Lineární algebra rekonstrukce obrazu

Rozměr: px
Začít zobrazení ze stránky:

Download "Lineární algebra rekonstrukce obrazu"

Transkript

1 Lineární algebra rekonstrukce obrazu Prezentace práce pro matematický seminář 0 Mdx Theuer 20. října Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

2 Obsah Matematická reprezentace obrazu 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

3 Obsah Matematická reprezentace obrazu Popis lineárního modelu rozostření 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

4 Obsah Matematická reprezentace obrazu Popis lineárního modelu rozostření Odvození a realizace vybraných metod 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

5 Obsah Matematická reprezentace obrazu Popis lineárního modelu rozostření Odvození a realizace vybraných metod Testování na příkladech 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

6 Obsah Matematická reprezentace obrazu Popis lineárního modelu rozostření Odvození a realizace vybraných metod Testování na příkladech Současná práce 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

7 Matematická reprezentace obrazu 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

8 Matematická reprezentace obrazu f (x, y) = f (1, 1) f (1, 2) f (1, n) f (2, 1) f (2, 2) f (2, n) f (m, 1) f (m, 2) f (m, n) X = x 1,1 x 1,2 x 1,n x 2,1 x 2,2 x 2,n x m,1 x m,2 x m,n 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

9 Matematická reprezentace obrazu f (x, y) = f (1, 1) f (1, 2) f (1, n) f (2, 1) f (2, 2) f (2, n) f (m, 1) f (m, 2) f (m, n) X = x 1,1 x 1,2 x 1,n x 2,1 x 2,2 x 2,n x m,1 x m,2 x m,n x = vec( X). 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

10 Lineární model rozostření Předpokládáme existenci přesného obrazu x 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

11 Lineární model rozostření Předpokládáme existenci přesného obrazu x Vlivem různých podmínek dochází k rozostření a vzniku neostrého obrazu b 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

12 Lineární model rozostření Předpokládáme existenci přesného obrazu x Vlivem různých podmínek dochází k rozostření a vzniku neostrého obrazu b Proces rozostření modelujeme jako násobení maticí A A x = b 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

13 Lineární model rozostření Předpokládáme existenci přesného obrazu x Vlivem různých podmínek dochází k rozostření a vzniku neostrého obrazu b Proces rozostření modelujeme jako násobení maticí A A x = b A x + n = b 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

14 Kvazi-Newtonovy metody 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

15 Kvazi-Newtonovy metody Řešíme systém A T A x = A T b, 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

16 Kvazi-Newtonovy metody Řešíme systém A T A x = A T b, jehož řešení odpovídá minimalizaci minf ( x) = 1 2 xt A T A x x T A b, 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

17 Kvazi-Newtonovy metody Řešíme systém A T A x = A T b, jehož řešení odpovídá minimalizaci minf ( x) = 1 2 xt A T A x x T A b, což vede k předpisu x k+1 = x k α k M k g k = x k + α k M k r k 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

18 Metody bez omezení Landweberova metoda α (0, 2ρ(A T A) 1 ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

19 Metody bez omezení Landweberova metoda α (0, 2ρ(A T A) 1 ) Residual Norm Steepest Descent - RNSD α k = min α>0 f ( x k α g k ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

20 Metody bez omezení Landweberova metoda α (0, 2ρ(A T A) 1 ) Residual Norm Steepest Descent - RNSD α k = min α>0 f ( x k α g k ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

21 Metody s omezením Minimalizační úloha min f ( x), x Ω B kde Ω B = { x R n : x 0}, f ( x) = 1 2 xt A T A x x T A b. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

22 Metody s omezením Minimalizační úloha min f ( x), x Ω B kde Ω B = { x R n : x 0}, f ( x) = 1 2 xt A T A x x T A b. Projekce Nechť je Ω B je neprázdná konvexní podmnožina euklidovského prostoru R n a x prvkem tohoto prostoru. Projekce P ΩB ( x) do Ω B je dána [P ΩB ( x)] i = max{0, x i }, i = 1, 2,..., n 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

23 Metody s omezením FSGP Fixed Steplength Gradient Projection - FSGP α (0, 2ρ(A T A) 1 ) x k+1 = P ΩB ( x k α g k ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

24 Metody s omezením FSGP Fixed Steplength Gradient Projection - FSGP α (0, 2ρ(A T A) 1 ) x k+1 = P ΩB ( x k α g k ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

25 Metody s omezením RNSDP Residual Norm Steepest Descent with Projection - RNSDP 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

26 Metody s omezením RNSDP Residual Norm Steepest Descent with Projection - RNSDP α BO - ideální délka kroku bez omezení, která je stejná jako v případě RNSD α BO = min α>0 f ( x k α BO g k ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

27 Metody s omezením RNSDP Residual Norm Steepest Descent with Projection - RNSDP α BO - ideální délka kroku bez omezení, která je stejná jako v případě RNSD α BO = min α>0 f ( x k α BO g k ) α O - délka omezeného kroku α O = min { x i i / A}, g>0 g i je taková délka kroku ve směru g, který by vedl právě na hranici. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

28 Metody s omezením RNSDP Residual Norm Steepest Descent with Projection - RNSDP α BO - ideální délka kroku bez omezení, která je stejná jako v případě RNSD α BO = min α>0 f ( x k α BO g k ) α O - délka omezeného kroku α O = min { x i i / A}, g>0 g i je taková délka kroku ve směru g, který by vedl právě na hranici. α FS - pevná délka kroku α FS (0, 2ρ(A T A) 1 ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

29 Metody s omezením RNSDP 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

30 Metody s omezením MRNSD Modified Residual norm Steepest Descent - MRNSD x = e z 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

31 Metody s omezením MRNSD Modified Residual norm Steepest Descent - MRNSD x = e z minf ( x) = 1 2 ez A T Ae z e z A b 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

32 Metody s omezením MRNSD Modified Residual norm Steepest Descent - MRNSD x = e z minf ( x) = 1 2 ez A T Ae z e z A b pro kterou platí: f (z) = x f ( x) Iterační předpis: x k+1 = x k α x k f ( x) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

33 Metody s omezením Konvergence 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

34 Testování na příkladech Testovací data 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

35 Testování na příkladech Výsledky Obrázek: RNSDP a MRNSD 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

36 Současná práce MPRGP - náhled Modified Proportioning with Reduced Gradient Projections - MPRGP Je dáno ( x 0 Ω, α FS 0, A T A 1, Γ > 0, 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

37 Současná práce MPRGP - náhled Modified Proportioning with Reduced Gradient Projections - MPRGP Je dáno ( x 0 Ω, α FS 0, A T A 1, Γ > 0, pro k 0 a známé x k generujeme x k+1 podle následujících pravidel: Pokud je ν ( x k) = 0: x k+1 = x k. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

38 Současná práce MPRGP - náhled Modified Proportioning with Reduced Gradient Projections - MPRGP Je dáno ( x 0 Ω, α FS 0, A T A 1, Γ > 0, pro k 0 a známé x k generujeme x k+1 podle následujících pravidel: Pokud je ν ( x k) = 0: x k+1 = x k. Pokud je x k strictly proportional a ν ( x k) 0, zkusíme generovat x k+1 jako conjugate gradient step. Pokud x k+1 Ω, přijmeme jej, jinak generujeme x k+1 pomocí expansion step. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

39 Současná práce MPRGP - náhled Modified Proportioning with Reduced Gradient Projections - MPRGP Je dáno ( x 0 Ω, α FS 0, A T A 1, Γ > 0, pro k 0 a známé x k generujeme x k+1 podle následujících pravidel: Pokud je ν ( x k) = 0: x k+1 = x k. Pokud je x k strictly proportional a ν ( x k) 0, zkusíme generovat x k+1 jako conjugate gradient step. Pokud x k+1 Ω, přijmeme jej, jinak generujeme x k+1 pomocí expansion step. Pokud x k není strictly proportional, provedeme proportioning, čímž získáme x k+1. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

40 Současná práce MPRGP MPRGP - Conjugate Gradient Step V každé iteraci testujeme podmínku ( β x k) 2 ( Γ ϕ x k) T ( ϕ x k) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

41 Současná práce MPRGP MPRGP - Conjugate Gradient Step V každé iteraci testujeme podmínku ( β x k) 2 ( Γ ϕ x k) T ( ϕ x k) pokud je splněna, zkusíme conjugate gradient step x k+1 = x k α CG p k, kde p k je směr sdružených gradientů, který je generován postupně. Generování začíná z p s = ϕ( x s ) kdykoli je x s získán z expansion step nebo proportioning step. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

42 Současná práce MPRGP MPRGP - Conjugate Gradient Step V každé iteraci testujeme podmínku ( β x k) 2 ( Γ ϕ x k) T ( ϕ x k) pokud je splněna, zkusíme conjugate gradient step x k+1 = x k α CG p k, kde p k je směr sdružených gradientů, který je generován postupně. Generování začíná z p s = ϕ( x s ) kdykoli je x s získán z expansion step nebo proportioning step. Pokud je x k+1 přípustné, přijmeme jej, jinak provedeme expansion step. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

43 Současná práce MPRGP MPRGP - Expansion Step Expansion step je krok s pevnou délkou a projekcí: x k+1 = P Ω ( x k α FS ϕ( x k )) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

44 Současná práce MPRGP MPRGP - Expansion Step Expansion step je krok s pevnou délkou a projekcí: x k+1 = P Ω ( x k α FS ϕ( x k )) Tento krok může rozšířit aktivní množinu. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

45 Současná práce MPRGP MPRGP - Expansion Step Expansion step je krok s pevnou délkou a projekcí: x k+1 = P Ω ( x k α FS ϕ( x k )) Tento krok může rozšířit aktivní množinu. MPRGP - Proportioning Step Proportioning step je krok restartování sdružených gradientů: x k+1 = x α CG β( x k ) 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

46 Současná práce MPRGP MPRGP - Expansion Step Expansion step je krok s pevnou délkou a projekcí: x k+1 = P Ω ( x k α FS ϕ( x k )) Tento krok může rozšířit aktivní množinu. MPRGP - Proportioning Step Proportioning step je krok restartování sdružených gradientů: x k+1 = x α CG β( x k ) Tento krok naopak odebírá indexy z aktivní množiny. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

47 Současná práce Aktuální stav 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

48 Současná práce Aktuální stav Jednotlivé algoritmy jsem přepsal s využitím knihovny RestoreTools, kterou vyvíjí James Nagy a jeho tým. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

49 Současná práce Aktuální stav Jednotlivé algoritmy jsem přepsal s využitím knihovny RestoreTools, kterou vyvíjí James Nagy a jeho tým. Implementoval jsem MPRGP pro nesymetrické matice obrazu. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

50 Současná práce Aktuální stav Jednotlivé algoritmy jsem přepsal s využitím knihovny RestoreTools, kterou vyvíjí James Nagy a jeho tým. Implementoval jsem MPRGP pro nesymetrické matice obrazu. Nepodařilo se mi dosáhnout výrazného zlepšení předchozích algoritmů. 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

51 Závěr Otázky? 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

52 Závěr Otázky? Děkuji za pozornost 0 Mdx Theuer () Lineární algebra rekonstrukce obrazu 20. října / 19

Faster Gradient Descent Methods

Faster Gradient Descent Methods Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,

Více

Základní spádové metody

Základní spádové metody Základní spádové metody Petr Tichý 23. října 2013 1 Metody typu line search Problém Idea metod min f(x), f : x R Rn R. n Dána počáteční aproximace x 0. Iterační proces (krok k): (a) zvol směr d k, (b)

Více

3. Přednáška: Line search

3. Přednáška: Line search Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Metoda sdružených gradientů

Metoda sdružených gradientů Metoda sdružených gradientů 1 Poznámka A-skalární součin, A-norma (energetická norma) Standardní euklidovský skalární součin vektorů n x, y = y T x = y i x i. i=1 A R n n je symetrická, pozitivně definitní,

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n.

7 Konvexní množiny. min c T x. při splnění tzv. podmínek přípustnosti, tj. x = vyhovuje podmínkám: A x = b a x i 0 pro každé i n. 7 Konvexní množiny Motivace. Lineární programování (LP) řeší problém nalezení minima (resp. maxima) lineárního funkcionálu na jisté konvexní množině. Z bohaté škály úloh z této oblasti jmenujme alespoň

Více

Numerické metody optimalizace - úvod

Numerické metody optimalizace - úvod Numerické metody optimalizace - úvod Petr Tichý 16. února 2015 1 Organizace přednášek a cvičení 13 přednášek a cvičení. Zápočet: úloha programování a testování úloh v Matlabu. Další informace na blogu

Více

K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny

K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny FUNKCIONÁLNÍ ANALÝZA 1 PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2016/2017 PŘÍKLADY KE KAPITOLE VI K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište

Více

Princip řešení soustavy rovnic

Princip řešení soustavy rovnic Princip řešení soustavy rovnic Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Formulace úlohy Metody řešení

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

DRN: Kořeny funkce numericky

DRN: Kořeny funkce numericky DRN: Kořeny funkce numericky Kořenem funkce f rozumíme libovolné číslo r splňující f(r) = 0. Fakt. Nechť f je funkce na intervalu a, b. Jestliže f(a) f(b) < 0 (tj. f(a) a f(b) mají opačná znaménka) a f

Více

OPTIMALIZACE. (přehled metod)

OPTIMALIZACE. (přehled metod) OPTIMALIZACE (přehled metod) Typy optimalizačních úloh Optimalizace bez omezení Nederivační metody Derivační metody Optimalizace s omezeními Lineární programování Nelineární programování Globální optimalizace

Více

Arnoldiho a Lanczosova metoda

Arnoldiho a Lanczosova metoda Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 40 regula Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague regula 1 2 3 4 5 regula 6 7 8 2 / 40 2 / 40 regula Iterační pro nelineární e Bud f reálná funkce

Více

Formální jazyky a gramatiky Teorie programovacích jazyků

Formální jazyky a gramatiky Teorie programovacích jazyků Formální jazyky a gramatiky Teorie programovacích jazyků doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Připomenutí základních pojmů ABECEDA jazyk je libovolná podmnožina

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojmy: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocniny neznámé x, tj. a n x n + a n 1 x n 1 +... + a x + a 1 x + a 0 = 0, kde n je přirozené

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů

Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Báze konečněrozměrných vektorových prostorů, lineární zobrazení vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ) Připomeňme, že konečná posloupnost u 1, u 2,, u n vektorů z V je

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

KVADRATICKÁ KALIBRACE

KVADRATICKÁ KALIBRACE Petra Širůčková, prof. RNDr. Gejza Wimmer, DrSc. Finanční matematika v praxi III. a Matematické modely a aplikace 4. 9. 2013 Osnova Kalibrace 1 Kalibrace Pojem kalibrace Cíle kalibrace Předpoklady 2 3

Více

Kapitola 5. SLAR - gradientní metody

Kapitola 5. SLAR - gradientní metody 23.3.2o7 Kapitola 5. SLAR - gradientní metody Metody na řešení SLAR přímé (GEM, metoda LU-rozkladu) iterační (Jacobiova m., Gauss-Seidelova m., metoda SOR) gradientní X X Motivace Uvažujme kvadratickou

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

ALGEBRA. Téma 5: Vektorové prostory

ALGEBRA. Téma 5: Vektorové prostory SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)

Více

Operační výzkum. Teorie her. Řešení maticových her převodem na úlohu LP.

Operační výzkum. Teorie her. Řešení maticových her převodem na úlohu LP. Operační výzkum Řešení maticových her převodem na úlohu LP. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

2. kapitola: Euklidovské prostory

2. kapitola: Euklidovské prostory 2. kapitola: Euklidovské prostory 2.1 Definice. Euklidovským n-rozměrným prostorem rozumíme neprázdnou množinu E n spolu s vektorovým prostorem V n a přiřazením, které každému bodu a z E n a každému vektoru

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

4EK213 Lineární modely. 5. Dualita v úlohách LP

4EK213 Lineární modely. 5. Dualita v úlohách LP 4EK213 Lineární modely 5. Dualita v úlohách LP 5. Dualita v úlohách LP Obecné vyjádření simplexové tabulky Formulace duálního problému Formulace symetrického duálního problému Formulace nesymetrického

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Metoda konjugovaných gradientů

Metoda konjugovaných gradientů 0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

Aplikace metody BDDC

Aplikace metody BDDC Aplikace metody BDDC v problémech pružnosti P. Burda, M. Čertíková, E. Neumanová, J. Šístek A. Damašek, J. Novotný FS ČVUT, ÚT AVČR 14.9.2006 / SAMO 06 (FS ČVUT, ÚT AVČR) 14.9.2006 / SAMO 06 1 / 46 Osnova

Více

Numerické metody a programování. Lekce 8

Numerické metody a programování. Lekce 8 Numerické metody a programování Lekce 8 Optimalizace hledáme bod x, ve kterém funkce jedné nebo více proměnných f x má minimum (maximum) maximalizace f x je totéž jako minimalizace f x Minimum funkce lokální:

Více

Pravděpodobnostní algoritmy

Pravděpodobnostní algoritmy Pravděpodobnostní algoritmy 17. a 18. přednáška z kryptografie Alena Gollová 1/31 Obsah 1 Diskrétní rozdělení náhodné veličiny Algoritmus Generate and Test 2 Alena Gollová 2/31 Diskrétní rozdělení náhodné

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Okruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20

Okruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Okruh Z m Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Minule: 1 Slepování prvků Z modulo m: množina Z m. 2 Operace na Z m : m (sčítání), m (násobení). 3 Speciální prvky: [0] m a [1] m. 4 Vlastnosti

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Jaroslav Tuma. 8. února 2010

Jaroslav Tuma. 8. února 2010 Semestrální práce z předmětu KMA/MM Odstraňování šumu z obrazu Jaroslav Tuma 8. února 2010 1 1 Zpracování obrazu Zpracování obrazu je disciplína zabývající se zpracováním obrazových dat různého původu.

Více

Algoritmus pro hledání vlastních čísel kvaternionových matic

Algoritmus pro hledání vlastních čísel kvaternionových matic Úvod Algoritmus pro hledání vlastních čísel kvaternionových matic Bc. Martin Veselý Fakulta jaderná a fyzikálně inženýrská Katedra softwarového inženýrství v ekonomii Skupina aplikované matematiky a stochastiky

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Detekce kartografického zobrazení z množiny

Detekce kartografického zobrazení z množiny Detekce kartografického zobrazení z množiny bodů Tomáš Bayer Katedra aplikované geoinformatiky Albertov 6, Praha 2 bayertom@natur.cuni.cz Abstrakt. Detekce kartografického zobrazení z množiny bodů o známých

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ň Š ý ě ý Ě Á ý ý ě ň Š ý ě ý ú ň ň ý ě ý ó ě ž ý ň ě ě Š ú Š ú Š ň Á ň Š ň ý ě ý Š ž ý ě ý ů ě ě ž ý ě Š ě ě ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ó ě ů ě ý Š ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ě Č Č ě Š Č ě

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

4. Přednáška: Kvazi-Newtonovské metody:

4. Přednáška: Kvazi-Newtonovské metody: 4 Přednáša: Kvazi-Newtonovsé metody: Metody s proměnnou metriou, modifiace Newtonovy metody Efetivní pro menší úlohy s hustou Hessovou maticí Newtonova metoda (opaování): f aproximujeme loálně vadraticou

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Úvod do teorie her. 6. Koaliční hry

Úvod do teorie her. 6. Koaliční hry Úvod do teorie her 6. Koaliční hry Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2018 ÚTIA AV ČR Různé formy her Známé formy her jsou: rozvinutá, strategická, koaliční. Pro danou množinu hráčů N = {1,...,

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

4EK213 Lineární modely. 10. Celočíselné programování

4EK213 Lineární modely. 10. Celočíselné programování 4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a

Více

Matematika 4 FSV UK, LS Miroslav Zelený

Matematika 4 FSV UK, LS Miroslav Zelený Matematika 4 FSV UK, LS 2017-18 Miroslav Zelený 13. Diferenční rovnice 14. Diferenciální rovnice se separovanými prom. 15. Lineární diferenciální rovnice prvního řádu 16. Lineární diferenciální rovnice

Více

Odchylka ekliptiky od roviny Galaxie

Odchylka ekliptiky od roviny Galaxie Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy, Plasy 2 Gymnázium Botičská, Praha 3 Gymnázium Nad Štolou, Praha Týden Vědy, 2010 Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy,

Více

Zpracování digitalizovaného obrazu (ZDO) - Popisy III

Zpracování digitalizovaného obrazu (ZDO) - Popisy III Zpracování digitalizovaného obrazu (ZDO) - Popisy III Statistické popisy tvaru a vzhledu Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Zpracování

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

1 0 0 u 22 u 23 l 31. l u11

1 0 0 u 22 u 23 l 31. l u11 LU dekompozice Jedná se o rozklad matice A na dvě trojúhelníkové matice L a U, A=LU. Matice L je dolní trojúhelníková s jedničkami na diagonále a matice U je horní trojúhelníková. a a2 a3 a 2 a 22 a 23

Více

2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16

2 ab. ), (ii) (1, 2, 3), (iii) ( 3α+8,α+12,6α 16 Řešení úloh... Hroch dostane 80 mg prvního a 80 mg druhého přípravku.. V hospodě je 0 čtyřmístných šestimístných a osmimístné stoly.. i) pro ab právě jedno řešení: x = 5b ab y = a+5 ab pro a = 5 ab = nekonečně

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

EUKLIDOVSKÉ PROSTORY

EUKLIDOVSKÉ PROSTORY EUKLIDOVSKÉ PROSTORY Necht L je lineární vektorový prostor nad tělesem reálných čísel R. Zobrazení (.,.) : L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx,

Více

Úvod do teorie her

Úvod do teorie her Úvod do teorie her 2. Garanční řešení, hry s nulovým součtem a smíšené strategie Tomáš Kroupa http://staff.utia.cas.cz/kroupa/ 2017 ÚTIA AV ČR Program 1. Zavedeme řešení, které zabezpečuje minimální výplatu

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

M5170: Matematické programování

M5170: Matematické programování M5170: Matematické programování Petr Zemánek (Masarykova Univerzita, Brno) Kapitola 3: Numerické metody řešení úloh matematického programování I (verze: 28. ledna 2019) Obecný úvod Nyní se již konečně

Více

!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením

Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením Metody vnitřních bodů pro řešení úlohy lineární elasticity s daným třením J. Machalová, P. Ženčák, R. Kučera Katedra matematické analýzy a aplikací matematiky PřF UP Olomouc Katedra matematiky a deskriptivní

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Předmět: MA04 Vyučující: Jan Chleboun, místnost B-305, linka 3866 (jan.chleboun@cvut.cz) Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Sledovat informace na webových stránkách vyučujícího (o zkoušce,

Více

METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI

METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI METODY OPTIMALIZACE ZDENĚK DOSTÁL, PETR BEREMLIJSKI Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně podílela Vysoká

Více

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:

Více

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program

Diferenˇcní rovnice Diferenciální rovnice Matematika IV Matematika IV Program Program Diferenční rovnice Program Diferenční rovnice Diferenciální rovnice Program Frisch a Samuelson: Systém je dynamický, jestliže jeho chování v čase je určeno funkcionální rovnicí, jejíž neznámé závisí

Více

Cvičení 5 - Inverzní matice

Cvičení 5 - Inverzní matice Cvičení 5 - Inverzní matice Pojem Inverzní matice Buď A R n n. A je inverzní maticí k A, pokud platí, AA = A A = I n. Matice A, pokud existuje, je jednoznačná. A stačí nám jen jedna rovnost, aby platilo,

Více

Úvod do optimalizace, metody hladké optimalizace

Úvod do optimalizace, metody hladké optimalizace Evropský sociální fond Investujeme do vaší budoucnosti Úvod do optimalizace, metody hladké optimalizace Matematika pro informatiky, FIT ČVUT Martin Holeňa, 13. týden LS 2010/2011 O čem to bude? Příklady

Více

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk České vysoké učení technické v Praze Stavební fakulta Katedra mechaniky Fuzzy množiny, fuzzy čísla a jejich aplikace v inženýrství Jaroslav Kruis, Petr Štemberk Obsah Nejistoty Teorie pravděpodobnosti

Více

AVDAT Mnohorozměrné metody, metody klasifikace

AVDAT Mnohorozměrné metody, metody klasifikace AVDAT Mnohorozměrné metody, metody klasifikace Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Mnohorozměrné metody Regrese jedna náhodná veličina je vysvětlována pomocí jiných

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Karel Lemr. web: Karel Lemr Fotonové páry 1 / 26

Karel Lemr. web:     Karel Lemr Fotonové páry 1 / 26 Kvantové zpracování informace s fotonovými páry Karel Lemr Společná laboratoř optiky UP Olomouc a FzÚ AVČR web: http://jointlab.upol.cz/lemr email: lemr@jointlab.upol.cz Karel Lemr Fotonové páry 1 / 26

Více

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD.

OOFEM: Implementace plasticitního materiálového modelu Cam-Clay. Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. OOFEM: Implementace plasticitního materiálového modelu Cam-Clay Ondřej Faltus, ZS 2016/17 Vyučující: Ing. Martin Horák, PhD. Teorie plasticity Pružnoplastické chování Princip: materiál se chová elasticky

Více

opt [ ] Vyjádření subvektory (báz. a nebáz.) B,N Index bázových a nebázových proměnných β, ν Množina indexů veličin B,N

opt [ ] Vyjádření subvektory (báz. a nebáz.) B,N Index bázových a nebázových proměnných β, ν Množina indexů veličin B,N 1 2-LP-Lineární programování Lineární funkce i omezovací podmínky opt t X c R c R b b b R...vektor limitů (kapacitních), a i i R b A...matice strukturálních koeficientů, > b! R hod = b, 0,..vektorproměnných,...vektor

Více

Princip gradientních optimalizačních metod

Princip gradientních optimalizačních metod Princip gradientních optimalizačních metod Tomáš Kroupa 20. května 2014 Tento studijní materiál je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Obsah Úkol a základní

Více

Zadání semestrální práce z předmětu Mechanika 2

Zadání semestrální práce z předmětu Mechanika 2 Zadání semestrální práce z předmětu Mechanika 2 Jméno: VITALI DZIAMIDAU Číslo zadání: 7 U zobrazeného mechanismu definujte rozměry, hmotnosti a silové účinky a postupně proveďte: 1. kinematickou analýzu

Více

OPTIMALIZAČNÍ ALGORITMY V KONTAKTNÍCH ÚLOHÁCH

OPTIMALIZAČNÍ ALGORITMY V KONTAKTNÍCH ÚLOHÁCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství doc. RNDr. Radek Kučera, Ph.D. OPTIMALIZAČNÍ ALGORITMY V KONTAKTNÍCH ÚLOHÁCH OPTIMIZATION ALGORITHMS IN CONTACT PROBLEMS TEZE PŘEDNÁŠKY K PROFESORSKÉMU

Více

Bayesovské metody. Mnohorozměrná analýza dat

Bayesovské metody. Mnohorozměrná analýza dat Mnohorozměrná analýza dat Podmíněná pravděpodobnost Definice: Uvažujme náhodné jevy A a B takové, že P(B) > 0. Podmíněnou pravěpodobností jevu A za podmínky, že nastal jev B, nazýváme podíl P(A B) P(A

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Paralelní algoritmy v lineární algebře. Násobení matic

Paralelní algoritmy v lineární algebře. Násobení matic Paralelní algoritmy v lineární algebře Násobení matic Násobení matic mějme matice A, B, C R n,n počítáme součin C = AB mějme p procesu a necht p je mocnina dvou matice rozdělíme blokově na p p bloků pak

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

7.3. Diferenciální rovnice II. řádu

7.3. Diferenciální rovnice II. řádu Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +

Více

Numerické integrace některých nediferencovatelných funkcí

Numerické integrace některých nediferencovatelných funkcí Numerické integrace některých nediferencovatelných funkcí Ústav matematiky a biomatematiky Přírodovědecká fakulta Jihočeské univerzity v Českých Budějovicích 2. prosince 2014 Školitel: doc. Dr. rer. nat.

Více