb.cz Anotace česky (slovensky) Předložený článek prezentuje

Více

Výpočtové nadstavby pro CAD

Výpočtové nadstavby pro CAD Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se

Více

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce

Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Vliv kapilární vodivosti na tepelně technické vlastnosti stavební konstrukce Článek se zabývá problematikou vlivu kondenzující vodní páry a jejího množství na stavební konstrukce, aplikací na střešní pláště,

Více

Modelování proudění vzdušiny v elektroodlučovači ELUIII

Modelování proudění vzdušiny v elektroodlučovači ELUIII Konference ANSYS 2009 Modelování proudění vzdušiny v elektroodlučovači ELUIII Richard Matas, František Wegschmied Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14

Více

Modelování proudění metanu

Modelování proudění metanu Modelování proudění metanu GOTTFRIED, Jan 1 1 Ing., Institut ekonomiky a systémů řízení, VŠB-Technická univerzita Ostrava, Třída 17.listopadu 708 33 Ostrava Poruba, jgottfried@iol.cz, http://www.vsb.cz/~vg98015

Více

Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ

Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ Miloslav Dohnal 1 PROCESNÍ VÝPOČTY TECHNOLOGIÍ Tento článek je věnován odborné stáži, která vznikla v rámci projektu MSEK Partnerství v oblasti energetiky. 1. ÚVOD Projekt MSEK Partnerství v oblasti energetiky

Více

Posuzování kouřových plynů v atriích s aplikací kouřového managementu

Posuzování kouřových plynů v atriích s aplikací kouřového managementu Posuzování kouřových plynů v atriích s aplikací kouřového managementu Ing. Jiří Pokorný, Ph.D. Hasičský záchranný sbor Moravskoslezského kraje územní odbor Opava Těšínská 9, 746 1 Opava e-mail: jiripokorny@mujmail.cz

Více

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování Spalování je fyzikálně chemický pochod, při kterém probíhá organizovaná příprava hořlavé směsi paliva s okysličovadlem a jejich slučování (hoření) za intenzivního uvolňování tepla, což způsobuje prudké

Více

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení 1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních

Více

PROCESY V TECHNICE BUDOV 11

PROCESY V TECHNICE BUDOV 11 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

9. Chemické reakce Kinetika

9. Chemické reakce Kinetika Základní pojmy Kinetické rovnice pro celistvé řády Katalýza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti reakční mechanismus elementární reakce a molekularita reakce reakční rychlost

Více

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy

Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Konference ANSYS 2009 Simulace oteplení typového trakčního odpojovače pro různé provozní stavy Regina Holčáková, Martin Marek VŠB-TUO, FEI, Katedra elektrických strojů a přístrojů Abstract: Paper focuses

Více

1. ÚVOD. Vladislav Křivda 1

1. ÚVOD. Vladislav Křivda 1 ODVOZENÍ PŘEPOČTOVÝCH KOEFICIENTŮ SILNIČNÍCH VOZIDEL V DOPRAVNÍM PROUDU DLE JEJICH DYNAMICKÝCH CHARAKTERISTIK DERIVATION OF COEFFICIENTS OF ROAD VEHICLES IN TRAFFIC FLOW ACCORDING TO ITS DYNAMIC CHARACTERISTICS

Více

Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin

Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin Úvod do datového a procesního modelování pomocí CASE Erwin a BPwin (nově AllFusion Data Modeller a Process Modeller ) Doc. Ing. B. Miniberger,CSc. BIVŠ Praha 2009 Tvorba datového modelu Identifikace entit

Více

Porovnání předpovídané zátěže se zátěží skutečnou (podle modelu III-C BMP ČHMÚ) Martin Novák 1,2

Porovnání předpovídané zátěže se zátěží skutečnou (podle modelu III-C BMP ČHMÚ) Martin Novák 1,2 Porovnání předpovídané zátěže se zátěží skutečnou (podle modelu III-C BMP ČHMÚ) Martin Novák 1,2 1 ČHMÚ, pobočka Ústí n.l., PS 2, 400 11 Ústí n.l., novakm@chmi.cz 2 PřF UK Praha, KFGG, Albertov 6, 128

Více

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE

VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE VLIV MLETÍ ÚLETOVÉHO POPÍLKU NA PRŮBĚH ALKALICKÉ AKTIVACE INFLUENCE OF GRINDING OF FLY-ASH ON ALKALI ACTIVATION PROCESS Rostislav Šulc 1 Abstract This paper describes influence of grinding of fly - ash

Více

Modelování magnetického pole v železobetonových konstrukcích

Modelování magnetického pole v železobetonových konstrukcích Modelování magnetického pole v železobetonových konstrukcích Petr Smékal Anotace: Článek pojednává o modelování magnetického pole uvnitř železobetonových stavebních konstrukcí. Pro vytvoření modelu byly

Více

Zachování hmoty Rovnice kontinuity. Ideální kapalina. Zachování energie Bernoulliho rovnice. Reálná kapalina - viskozita

Zachování hmoty Rovnice kontinuity. Ideální kapalina. Zachování energie Bernoulliho rovnice. Reálná kapalina - viskozita Tektiny ve farmacetickém průmysl Tektiny Charakteristika, prodění tektin» Kapaliny» rozpoštědla» kapalné API, lékové formy» disperze» Plyny» Vzdchotechnika» Sšení» Flidní operace Ideální kapalina» Ideální

Více

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha

Teorie transportu plynů a par polymerními membránami. Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Teorie transportu plynů a par polymerními membránami Doc. Ing. Milan Šípek, CSc. Ústav fyzikální chemie VŠCHT Praha Úvod Teorie transportu Difuze v polymerních membránách Propustnost polymerních membrán

Více

Co víme o nekatalytické redukci oxidů dusíku

Co víme o nekatalytické redukci oxidů dusíku Co víme o nekatalytické redukci oxidů dusíku Ing. Pavel Machač, CSc., email: pavel.machac@vscht.cz, tel.: (40) 0 444 46 Ing. Jana Vávrová, email: jana1.vavrova@vscht.cz, tel.: (40) 74 971 991 VŠCHT Praha,

Více

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku:

Posouzení konstrukce podle ČS :2007 TOB v PROTECH, s.r.o. Nový Bor Datum tisku: Posouzení konstrukce podle ČS 050-:00 TOB v...0 00 POTECH, s.r.o. Nový Bor 080 - Ing.Petr Vostal - Třebíč Datum tisku:..009 Tepelný odpor, teplota rosného bodu a průběh kondenzace. Firma: Stavba: Místo:

Více

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami

Numerická simulace proudění stupněm s vyrovnávacími štěrbinami Konference ANSYS 2011 Numerická simulace proudění stupněm s vyrovnávacími štěrbinami Bartoloměj Rudas, Zdeněk Šimka, Petr Milčák, Ladislav Tajč, Michal Hoznedl ŠKODA POWER, A Doosan Copany bartolomej.rudas@doosan.com

Více

PROBLEMATIKA TAKTOVÝCH JÍZDNÍCH ŘÁDŮ THE PROBLEMS OF INTERVAL TIMETABLES

PROBLEMATIKA TAKTOVÝCH JÍZDNÍCH ŘÁDŮ THE PROBLEMS OF INTERVAL TIMETABLES PROBLEMATIKA TAKTOVÝCH JÍZDNÍCH ŘÁDŮ THE PROBLEMS OF INTERVAL TIMETABLES Zdeněk Píšek 1 Anotace: Příspěvek poednává o základních aspektech a prvcích plánování taktových ízdních řádů a metod, kterých se

Více

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 Colloquium LUID DYNAMICS 7 Institute of Thermomechanics AS CR, v. v. i., Prague, October 4-6, 7 p.1 POHYB ZNAČKOVACÍCH ČÁSTIC V NESTACIONÁRNÍM PROUDOVÉM POLI Behavior of Seeding Particles in the Unsteady

Více

FSI analýza brzdového kotouče tramvaje

FSI analýza brzdového kotouče tramvaje Konference ANSYS 2011 FSI analýza brzdového kotouče tramvaje Michal Moštěk TechSoft Engineering, s.r.o. Abstrakt: Tento příspěvek vznikl ze vzorového příkladu pro tepelný výpočet brzdových kotoučů tramvaje,

Více

TERMOMECHANIKA 1. Základní pojmy

TERMOMECHANIKA 1. Základní pojmy 1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,

Více

MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ

MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ Simulace budov a techniky prostředí 2008 5. konference IBPSA-CZ Brno, 6. a 7. 11. 2008 MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ Ondřej Šikula Ústav technických zařízení budov, Fakulta

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Stacionární vedení tepla bodové tepelné mosty

Stacionární vedení tepla bodové tepelné mosty Nestacionární vedení tepla a velikost tepelného mostu hmoždinkami ETICS Pavlína Charvátová 1, Roman Šubrt 2 1 Vysoká škola technická a ekonomická v Českých Budějovicích 2 sdružení Energy Consulting, Vysoká

Více

LADISLAV RUDOLF. Doc., Ing., Ph.D., University of Ostrava, Pedagogical fakulty, Department of Technical and Vocational Education, Czech Republic

LADISLAV RUDOLF. Doc., Ing., Ph.D., University of Ostrava, Pedagogical fakulty, Department of Technical and Vocational Education, Czech Republic Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 2/16/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.2.18 LADISLAV RUDOLF Metodika optimalizačního softwaru vyhodnocení

Více

Reaktory pro systém plyn-kapalina

Reaktory pro systém plyn-kapalina Reaktory pro systém plyn-kapalina Vypracoval : Jan Horáček FCHT, ústav 111 Prováděné reakce Rychlé : všechen absorbovaný plyn zreaguje již na fázovém rozhraní (př. : absorpce kyselých plynů : CO 2, H 2

Více

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h =

TOB v PROTECH spol. s r.o ARCHEKTA-Ing.Mikovčák - Čadca Datum tisku: MŠ Krasno 2015.TOB 0,18 0,18. Upas,20,h = Upas,h = Tepelný odpor, teplota rosného bodu a průběh kondenzace. Stavba: MŠ Krasno Místo: Zadavatel: Zpracovatel: Zakázka: Archiv: Projektant: E-mail: Datum: Telefon:..0 Výpočet je proveden dle STN 00:00 SCH -

Více

Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát

Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát Kvantifikace operačního rizika v rámci Přistupu distribuce ztrát Jiří Havlický 1 Abstrakt Článek je zaměřen na stanovení a zhodnocení citlivosti výše očekávané a neočekávané ztráty plynoucí z podstupovaného

Více

Ing. Miloš Kalousek, Ph.D., Ing. Danuše Čuprová, CSc. VUT Brno

Ing. Miloš Kalousek, Ph.D., Ing. Danuše Čuprová, CSc. VUT Brno MODELOVÁNÍ TEPELNÝCH MOSTŮ Ing. Miloš Kalousek, Ph.D., Ing. Danuše Čuprová, CSc. VUT Brno Anotace U objektů, projektovaných a realizovaných v současné době, bývá většinou podceněn význam konstrukčního

Více

Stabilita v procesním průmyslu

Stabilita v procesním průmyslu Konference ANSYS 2009 Stabilita v procesním průmyslu Tomáš Létal VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV PROCESNÍHO A EKOLOGICKÉHO INŽENÝRSTVÍ, Adresa: Technická 2896/2, 616 69

Více

Stanovení hloubky karbonatace v čase t

Stanovení hloubky karbonatace v čase t 1. Zadání Optimalizace bezpečnosti a životnosti existujících mostů Stanovení hloubky karbonatace v čase t Předložený výpočetní produkt je aplikací teoretických postupů popsané v navrhované certifikované

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398 Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:

Více

HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ

HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ HODNOCENÍ ROZDÍLNÝCH REŽIMŮ PŘI PROCESU SPALOVÁNÍ Radim Paluska, Miroslav Kyjovský V tomto příspěvku jsou uvedeny poznatky vyplývající ze zkoušek provedených za účelem vyhodnocení rozdílných režimů při

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra hydromechaniky a hydraulických zařízení

VŠB Technická univerzita Ostrava Fakulta strojní Katedra hydromechaniky a hydraulických zařízení VŠB Technická univerzita Ostrava Fakulta strojní Katedra hydromechaniky a hydraulických zařízení Název práce: 2D a 3D analýza proudění a přenosu tepla přes vlnovce automobilového chladiče Autor práce:

Více

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE české pracovní lékařství číslo 1 28 Původní práce SUMMARy KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE globe STEREOTHERMOMETER A NEW DEVICE FOR measurement and

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Modelování přepadu vody přes pohyblivou klapkovou konstrukci

Modelování přepadu vody přes pohyblivou klapkovou konstrukci Konference ANSYS 2011 Modelování přepadu vody přes pohyblivou klapkovou konstrukci V. Jirsák, M. Kantor, P. Sklenář České vysoké učení v Praze, Fakulta stavební, Thákurova 7, 166 29 Praha 6 Abstract: The

Více

SF2 Podklady pro cvičení

SF2 Podklady pro cvičení SF Podklady pro cvičení Úloha 7 D přenos tepla riziko růstu plísní a kondenzace na vnitřním povrchu konstrukce Ing. Kamil Staněk 11/010 kamil.stanek@fsv.cvut.cz 1 D přenos tepla 1.1 Úvodem Dosud jsme se

Více

Studie šíření kouřových plynů otvorem do sousedního prostoru; predikce kritických hodnot

Studie šíření kouřových plynů otvorem do sousedního prostoru; predikce kritických hodnot Studie šíření kouřových plynů otvorem do sousedního prostoru; predikce kritických hodnot Ing. Jiří Pokorný, Ph.D. Hasičský záchranný sbor Moravskoslezského kraje Výškovická 4 7 44 Ostrava - Zábřeh E-mail:

Více

Parametrická studie vlivu vzájemného spojení vrstev vozovky

Parametrická studie vlivu vzájemného spojení vrstev vozovky Konference ANSYS 2009 Parametrická studie vlivu vzájemného spojení vrstev vozovky M. Štěpánek a J. Pěnčík VUT v Brně, Fakulta stavební, Ústav stavební mechaniky Abstract: The testing of a cyclic-load performance

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1

NESTABILITY VYBRANÝCH SYSTÉMŮ. Úvod. Vzpěr prutu. Petr Frantík 1 NESTABILITY VYBRANÝCH SYSTÉMŮ Petr Frantík 1 Úvod Úloha pokritického vzpěru přímého prutu je řešena dynamickou metodou. Prut se statickým zatížením je modelován jako nelineární disipativní dynamický systém.

Více

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17.

Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17. Sborník vědeckých prací Vysoké školy báňské - Technické univerzity Ostrava číslo 1, rok 2010, ročník X, řada stavební článek č. 17 Lenka LAUSOVÁ 1 OSOVĚ ZATÍŽEÉ SLOUPY ZA POŽÁRU AXIALLY LOADED COLUMS DURIG

Více

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva Jiří Novák činnost technických poradců v oblasti stavebnictví květen 2006 Obsah Obsah...1 Zadavatel...2

Více

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

Computing model SIT verification by the measurement results on the Hrušov mine

Computing model SIT verification by the measurement results on the Hrušov mine XXVI. ASR '2001 Seminar, Instruments and Control, Ostrava, April 26-27, 2001 Paper 66 Computing model SIT verification by the measurement results on the Hrušov mine ŠENOVSKÝ, Pavel Ing., Institut 545,

Více

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU

POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad POŽÁRNÍ ODOLNOST DŘEVOBETONOVÉHO STROPU Eva Caldová 1), František Wald 1),2) 1) Univerzitní centrum

Více