Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Ambasadoři přírodovědných a technických oborů. Ing. Michal Řepka Březen - duben 2013"

Transkript

1 Ambasadoři přírodovědných a technických oborů Ing. Michal Řepka Březen - duben 2013

2 Umělé neuronové sítě

3 Proč právě Neuronové sítě?

4 K čemu je to dobré?

5 Používá se to někde v praxi?

6 Úvod Umělé neuronové sítě patří do kategorie umělé inteligence. Hlavní objektem výzkumu této části je mozek. (Jeho struktura, funkce, možnosti a jeho napodobeniny)

7 Učit se Funkce lidského mozku Vytváření neexistujících vzorů Memory Switch Klasifikace Apod. Protože doposud funkce lidského mozku nebyli zcela objasněny, budeme zde hovořit spíše o efektech, které můžeme pozorovat.

8 Učit se Funkce lidského mozku Je základní schopnost lidského mozku (Tato schopnost je možná, protože jednotlivé neurony mohou mezi sebou navazovat a rušit spojení Těmto spojům se říká synapse.)

9 Funkce lidského mozku Vytváření neexistujících vzorů příkladem je obrázek na, kterém je vidět bílý čtverec i když tam ve skutečnosti není.

10 Funkce lidského mozku Memory Switch tato funkce, neboli efekt se projevuje jak u lidských mozků tak i u technických neuronových sítí. Tj. pokud se neuronová síť naučí nějakému vzoru, pak jej vždy rozpozná. Tento jev je v podstatě slabinou. Protože při poznávání světa se člověk setkává s jevy a ty zařazuje do tříd. Pokud však člověk najde jev, který je podobný již poznanému, tak tento nový jev automaticky zařadí do stejné třídy i když se může jednat o zcela jiný jev. (Tímto je možné přehlédnout např. nový objev.)

11 Funkce lidského mozku Klasifikace je v podstatě ohodnocení daného problému a jeho zařazení do příslušné třídy. Je to činnost, kterou člověk používá každý den. Např.: o o Operátor přijímající zprávu v Morseově abecedě, musí správně klasifikovat jednotlivé znaky Zákazník, který vybírá mezi výrobky se musí rozhodnout, který je pro něj lepší a který horší

12 Mozek Mozek je považován za centrum inteligence V dnešní době je známo více informací o mozku na úrovni fyziologické než na úrovni psychologické. Např. ví se jak fungují mozkové buňky, ale téměř nic není známo o vlastní inteligenci člověka. (Zatím ani neexistuje definice, co to vlastně inteligence je )

13 Mozek Základním stavebním prvkem Mozku je buňka nazývána Neuron (asi 25 miliard v mozku) V mozku jsou i jiné druhy buněk, které s neurony spolupracují nebo mají jiné funkce. Neurony se dělí do mnoha druhů, avšak všechny druhy neuronů jsou navenek stejné. Každý neuron se skládá ze: Vstupu (dendrid) Jádra (soma) Výstupu (axon)

14 Neuron - matematický model Při matematickém popisu se vychází z biologického neuronu

15 Neuron - matematický model Rozdělení neuronu na jednotlivé prvky systému Na tomto obrázku je zobrazen příklad neuronu se čtyřmi vstupy. Avšak každý neuron může obsahovat libovolný počet vstupů, což závisí na úloze

16 Neuron - matematický model Rozdělení neuronu na jednotlivé prvky systému Druh Matematická operace Příklad Synaptické operace Somatické operace Skalární součin vektorů x a w z i (t) = x i (t) * w i (t) Prahování v(t) = u(t) w 0 Nelineární zobrazení ut () n i 1 z i () t y(t) = Z[v(t)]

17 Neuron - matematický model Druhy neuronů Nespojitý Perceptron Druh Synaptické operace Somatické operace Matematická operace Skalární součin vektorů x a w Agregace Příklad z i (t) = x i (t) * w i (t) Prahování ut v(t) () = u(t) z i () wt 0 n i 1 Neuron první generace

18 Neuron - matematický model Nespojitý Perceptron nelineární zobrazení

19 Neuron - matematický model Druhy neuronů Spojitý Perceptron Druh Synaptické operace Matematická operace Skalární součin vektorů x a w Agregace Příklad z i (t) = x i (t) * w i (t) ut () n i 1 z i () t Somatické operace Prahování v(t) = u(t) w 0 Nelineární zobrazení (Sigmoida) yt ( ) *() v t 1 e m Neuron druhé generace

20 Neuron - matematický model Spojitý Perceptron nelineární zobrazení

21 Neuron - matematický model Základní vlastnost každého neuronu klasifikace, resp. separabilita Příklad -> Třída B lineární separabilita Tj. rozdělení vstupních hodnot do dvou tříd jednou přímkou Třída A

22 Umělé neuronové sítě - vrstvené Základní představa matematický model

23 Umělé neuronové sítě - vrstvené Základní vlastnosti - učení Učení je základní vlastnost neuronových sítí. Při procesu učení jsou nastavovány určité parametry (váhy, strmosti přenosových funkcí, apod.) neuronové sítě, tak aby odchylka mezi požadovaným a skutečným výstupem byla minimální. Neuronové sítě se mohou také učit změnou jednotlivých skrytých vrstev, tj. různým počtem neuronů v těchto vrstvách. Vstup A Vstup B Parametry neuronu pro nastavení Neuron Výstup

24 Umělé neuronové sítě - vrstvené Základní vlastnosti - učení Při procesu učení jsou nastavovány určité parametry (váhy, prahy, strmosti přenosových funkcí, apod.) neuronové sítě, tak aby odchylka mezi požadovaným a skutečným výstupem byla minimální. Neuronové sítě se mohou také učit změnou jednotlivých skrytých vrstev, tj. různým počtem neuronů v těchto vrstvách. Druh Synaptické operace Somatické operace Matematická operace Skalární součin vektorů x a w Agregace Prahování Nelineární zobrazení (Sigmoida) Příklad z i (t) = x i (t) * w i (t) y ut () n i 1 z i () t v(t) = u(t) h m 1 e ( t) *() vt

25 Umělé neuronové sítě - vrstvené Základní vlastnosti nelineární zobrazení

26 Umělé neuronové sítě - vrstvené Základní vlastnosti znalosti / robustnost

27 Umělé neuronové sítě - vrstvené Základní vlastnosti generalizace (zobecňování)

28 Umělé neuronové sítě - vrstvené Režimy práce Adaptační (učební) režim Vybavovací (odvozovací) režim

29 Příklady použití vrstvených neuronových sítí Modelování a simulace Expertní systémy Řízení složitých systémů a další

30 Příklad použití - Modelování Zadání: Vytvořte model logické funkce AND Schématická značka: Pravdivostní tabulka funkce AND: Vstup A Vstup B Výstup A B & Výstup

31 Příklad použití - Modelování Zadání: Vytvořte model logické funkce AND Schéma použitého neuronu: Tréninková množina: Vstup A Vstup B Výstup A B P e r c e p t r o n Výstup 1 1

32 Příklad použití - Modelování Zadání: Vytvořte model logické funkce AND Tréninková množina: Vstup A Vstup B Výstup Grafické vyjádření tréninkové množiny: Přiřazení grafických symbolů logickým hodnotám Hranice mezi třídami

33 Příklad použití - Modelování Zadání: Vytvořte model logické funkce AND Základní parametry neuronu Grafické vyjádření tréninkové množiny: Vstup A Vstup B Neuron Výstup Základní parametry neuronu: W A váha vstupu A W B váha vstupu B H prahová hodnota neuronu Hranice mezi třídami

Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky

Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Neuronové sítě Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Motivace pro výzkum umělých neuronových sítí lidský mozek pracuje jiným způsobem než běžné číslicové počítače počítače přesně

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

Neuropočítače. podnět. vnímání (senzory)

Neuropočítače. podnět. vnímání (senzory) Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

ANALÝZA A KLASIFIKACE DAT

ANALÝZA A KLASIFIKACE DAT ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz III. PŘÍZNAKOVÁ KLASIFIKACE - ÚVOD PŘÍZNAKOVÝ POPIS Příznakový obraz x zpracovávaných

Více

StatSoft Úvod do neuronových sítí

StatSoft Úvod do neuronových sítí StatSoft Úvod do neuronových sítí Vzhledem k vzrůstající popularitě neuronových sítí jsme se rozhodli Vám je v tomto článku představit a říci si něco o jejich využití. Co si tedy představit pod pojmem

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44

Asociativní sítě (paměti) Asociace známého vstupního vzoru s daným výstupním vzorem. Typická funkce 1 / 44 Asociativní paměti Asociativní sítě (paměti) Cíl učení Asociace známého vstupního vzoru s daným výstupním vzorem Okoĺı známého vstupního vzoru x by se mělo také zobrazit na výstup y odpovídající x správný

Více

Neuronové časové řady (ANN-TS)

Neuronové časové řady (ANN-TS) Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Neuronové sítě výuka2

Neuronové sítě výuka2 Neuronové sítě výuka2 Neuronové sítě jsou definovány jako nedeklarativní systémy umělé inteligence. Nedeklarativní jsou v tom smyslu, že nemusíme předem definovat pravidla, kterými se neuronová síť řídí.

Více

Principy počítačů I Netradiční stroje

Principy počítačů I Netradiční stroje Principy počítačů I Netradiční stroje snímek 1 Principy počítačů Část X Netradiční stroje VJJ 1 snímek 2 Netradiční procesory architektury a organizace počítačů, které se vymykají struktuře popsané Johnem

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská

Úvod Příklad Výpočty a grafické znázornění. Filip Habr. České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská Neuronové sítě-delta učení Filip Habr České vysoké učení technické v Praze Fakulta jaderná a fyzikálně inženýrská 30. března 2009 Obsah prezentace Obsah prezentace Delta učení 1 Teorie k delta učení 2

Více

Kybernetika a umělá inteligence, cvičení 10/11

Kybernetika a umělá inteligence, cvičení 10/11 Kybernetika a umělá inteligence, cvičení 10/11 Program 1. seminární cvičení: základní typy klasifikátorů a jejich princip 2. počítačové cvičení: procvičení na problému rozpoznávání číslic... body za aktivitu

Více

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015

5. Umělé neuronové sítě. neuronové sítě. Umělé Ondřej Valenta, Václav Matoušek. 5-1 Umělá inteligence a rozpoznávání, LS 2015 Umělé neuronové sítě 5. 4. 205 _ 5- Model umělého neuronu y výstup neuronu u vnitřní potenciál neuronu w i váhy neuronu x i vstupy neuronu Θ práh neuronu f neuronová aktivační funkce _ 5-2 Neuronové aktivační

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu

Neuronové sítě. 1 Úvod. 2 Historie. 3 Modely neuronu Neuronové sítě L. Horký*, K. Břinda** Fakulta jaderná a fyzikálně inženýrská, Břehová 7, 115 19 Praha 1 *horkyladislav@seznam.cz, **brinda@fjfi.cvut.cz Abstrakt Cílem našeho příspěvku je získat uživatelský

Více

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat

přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat Zkouška ISR 2013 přetrénování = ztráta schopnosti generalizovat vlivem přílišného zaměření klasifikátorů na rozeznávání pouze konkrétních trénovacích dat 1. Rozdílné principy u induktivního a deduktivního

Více

TRÉNINK DOVEDNOSTÍ LUDĚK BUKAČ TRENÉR ČSLH

TRÉNINK DOVEDNOSTÍ LUDĚK BUKAČ TRENÉR ČSLH TRÉNINK DOVEDNOSTÍ LUDĚK BUKAČ TRENÉR ČSLH DOVEDNOSTI Spektrum herní činnosti tvoří hokejové dovednosti. Bruslení, střelba, přihrávání, kličkování. Opakováním se dovednost stává návykem. Dovednostní návyky

Více

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A

ZADÁNÍ ZKOUŠKOVÉ PÍSEMNÉ PRÁCE Z PŘEDMĚTU LINEÁRNÍ ALGEBRA PRO IT. Verze 1.1A Verze 1.1A Čas na práci: 1 minut Za každý úkol můžete získat maximálně 1 bodů. Řešení každého příkladu zapisujte čitelně a srozumitelně, 2x 1 +4x 3 +3x 4 = 4 x 1 +2x 2 +4x 3 3x 4 = 1 2x 1 +x 2 x 3 3x 4

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

VY_32_INOVACE_In 6.,7.13 Vzorce vložení funkce

VY_32_INOVACE_In 6.,7.13 Vzorce vložení funkce VY_32_INOVACE_In 6.,7.13 Vzorce vložení funkce Anotace: Žák se seznámí se základními druhy funkcí a jejich vložením v programu MS Excel 2010. Pracuje na svém žákovském počítači dle pokynů v prezentaci.

Více

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI

ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE, FAKULTA ELEKTROTECHNICKÁ, KATEDRA ŘÍDICÍ TECHNIKY Modelování a simulace systémů cvičení 9 ZPĚTNOVAZEBNÍ ŘÍZENÍ, POŽADAVKY NA REGULACI Petr Hušek (husek@fel.cvut.cz)

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel

Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci

Více

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky

Neuronové sítě AIL002. Iveta Mrázová 1 František Mráz 2. Neuronové sítě. 1 Katedra softwarového inženýrství. 2 Kabinet software a výuky informatiky Neuronové sítě AIL002 Iveta Mrázová 1 František Mráz 2 1 Katedra softwarového inženýrství 2 Kabinet software a výuky informatiky Do LATEXu přepsal: Tomáš Caithaml Učení s učitelem Rozpoznávání Použití:

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence

Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence APLIKACE UMĚLÉ INTELIGENCE Ing. Petr Hájek, Ph.D. Podpora přednášky kurzu Aplikace umělé inteligence Aplikace umělé inteligence - seminář ING. PETR HÁJEK, PH.D. ÚSTAV SYSTÉMOVÉHO INŽENÝRSTVÍ A INFORMATIKY

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

28.z-8.pc ZS 2015/2016

28.z-8.pc ZS 2015/2016 Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace počítačové řízení 5 28.z-8.pc ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další hlavní téma předmětu se dotýká obsáhlé oblasti logického

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Á Á ň ň ť Í Ť ň Í ř ň ř ř ň Í Ť Ě ň Č Ť Á Í Á Ť Í Á Ď ř ř ň Í ť ť ň ň Ě Í ů Í Í ř Ě ř Ě Ť ň Ť Ý ň ň Ť ň ň ň ň Ě ť Í Á Ť Ť ň Ť ř ú ň Í Ť Í Ť ň Á ň Ž ď Ě ň Ě Í Ů ň Ť ň ň Í Ě Ť ň ř Í Ť Í ň ň Č Ť ť ň ň ř ň

Více

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za

Více

Úloha - rozpoznávání číslic

Úloha - rozpoznávání číslic Úloha - rozpoznávání číslic Vojtěch Franc, Tomáš Pajdla a Tomáš Svoboda http://cmp.felk.cvut.cz 27. listopadu 26 Abstrakt Podpůrný text pro cvičení předmětu X33KUI. Vysvětluje tři způsoby rozpoznávání

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Inteligentní systémy a neuronové sítě

Inteligentní systémy a neuronové sítě Inteligentní systémy a neuronové sítě Arnošt Veselý, Česká zemědělská univerzita, Kamýcká, Praha 6 - Suchdol Summary: In the article two main architectures of inteligent systems: logical-symbolic and connectionist

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Toolbox pro neuronové sítě pro prostředí Mathematica

Toolbox pro neuronové sítě pro prostředí Mathematica Toolbox pro neuronové sítě pro prostředí Mathematica Toolbox for Neural Networks in the environment Mathematica Bc. Martin Macháč Diplomová práce 2009 UTB ve Zlíně, Fakulta aplikované informatiky, 2009

Více

Výuka může probíhat v kmenových učebnách, část výuky může být přenesena do multimediálních učeben, k interaktivní tabuli, popřípadě do terénu.

Výuka může probíhat v kmenových učebnách, část výuky může být přenesena do multimediálních učeben, k interaktivní tabuli, popřípadě do terénu. 7.2 MATEMATIKA A JEJÍ APLIKACE 7.2.1 Matematika (M) Charakteristika předmětu 1. stupně Vyučovací předmět má časovou dotaci v 1. ročníku 4 hodiny týdně + 1 disponibilní hodinu týdně, ve 2. a 3. ročníku

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Automatizační a měřicí technika (B-AMT)

Automatizační a měřicí technika (B-AMT) Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ KATEDRA TECHNOLOGIÍ A MĚŘENÍ BAKALÁŘSKÁ PRÁCE Využití umělých neuronových sítí v technické diagnostice vedoucí práce: Ing. Tomáš Hujer 2012 autor:

Více

NEURONOVÉ SÍTĚ EVA VOLNÁ CZ.1.07/2.2.00/

NEURONOVÉ SÍTĚ EVA VOLNÁ CZ.1.07/2.2.00/ NEURONOVÉ SÍTĚ EVA VOLNÁ CZ.1.07/..00/9.0006 OSTRAVA, červen 013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7. Oblast podpory: 7.. Vysokoškolské vzdělávání Příjemce: Ostravská

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/ III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická geometrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA4 Analytická

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz VII. SYSTÉMY ZÁKLADNÍ POJMY SYSTÉM - DEFINICE SYSTÉM (řec.) složené, seskupené (v

Více

Matematika PRŮŘEZOVÁ TÉMATA

Matematika PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí

Více

FORTANNS. havlicekv@fzp.czu.cz 22. února 2010

FORTANNS. havlicekv@fzp.czu.cz 22. února 2010 FORTANNS manuál Vojtěch Havlíček havlicekv@fzp.czu.cz 22. února 2010 1 Úvod Program FORTANNS je software určený k modelování časových řad. Kód programu má 1800 řádek a je napsán v programovacím jazyku

Více

Analytická geometrie. c ÚM FSI VUT v Brně

Analytická geometrie. c ÚM FSI VUT v Brně 19. září 2007 Příklad 1. Příklad 2. Příklad 3. Příklad 1. Určete obecnou rovnici roviny, která prochází body A = [0, 1, 2], B = [ 1, 0, 3], C = [3, 1, 0]. Příklad 1. A = [0, 1, 2], B = [ 1, 0, 3], C =

Více

Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU

Dálkový průzkum Země. Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU Dálkový průzkum Země Ústav geoinformačních technologií Lesnická a dřevařská fakulta MENDELU Klasifikace založené na strojovém učení Strojové učení je podoblastí umělé inteligence, zabývající se algoritmy

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

MATEMATIKA. 1. 5. ročník

MATEMATIKA. 1. 5. ročník Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.4 13/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 13 0:40 Implementace Umělá inteligence (UI) Umělá inteligence

Více

Obr. P1.1 Zadání úlohy v MS Excel

Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel. Výpočet budeme demonstrovat

Více

Základní pojmy; algoritmizace úlohy Osnova kurzu

Základní pojmy; algoritmizace úlohy Osnova kurzu Osnova kurzu 1) 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita regulačního obvodu 8) Kvalita regulačního

Více

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy.

Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. 6 Skalární součin Skalární součin dovoluje zavedení metriky v afinním bodovém prostoru, tj. umožňuje nám určovat vzdálenosti, odchylky, obsahy a objemy. Příklad: Určete odchylku přímek p, q : p : x =1+3t,

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ

MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Projekt: MODERNIZCE VÝUK PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod XOR neboli EXLUSIV OR Obor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří

Více

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b.

MS EXCEL 2010 ÚLOHY. Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. MS EXCEL 2010 ÚLOHY ÚLOHA Č.1 Vytvořte tabulku podle obrázku, která bude provádět základní matematické operace se dvěma zadanými čísly a a b. Do buněk B2 a B3 očekávám zadání hodnot. Buňky B6:B13 a D6:D13

Více

Framework pro neuronovou sít Flexible Neural Tree Flexible Neural Tree Framework

Framework pro neuronovou sít Flexible Neural Tree Flexible Neural Tree Framework VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky Katedra informatiky Framework pro neuronovou sít Flexible Neural Tree Flexible Neural Tree Framework 2013 Pavel Piskoř Na tomto

Více

Souhrnné výsledky za školu

Souhrnné výsledky za školu XYZ třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre směrodatná odchylka skóre x geometrie funkce algebra třída počet žáků percentil skupinový percentil (G4) čistá úspěšnost skóre

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

Teorie systémů TES 1. Úvod

Teorie systémů TES 1. Úvod Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 1. Úvod ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní ČVUT v Praze

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

Zpětnovazební struktury řízení technické a biologické systémy

Zpětnovazební struktury řízení technické a biologické systémy technické a biologické systémy Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Nervová soustává č love ká, neuron r es ení

Nervová soustává č love ká, neuron r es ení Nervová soustává č love ká, neuron r es ení Pracovní list Olga Gardašová VY_32_INOVACE_Bi3r0110 Nervová soustava člověka je pravděpodobně nejsložitěji organizovaná hmota na Zemi. 1 cm 2 obsahuje 50 miliónů

Více

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel

Přílohy. Příloha 1. Obr. P1.1 Zadání úlohy v MS Excel Přílohy Příloha 1 Řešení úlohy lineárního programování v MS Excel V této příloze si ukážeme, jak lze řešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat

Více

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování.

Operační výzkum. Vícekriteriální programování. Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační výzkum Lexikografická metoda. Metoda agregace účelových funkcí. Cílové programování. Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu

Více

Necht L je lineární prostor nad R. Operaci : L L R nazýváme

Necht L je lineární prostor nad R. Operaci : L L R nazýváme Skalární součin axiomatická definice odvození velikosti vektorů a úhlu mezi vektory geometrická interpretace ortogonalita vlastnosti ortonormálních bázi [1] Definice skalárního součinu Necht L je lineární

Více

Profilová část maturitní zkoušky 2017/2018

Profilová část maturitní zkoušky 2017/2018 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2017/2018 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Cvičení ze statistiky - 3. Filip Děchtěrenko

Cvičení ze statistiky - 3. Filip Děchtěrenko Cvičení ze statistiky - 3 Filip Děchtěrenko Minule bylo.. Dokončili jsme základní statistiky, typy proměnných a začali analýzu kvalitativních dat Tyhle termíny by měly být známé: Histogram, krabicový graf

Více

ROLE ICT VE SPOLEČNOSTI

ROLE ICT VE SPOLEČNOSTI ROLE ICT VE SPOLEČNOSTI Modely školy budoucnosti listopad 2011 (c) Radek Maca Informační společnost Společnost s vysokou mírou využívání ICT založených na prostředcích výpočetní techniky digitalizace =

Více

Technická fakulta. Katedra technologických zařízení staveb. Využití neuronových sítí pro integraci PZTS do inteligentních budov.

Technická fakulta. Katedra technologických zařízení staveb. Využití neuronových sítí pro integraci PZTS do inteligentních budov. ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE Technická fakulta Katedra technologických zařízení staveb Využití neuronových sítí pro integraci PZTS do inteligentních budov diplomová práce Vedoucí práce: Ing. Zdeněk

Více

Klasifikace a rozpoznávání. Lineární klasifikátory

Klasifikace a rozpoznávání. Lineární klasifikátory Klasifikace a rozpoznávání Lineární klasifikátory Opakování - Skalární součin x = x1 x 2 w = w T x = w 1 w 2 x 1 x 2 w1 w 2 = w 1 x 1 + w 2 x 2 x. w w T x w Lineární klasifikátor y(x) = w T x + w 0 Vyber

Více

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY

POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY POŽADAVKY K SOUBORNÉ ZKOUŠCE Z MATEMATIKY Bakalářský studijní program B1101 (studijní obory - Aplikovaná matematika, Matematické metody v ekonomice, Aplikovaná matematika pro řešení krizových situací)

Více

xrays optimalizační nástroj

xrays optimalizační nástroj xrays optimalizační nástroj Optimalizační nástroj xoptimizer je součástí webového spedičního systému a využívá mnoho z jeho stavebních bloků. xoptimizer lze nicméně provozovat i samostatně. Cílem tohoto

Více

1 Neuronové sítě - jednotlivý neuron

1 Neuronové sítě - jednotlivý neuron Obsah 1 Neuronové sítě - jednotlivý neuron... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Úvod do neuronových sítí... 2 1.3.1 Biologická analogie... 2 1.3.2 Historie NN... 3 1.3.3 Koncept

Více

5. Optické počítače. 5.1 Optická propojení

5. Optické počítače. 5.1 Optická propojení 5. Optické počítače Cíl kapitoly Cílem kapitoly je pochopit funkci optických počítačů. Proto tato kapitola doplňuje poznatky z předešlých kapitol k objasnění funkcí optických počítačů Klíčové pojmy Optické

Více

Analytická geometrie v prostoru

Analytická geometrie v prostoru Analytická geometrie v prostoru Jméno autora: Ivana Dvořáková Období vytvoření: prosinec 2012 Ročník: 4. ročník střední odborné školy Tematická oblast: Matematické vzdělávání Předmět: Matematika 4. ročník

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Využití přímé inverzní metody pro řízení reálných systémů

Využití přímé inverzní metody pro řízení reálných systémů XXVI. ASR '2001 Seminar, Instruments and Control, Ostrava, April 26-27, 2001 Paper 70 Využití přímé inverzní metody pro řízení reálných systémů ŠKUTOVÁ, Jolana Ing., Katedra ATŘ-352, VŠB-TU Ostrava, 17.

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Jednotlivé historické modely neuronových sítí

Jednotlivé historické modely neuronových sítí Jednotlivé historické modely neuronových sítí Tomáš Janík Vícevrstevná perceptronová síť opakování Teoretický model obsahue tři vrstvy perceptronů; každý neuron první vrstvy e spoen s každým neuronem z

Více