íslicová technika Radek Maík Maík Radek 1

Rozměr: px
Začít zobrazení ze stránky:

Download "íslicová technika Radek Maík Maík Radek 1"

Transkript

1 íslicová technik Rdek Mík Mík Rdek 1

2 íselné soustvy ritmetické operce Mík Rdek 2

3 Pevody mezi soustvmi (z10) Výsledek dostneme vyíslením z-dickéhoz dickéhoísl ve tvru dy. (101,11) 2 = = (5,75) 10 (276,4) 8 = = (190,5) 10 (8E2,A) 16 = = = (2274,625) 10 Mík Rdek 3

4 Pevody mezi soustvmi (102) íslo ped desetinnou árkou dlíme dvm zpisujeme zprv dolev zbytky pi dlení: (364) 10 = ( ) Mík Rdek 4

5 Pevody mezi soustvmi (102) íslo z des.. árkou násobíme dvm zpisujeme zlev doprv penosy ped des.. árkou: (0,364) 10 = (0, ) 2 = (0, ) , ,824 1,648 1, ,184 Mík Rdek 5

6 Pevody mezi soustvmi (82) íslo ve dvojkové soustv rozdlíme od desetinné árky do tílenných skupin: ( ,11001) 2 = ( , 11001) 01) 2 = = (354,62) 8 Kždou cifru v oktlové soustv zpíšeme jko trojciferné dvojkové íslo: (27,31) 8 = (10 111, ) 2 Jedn íslice soustvy o zákldu z = 2 n odpovídá n íslicím binární soustvy Mík Rdek 6

7 Pevody mezi soustvmi (162) íslo ve dvojkové soustv rozdlíme od desetinné árky do tylenných skupin: ( ,101101) 2 = ( , ) 01) 2 = (16C,B4) 16 Kždou cifru v hexdecimální soustv zpíšeme jko tyciferné dvojkové íslo: (E7,1A) 16 = ( , ) 2 Mík Rdek 7

8 Logické funkce - souin S1 S2 0 = open 1 = closed 0 = open 1 = closed L 0 = off 1 = on S1 S2 L () Obvod (b) prvdivostní tbulk Dv spíne v sérii Mík Rdek 8

9 Logické funkce - souet S1 S2 () Obvod L S1 S2 L (b) Prvdivostní tbulk Dv prlelní spíne Mík Rdek 9

10 Úplný soubor logických funkcí souin + negce negovný souin souet + negce... Mík Rdek 10

11 Schemtické znky podle SN Mík Rdek 11

12 Nonekvivlence A B =1 Y A B Y Ekvivlence A B =1 Y A B Y Mík Rdek 12

13 Všechny funkce dvou promnných,b f = 0 nulová funkce f = b log. souin f = b f = identit f = b f = b identit b f = b+b nonekvivlence f = +b log. souet f = b f = b+ b ekvivlence f = b negce b f = +b f = negce f = +b f = +b f = 1 Mík Rdek 13

14 Mík Rdek 14

15 Booleov lgebr ZákonyBooleovy lgebry Vyjádení logických funkcí prvdivostní tbulk logický výrz mp Mík Rdek 15

16 Zákldní zákony Booleovy lgebry (8 xiom) 1. komuttivit: + b = b +,.b = b. 2. socitivit: + (b + c) = ( + b) + c,.(b.c) = (.b).c 3. distributivit: + (b.c) = ( + b).( + c),.(b + c) = (.b) + (.c) 4. neutrlit 0 1: + 0 =,.1 = 5. vlstnosti komplementu: gresivit 0 1 : 00, idempotence bsorbce, b, b Mík Rdek 16

17 Mík Rdek 17 dvojí negce dvojí negce bsorbce bsorbce negce negce de Morgn de Morgn consensus consensus, b b, b b c, b bc c b b b c b c b c b b b, Odvozené zákony

18 Píkld plikce zákon Booleovy lgebry Nleznte MNDF funkce f zdnou Booleovým výrzem: f = d + b c d + b (c +d) + bcd Distributivní zákon: f = d + b c d + b c +b d + bcd zákon bsorbce negce: { d + b d = d( + b) } f = d + b c d + b c +b d + bcd Absorbce negce: { b d + b cd = b (d + c) } f = d + b c d + b c +b d + bc Absorbce negce: { b c + bc = b(c + ) } f = d + b +b c d +b d + bc Absorbce: consensus: f = d + b +b d + bc f = d + b +bc to je MNDF Mík Rdek 18

19 Zákon negce zobecnný zákon negce (logické é funkce) : F(, b,..., z, 0, 1,, ) F(, b,..., z, 1, 0,, ) Vyjádení logické funkce slovní popis lgebrický výrz tbulk mp jednotková krychle Mík Rdek 19

20 Algebrický (Booleový) výrz pedstvuje funkci nd B. Jednu funkci lze popst více výrzy. Používá se stndrtní (knonický) tvr. Tento tvr se též nkdy nzývá normální formou. term - výrz tvoený pouze promnnými v pímém negovném tvru opercí logického soutu nebo souinu P-term (souinový term) - term s opercí souinu S-term (soutový term) - operce soutu minterm - P-term obshující všechny nezávislé promnné mxterm - S-term obshující všechny nezávislé promnné vstupní písmeno - kombince hodnot vst.. promnných Mík Rdek 20

21 Kždou log. funkci je možno vyjádit pomocí soutu minterm nebo souinu mxterm Kždý minterm (resp. mxterm) ) nbývá hodnoty log1 (resp. log0) práv pro jedno vstupní písmeno dné log. funkce Stvový index - desítkový zápis kombince hodnot nezávisle promnných Úplná normální disjunktní form (UNDF) log. výrz tvoený soutem všech minterm Úplná normální konjunktivní form (UNKF) - log. výrz tvoený souinem všech mxterm. Mík Rdek 21

22 Prvdivostní tbulk se všemi mintermy mxtermy UNDF: f (c, b, ) cb cb cbcb UNKF: f (c, b, ) cb c b cb c b Seznm stvových index (zkrácený tbulkový tvr): f (c, b, ) ( 1, 2, 4, 6) ( 0, 3, 5, 7) Mík Rdek 22

23 UNDF obshuje tolik minterm,, kolik je poet vstupních písmen, pro které nbývá uvžovná logická funkce hodnoty 1 UNKF obshuje tolik mxterm,, kolik je poet vstupních písmen, pro které nbývá uvžovná logická funkce hodnoty 0 Vytvoení UNDF z UNKF - roznásobením UNKF z UNDF uríme doplnk množiny minterm s hodnotou 1 pro píslušná vstupní písmen uríme mxtermy UNKF je souin tchto mxterm Mík Rdek 23

24 Algebrické výrzy nbývjí dy forem, které nejsou ist disjunktivní nebo konjunktivní. Nzýváme je smíšené formy. Disjunktivní nebo konjunktivní formou mžeme popst všechny výrzy - používá se pro minimlizci Tyto formy lze sndno trnsformovt do Shefferovy lgebry (smé NANDy) ) nebo Pierceovy lgebry (smé NORy) Mík Rdek 24

25 Vénovy digrmy A C b c b c b c bc bc b c bc bc B Mp je Vénv digrm, kde jednotlivé oblsti mjí tvr obdélník Mík Rdek 25

26 Mpy Svobodov Mík Rdek 26

27 Tbulk Gryov kódu Mík Rdek 27

28 Mík Rdek 28

29 Rozšíení Svobodovy Krnughovy mpy Mík Rdek 29

Doc. Ing. Vlastimil Jáneš, CSc., K620

Doc. Ing. Vlastimil Jáneš, CSc., K620 Hrdwre počítčů Doc. Ing. Vlstimil Jáneš, CSc., K620 e-mil: jnes@fd.cvut.cz K508, 5. ptro, lbortoř, 2 2435 9555 Ing. Vít Fáber, K614 e-mil: fber@fd.cvut.cz K508, 5. ptro, lbortoř, 2 2435 9555 Informce mteriály

Více

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova

Více

Logické obvody - kombinační Booleova algebra, formy popisu Příklady návrhu

Logické obvody - kombinační Booleova algebra, formy popisu Příklady návrhu MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY MIKROPROCESORY PRO VÝKONOVÉ SYSTÉMY Logické ovody - kominční Booleov lger, ormy popisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická ABMIS Mikroprocesory

Více

Logické obvody. Logický obvod. Rozdělení logických obvodů - Kombinační logické obvody. - Sekvenční logické obvody

Logické obvody. Logický obvod. Rozdělení logických obvodů - Kombinační logické obvody. - Sekvenční logické obvody Logické ovody Cílem této kpitoly je sezn{mit se s logickými ovody, se z{kldním rozdělením logických ovodů, s jejich některými typy. Tké se nučíme nvrhovt logické ovody. Klíčové pojmy: Logický ovod,kominční

Více

P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody

P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody P4 LOGICKÉ OBVODY I. Kombinační Logické obvody I. a) Základy logiky Zákony Booleovy algebry 1. Komutativní zákon duální forma a + b = b + a a. b = b. a 2. Asociativní zákon (a + b) + c = a + (b + c) (a.

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

2. LOGICKÉ OBVODY. Kombinační logické obvody

2. LOGICKÉ OBVODY. Kombinační logické obvody Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchitektur očítčů Logické ovody - kominční Booleov lger, ormy oisu Příkldy návrhu České vysoké učení technické Fkult elektrotechnická Ver.. J. Zděnek/M. Chomát Logický kominční ovod Logický kominční

Více

Základy číslicové techniky. 2 + 1 z, zk

Základy číslicové techniky. 2 + 1 z, zk Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,

Více

Technická kybernetika. Obsah

Technická kybernetika. Obsah 28.02.207 Akemiký rok 206/207 Připrvil: Rim Frn Tehniká kyernetik Logiké řízení 2 Osh Logiké řízení. Booleov lger. Zání logiké funke. Syntéz knonikého tvru kominční logiké funke. Sestvení logiké funke

Více

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor Předmět Ústv Úloh č. 2 BDIO - Digitální obvody Ústv mikroelektroniky Návrh zákldních kombinčních obvodů: dekodér, enkodér, multiplexor, demultiplexor Student Cíle Porozumění logickým obvodům typu dekodér,

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. 12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Booleova algebra. Logická proměnná. Booleova algebra

Booleova algebra. Logická proměnná. Booleova algebra Booleov lger Cílem této kpitoly je seznámit se se zákldy Booleovy logické lgery, která je mtemtickou disciplínou tvoří teoretický prostředek pro návrh logických ovodů. Klíčové pojmy: Logická proměnná,

Více

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35

Převody Regulárních Výrazů. Minimalizace Konečných. Regulární jazyky 2 p.1/35 Převody Regulárních Výrzů Minimlizce Konečných Automtů Regulární jzyky 2 p.1/35 Kleeneho lger Definice 2.1 Kleeneho lger sestává z neprázdné množiny se dvěm význčnými konstntmi 0 1, dvěm inárními opercemi

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

Základy číslicové techniky z, zk

Základy číslicové techniky z, zk Základy číslicové techniky 2 + 1 z, zk Doc. Ing. Vlastimil Jáneš, CSc., K620 e-mail: janes@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro,

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Matematika pro ekonomy MATEMATIKA PRO EKONOMY

Matematika pro ekonomy MATEMATIKA PRO EKONOMY Mtemtik pro ekonomy MATEMATIKA PRO EKONOMY 8 ešení soustvy lineárních rovnic užitím mtic Gussov eliminní metod (GEM) MATICE 6 6 Hlvní digonál TROJÚHELNÍKOVÁ MATICE Pozn.: i... i-tý ádek mtice PIVOT = první

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

3. Automatické ízení 3.1. Logické ízení

3. Automatické ízení 3.1. Logické ízení 3. Automtické ízení 3.. Logické ízení 3... Logická lgebr (Booleov) Logickou lgebru vytvo il v roce 854 irský mtemtik George Boole. Logické prom nné v této lgeb e nbývjí pouze dvou hodnot : prvd - true,,

Více

VY_32_INOVACE_CTE-2.MA-15_Sčítačky (poloviční; úplná) Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_CTE-2.MA-15_Sčítačky (poloviční; úplná) Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu Číslo mteriálu Z..07/.5.00/34.058 VY_32_INOVAE_TE-2.MA5_čítčky (poloviční; úplná) Název školy Autor Temtická olst Ročník třední odorná škol třední odorné učiliště, Duno Ing. Miroslv Krýdl

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné.

MATA Př 2. Složené výroky: Jsou dány výroky: a: Číslo 5 je prvočíslo. b: Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. MATA Př 2 Složené výroky: Jsou dány výroky: : Číslo 5 je prvočíslo. : Číslo 5 je sudé. c: Číslo 5 je liché. d: Číslo 5 je záporné. Konjunkce disjunkce Konjunkce liovolných výroků, je výrok, který vznikne

Více

pro n jk p irozen slo n 1, kde k d formule i (i f1 ::: ng) je bu rovn formuli T,tj. tutologii, nebo je nps n ve tvru l1 _ :::_ l ki pro n jk p irozen

pro n jk p irozen slo n 1, kde k d formule i (i f1 ::: ng) je bu rovn formuli T,tj. tutologii, nebo je nps n ve tvru l1 _ :::_ l ki pro n jk p irozen Krnughovy mpy Dopln k k p edm tu Mtemtick logik Ji Velebil ktedr mtemtiky FEL VUT, Prh velebil@mth.feld.cvut.cz 14. nor 000 Smyslem t to pozn mky je pouze podt dopln k ke skriptu doc. Mrie Demlov prof.

Více

Automaty a gramatiky

Automaty a gramatiky 5 Automty grmtiky Romn Brták, KTIML rtk@ktiml.mff.cuni.cz http://ktiml.mff.cuni.cz/~rtk Co ylo minule Množinové operce s jzyky sjednocení, pr nik, rozdíl, dopln k uzv enost opercí (lgoritmus p evodu) et

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Sémantická věta o dedukci Věta Pro

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami

Základní pojmy: Číselné obory a vztahy mezi nimi Zákony pro počítání s číselnými množinami / Zákldní pojmy: Číselné obory vzthy mezi nimi ČÍSELNÉ MNOŽINY Zákony pro počítání s číselnými množinmi. Přirozená čísl vyjdřují počet prvků množiny N. Celá čísl změn počtu prvků dné množiny, přírůstky

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

Technická univerzita v Liberci. Pedagogická fakulta. Katedra matematiky a didaktiky matematiky. Matematika I. (Obor: Informatika a logistika)

Technická univerzita v Liberci. Pedagogická fakulta. Katedra matematiky a didaktiky matematiky. Matematika I. (Obor: Informatika a logistika) Technická univerzit v Liberci Pedgogická fkult Ktedr mtemtiky didktiky mtemtiky Mtemtik I (Obor: Informtik logistik) Václv Finěk Kpitol Zákldní pojmy Cílem této kpitoly je vysvětlit význm zákldních pojmů

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF

MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF MENDELOVA UNIVERZITA V BRNĚ MATEMATIKA K PŘIJÍMACÍM ZKOUŠKÁM NA PEF RNDr. Petr Rádl RNDr. Bohumil Černá RNDr. Ludmil Strá 0 Petr Rádl, 0 ISBN 97-0-77-9- OBSAH Předmluv... Poždvky k přijímcí zkoušce z mtemtiky..

Více

Vícebytová celočíselná aritmetika

Vícebytová celočíselná aritmetika IMTEE 7 / 8 Přednášk č. 7 Vícebytová celočíselná ritmetik = bitová šířk zprcovávných dt > než šířk slov PU npř.: 8 b PU zprcovává b dt dále teoretické příkldy: b PU zprcovává 6 b slov Uložení dt v pměti

Více

Logické proměnné a logické funkce

Logické proměnné a logické funkce Booleova algebra Logické proměnné a logické funkce Logická proměnná je veličina, která může nabývat pouze dvou hodnot, označených 0 a I (tedy dvojková proměnná) a nemůže se spojitě měnit Logická funkce

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

Toto dílko bylo původně tvořeno pouze jako přehled matiky k maturitě, takže jeho forma odpovídá

Toto dílko bylo původně tvořeno pouze jako přehled matiky k maturitě, takže jeho forma odpovídá Toto dílko bylo původně tvořeno pouze jko přehled mtiky k mturitě, tkže jeho form odpovídá rozshu mého učiv mým poždvkům. Docel se mi osvědčilo už během roku, bylo mi nvrženo, bych ho dl k dispozici n

Více

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu:

Svazy. Def Svaz je algebra S ( M ;, ) = se dvěma binárními operacemi taková, že pro libovolné prvky c M platí následující podmínky axiomy svazu: vz je lgebr ( M ; ) vzy = se dvěm binárními opercemi tková že pro libovolné prvky b c M pltí následující podmínky xiomy svzu: ( b) c = ( b c) ( b) c = ( b c) b = b b = b ( ) ( ) b = b =. Operce se nzývá

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010

Správné řešení písemné zkoušky z matematiky- varianta A Přijímací řízení do NMgr. studia učitelských oborů 2010 právné řešení písemné koušky mtemtiky- vrint A Přijímcí říení do NMgr. studi učitelských oborů Příkld. Vyšetřete průběh funkce v jejím mimálním definičním oboru nčrtněte její grf y Určete pritu (sudá/lichá),

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26

LDF MENDELU. Simona Fišnarová (MENDELU) Určitý integrál ZVMT lesnictví 1 / 26 Určitý integrál Zákldy vyšší mtemtiky LDF MENDELU Podpořeno projektem Průřezová inovce studijních progrmů Lesnické dřevřské fkulty MENDELU v Brně (LDF) s ohledem n discipĺıny společného zákldu http://kdemie.ldf.mendelu.cz/cz

Více

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST

1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST 1 KOMBINATORIKA, KLASICKÁ PRAVDPODOBNOST Kombinatorické pravidlo o souinu Poet všech uspoádaných k-tic, jejichž první len lze vybrat n 1 zpsoby, druhý len po výbru prvního lenu n 2 zpsoby atd. až k-tý

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace LOGICKÉ OBVODY 2 kombinační obvody, minimalizace logické obvody kombinační logické funkce a jejich reprezentace formy popisu tabulka, n-rozměrné krychle algebraický zápis mapy 9..28 Logické obvody - 2

Více

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1. Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

5. 2 Vzdělávací oblast Matematika a její aplikace

5. 2 Vzdělávací oblast Matematika a její aplikace 5. 2 Vzdělávcí oblst Mtemtik její plikce 5. 2. 1 Chrkteristik vzdělávcí oblsti Mtemtiku chápeme především jko metodu ke kvntittivnímu popisu svět. Mtemtik je nšem pojetí jednoduchá, názorná plikovtelná,

Více

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E)

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E) . Když c + d + bc + bd = 68 c+ d = 4, je + b+ c+ d rovno: 9 7 34 64 4. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n + 3n + n je totožná s posloupností: n n =. n+ = 3, = n Povrch rotčního

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic

7 Algebraické a nealgebraické rovnice a nerovnice v C. Numerické e²ení rovnic 7 Algebrické nelgebrické rovnice nerovnice v C. Numerické (typy lgebrických rovnic zákldní metody jejich e²ení lineární, kvdrtické, reciproké rovnice rovnice vy²²ích ád, rovnice nerovnice nelgebrické s

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné

Matematika II: Pracovní listy Integrální počet funkce jedné reálné proměnné Mtemtik II: Prcovní listy Integrální počet funkce jedné reálné proměnné Petr Schreiberová, Petr Volný Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Ostrv 8 Obsh Neurčitý integrál.

Více

MATEMATICKÁ KARTOGRAFIE

MATEMATICKÁ KARTOGRAFIE VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL 1 REFERENNÍ PLOCHY A SOUADNICOVÉ SYSTÉMY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Mtemtická

Více

1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2.

1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. 1. Těleso komplexních čísel Definice. Množinou komplexních čísel rozumíme množinu R 2. Množinu komplexních čísel znčíme C. N množině C definujeme operce sčítání + jko v R 2 násobení. předpisem (x, y).(u,

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5.

je jedna z orientací určena jeho parametrizací. Je to ta, pro kterou je počátečním bodem bod ϕ(a). Im k.b.(c ) ( C ) (C ) Obr Obr. 3.5. 10. Komplexní funkce reálné proměnné. Křivky. Je-li f : (, b) C, pk lze funkci f povžovt z dvojici (u, v), kde u = Re f v = Im f. Rozdíl proti vektorovému poli je v tom, že jsou pro komplexní čísl definovány

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Msíc: Záí Uivo: Shrnutí a opakování uiva z 5.roníku Pirozená ísla íselná osa, porovnávání, zaokrouhlování, operace s nimi, pevody,

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

BOOLOVÁ ALGEBRA ZÁKLADNÉ OPERÁCIE

BOOLOVÁ ALGEBRA ZÁKLADNÉ OPERÁCIE OOLOVÁ LGER Slúži na matematický opis zákonov a pravidiel výrokovej logiky, ktorá rieši vzahy medzi pravdivými a nepravdivými výrokmi. Pravdivému výroku prideujeme logickú hodnotu 1 a nepravidelnému výroku

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T ÚNORA 08 :. úor 08 D : 96 P P P : 0 M. M. : 0 : 0 M. :,4 % S : -7,5 M. P : -,8 : 4,5 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90 miut

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/ ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Mcochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávcího mteriálu: Anotce: Vzdělávcí olst: VY_32_INOVACE_ARITMETIKA+ALGEBRA20 Nerovnosti, intervly,

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Digital Electronics. Jaroslav Bernkopf. 17 October 2008

Digital Electronics. Jaroslav Bernkopf. 17 October 2008 Digital Electronics Jaroslav Bernkopf 7 October 2008 . Introduction Úvod. Representation of Values Zobrazení veliin.2 Analogue Representation Analogové zobrazení This is an analogue meter. Toto je analogový

Více

íslo ryze periodické íslice /skupina íslic ), která se opakuje nazýváme perioda. V našem p ípad je perioda íslice 6.

íslo ryze periodické íslice /skupina íslic ), která se opakuje nazýváme perioda. V našem p ípad je perioda íslice 6. 2. Racionální ísla 7. roník -2. Racionální ísla 2.1. Vymezení pojmu Každé íslo, které lze vyjáditjako podíl dvou celýchísel, je íslo racionální. Pi podílu dvou celýchísel a a bmohou nastattyto situace

Více

Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 5 Rovinný rám. Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Stvební mechnik,.ročník bklářského studi AST Tém 5 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

Logaritmická funkce, logaritmus, logaritmická rovnice

Logaritmická funkce, logaritmus, logaritmická rovnice Logritmická funkce. 4 Logritmická funkce, ritmus, ritmická rovnice - získá se jko funkce inverzní k funkci eponenciální, má tvr f: = Pltí: > 0!! * * = = musí být > 0, > 0 Rozlišujeme dv zákldní tp: ) >

Více

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou

1) íselný výraz. 8. roník Algebraické výrazy. Algebraické výrazy výrazy s promnnou Algebraické výrazy výrazy s promnnou S výrazy jsme se setkali v matematice a fyzice již mnohokrát. Pomocí výraz zapisujeme napíklad matematické vzorce. Vyskytují se v nich jednak ísla, kterým íkáme konstanty

Více

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111.

Je regulární? Pokud ne, na regulární ji upravte. V původní a nové gramatice odvod te řetěz 1111. Grmtiky. Vytvořte grmtiku generující množinu řetězů { n m } pro n, m N {} tková, že n m. Pomocí této grmtiky derivujte řetezy,. 2. Grmtik je dán prvidly S ɛ S A A S B B A B. Je regulární? Pokud ne, n regulární

Více

Integrál a jeho aplikace Tomáš Matoušek

Integrál a jeho aplikace Tomáš Matoušek Integrál jeho plikce Tomáš Mtoušek Křivk Definice.(Vektorováfunkce) Funkci ϕ:r R n,kteráreálnémučíslupřiřzuje n-tici reálných čísel(vektor), nzýváme funkcí vektorovou. Lze ji tké popst po složkáchjko ϕ(t)=(ϕ

Více

Repetitorium z matematiky

Repetitorium z matematiky Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:

Více

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48 Formální jzyky M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 6. březn 2007 1/ 48 Motivce 1: Vyhledávání v textu Potřebujeme řešit následující problém: Máme řdu různých textů(npř. soubory n

Více

1. Pokyny pro vypracování

1. Pokyny pro vypracování 1. Pokyny pro vyprcování Zvolený příkld z druhé kpitoly vyprcujte písemně (nejlépe vysázejte pomocí LATEXu) dodejte osobně po předchozí domluvě milem n krbek@physics.muni.cz. Dále si vyberte tři z jednodušších

Více

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3 Cvičení.ročník rovnice, nerovnice, výrzy, funkce ) Vypočítejte: ) [0 (8. 0 7. 0 )] b) [ ( ). ( ) ( 7)]: ( ) c) (9 ): ( ) + [ 8 (0 )] d)[. ( 9 + 7) ( ). ( )]. e). 9. 9 f). 7 + 9 ) Vyjádřete jko jedinou

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

Teorie jazyků a automatů

Teorie jazyků a automatů Slezská univerzit v Opvě Filozoficko-přírodovědecká fkult v Opvě Šárk Vvrečková Teorie jzyků utomtů Skript do předmětů II Zákldy teoretické informtiky Ústv informtiky Filozoficko-přírodovědecká fkult v

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků: ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá

Více

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!! . Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul

Více

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n,

množina, na které je zavedena určitá struktura. Zejména, součet každých dvou prvků X = [x 1,..., x n ] R n, Náplní předmětu bude klkulus R n R (přípdně R m ). Proč se zbývt funkcemi více proměnných? V prxi je čsto třeb uvžovt veličiny, které závisejí n více než jedné proměnné, npř. objem rotčního kužele závisí

Více

Tematický plán uiva z matematiky pro 6. roník na školní rok 2011-2012

Tematický plán uiva z matematiky pro 6. roník na školní rok 2011-2012 Tematický plán uiva z matematiky pro 6. roník na školní rok 2011-2012 Msíc: Záí Uivo: Shrnutí a opakování uiva z 5.roníku Pirozená ísla íselná osa, porovnávání, zaokrouhlování, operace s nimi, pevody,

Více