50 LET LASERU. Miroslava VRBOVÁ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "50 LET LASERU. Miroslava VRBOVÁ"

Transkript

1 Laser... inter eximia naturae dona numeratum plurimis compositionibus inseritur. (Laser... jeden z nejvzácnějších darů přírody mající rozmanité použití.) Plinius St.: Naturalis Historia XXII, 49 (1.stol.n.l.) 50 LET LASERU Miroslava VRBOVÁ Abstrakt: V příspěvku je připomenuta konstrukce prvního rubínového Maimanova laseru a je popsána historie jeho vynálezu. Zmíněn je obecný princip činnosti laserů a přehled vlnových délek, které známé lasery generují. Je uvedeno třídění laserů podle použitého aktivního prostředí a způsobu buzení. Komentovány jsou aplikace laserů a stručně zmíněny extrémní lasery pro vybrané aplikace. V závěru je uveden výčet 7 Nobelových cen, udělených za lasery a jejich aplikace do r Úvodem LASER je zkratkou anglického termínu Light Amplification by Stimulated Emission of Radiation, což označuje proces zesilování světla pomocí stimulované emise záření. Toto slovo se současně používá pro označení zdroje optického záření, založeného na principu zesilování záření využitím stimulované emise. První laser -rubínový- byl sestrojen Američanem T.H.Maimanem a uveden v činnost 15. května Když o realizaci prvního laseru referoval na tiskové konferenci pořádané 7. července v Hughes Research Laboratories uvedl hned pět oblastí, kde by mohl být laser s výhodou využíván: pro zesilování světla, pro zkoumání podstaty látky, pro komunikace ve vesmíru, zvýšení kapacity pozemských komunikačních kanálů a protože se jeho záření dá fokusovat, je možné zvyšovat hustotu výkonu potřebnou pro aplikace v chemii, průmyslu a medicíně. Uvedené aplikace vyplývaly bezprostředně z poznání nové kvality světla generovaného laserem z koherence. V následujícím půlstoletí se ukázalo, že aplikací laseru je ještě mnohem více. Slovo LASER nebylo poprvé objeveno v roce Stejná pětice písmen LASER (n. Laserpitium) byla o více než tisíciletí dříve používána pro označení vzácné rostliny, rostoucí na území dnešní Libye. Měla mnohostranné použití. Římané ji používali k léčení řady nemocí, při uštknutí hadem nebo škorpiónem, při zranění otráveným šípem i jako koření, neboť měla velmi výraznou chuť. S velkým úspěchem byla vyvážena do Řecka i Říma. Římané se ji pokoušeli pěstovat ve své zemi, ale bez úspěchu. Asi ve druhém století našeho letopočtu však tato rostlina prý zcela vymizela [1]. Zajímavou paralelu mezi dřívějším laserem-rostlinou i novodobým laserem- přístrojem vidíme ve výjimečné kvalitě a široké možnosti použití. Během padesáti let, která téměř uplynula od realizace prvního laseru, bylo sestrojeno mnoho typů laserů, vysílající záření v širokém pásmu optických vlnových délek od rentgenové až po vzdálenou infračervenou oblast. Bylo objeveno, odzkoušeno a je vyžíváno nesmírné množství aplikací. Rozvoj laserů a jejich aplikací není ještě zdaleka uzavřen. 1

2 První laser Základním stavebním prvkem prvního (Maimanova) laseru bylo aktivní prostředí ve tvaru vybroušeného válce krystalu rubínu (viz obr. č. 1). Rubín je polodrahokam, krystal oxidu hlinitého dopovaný chromem. Trojmocné ionty chromu, nahrazující v krystalografické mříži některé atomy hliníku, dodávají tomuto krystalu zářivě růžovou barvu. Na koncích rubínového válce byla vytvořena rovnoběžná zrcadla. Na jednom konci bylo zrcadlo plně odrazné, na druhém polopropustné. Výbojka ve tvaru spirály, obklopující rubínový výbrus, vysílala impulsy intenzivního bílého světla. Za polopropustným zrcadlem byl pozorován záblesk červeného světla laserový svazek. Obr.1: Sestava prvního rubínového laseru (převzato z V tomto opticky buzeném pevnolátkovém laseru ionty chromu absorbují modré a zelené záření výbojky. Excitované ionty chromu vysílají následně charakteristické rubínové záření. Zrcadla na konci krystalu odrážejí část vysílaného záření tam a zpět. Záření procházející krystalem vyvolává stimulovanou emisi excitovaných iontů úměrnou intenzitě záření, takže intenzita záření při opakovaných průchodech krystalem uvnitř optického rezonátoru vzrůstá až dosáhne takovou úroveň, že odvede podstatnou část energie, kterou výbojky vložily do iontů chromu v krystalu. Co předcházelo vynálezu laseru Sestrojení prvního laseru nebylo objevem náhodným [2]. Předcházelo mu dlouhé období cíleného úsilí řady vědců v různých místech světa. Přímým předchůdcem laseru byl maser (zkratka pro Microwave Amplification by Stimulated Emission of Radiation) tedy generátor mikrovlnného záření, realizovaný Američanem C. H. Townesem. Sovětský vědec V. A. Fabrikant podal v roce 1951 patentovou přihlášku na zesilování elektromagnetického záření v široké oblasti spektra od ultrafialového záření až k radiovým vlnám, tedy princip laseru. V roce 1954 R.H. Dicke navrhl optické buzení k dosažení inverze populace hladin (vytvoření 2

3 zesilujícího prostředí) a také v r patentoval myšlenku využít Fabryův-Perotův interferometr jako optický rezonátor. První detailní návrh laseru, který byl v té době nazýván optickým maserem byl publikován C. H. Townesem and A.L. Schawlowem v časopise Physical Review v prosinci 1958 s názvem Infrared and Optical Masers. Tento článek odstartoval velkou soutěž o realizaci prvního laseru. Autoři článku nebyli jedinými zúčastněnými v této soutěži. Lasery se navrhovaly a stavěly na několika pracovištích, při čemž se vycházelo z různé profesionální zkušenosti výzkumníků. Townes, Maiman a Bloembergen pracovali dříve na mikrovlnných maserech, jiní např. P.P. Sorokin, R. Hall and N. Patel v jiných oblastech fyziky. Zpočátku bylo úsilí soustředěno na spektroskopické studie. A. Javan pracoval na helium-neonovém laseru v Bell laboratories již před zveřejněním článku Townse a Schawlowa. C.H. Townes se svými studenty se věnoval s parám draslíku, N. Basov v Moskvě studoval se svými studenty polovodiče. Veškerý výzkum směřující k laseru byl většinou jen skromně financován. Výjimkou byl Pentagon, který štědře financoval výzkum soukromé firmy G.Goulda (Townesova studenta), který se soustředil na páry alkalických kovů. A.L.Schawlow v Bell Laboratories se zabýval rubínem, jehož spektroskopické vlastnosti byly dobře známy z výzkumu maserů. Naneštěstí došel v roce 1959 k závěru, že je pro optickou oblast nevhodný. Theodor Maiman však pokračoval s rubínem, snažíc se využít své předchozí zkušenosti z maserů. Došel k závěru, že kvantové přechody na rubínu nelze využít ke kontinuální generaci, a že k demonstraci postačí impulsní provoz. Podařilo se. O publikaci a uznání objevu rubínového laseru T. Maiman neprodleně připravil článek pro Physical Review Letters, v němž pro svůj vynález laseru použil termín optical maser. Redakce příspěvek odmítla s tím, že není dostatečně aktuální, že jde zase o jiný maser. Maiman se nevzdal a připravil krátké sdělení pro britský týdeník Nature. Vynález laseru byl tedy poprvé publikován 6. srpna 1960 v Nature. Později pak byly detailní popis a pozorování zveřejněny v obsáhlejším článku ve Physical Review. Brzo po Maimanovi byly postaveny rubínové lasery v řadě dalších laboratořích. Schawlowův tým byl mezi prvními následovníky. I když T. Maiman zvítězil v soutěži o první konstrukci laseru, nebyl tím, kdo dostal Nobelovu cenu za tento vynález. Nobelova cena byla udělena společně C.H. Townesovi, L.N. Basovovi a A.N. Prokhorovovi v roce 1964 za teoretické poznání předcházející konstrukci laseru. Z historie dalších laserů Sestrojení rubínového laseru bylo bezprostředním stimulem objevů dalších typů laserů, vyzařující jiné vlnové délky a využívající jiná laserová prostředí. V r.1961 byl realizován první plynový helium-neonový laser, vysílající záření v blízké infračervené oblasti. O rok později pak helium-neonový laser s výstupním svazkem ve viditelné oblasti. V té době byl a také realizován první polovodičový laser. V r zazářil poprvé CO 2, který generoval infračervené záření (s vlnovou délkou 10,6 µm) o výkonu 1 mw. V roce 1965 byl sestrojen CO 2 laser s výkonem 50 W a také první chemicky buzený laser. V roce 1967 pak byl realizován laditelný laser s aktivním prostředím v kapalném stavu, tj. s roztokem organického barviva. První excimerový laser, vysílající ultrafialové záření, byl realizován v roce Laser s volnými elektrony pak píše svou historii od r

4 V Československu byly první lasery realizovány v r a to neodymový skleněný ve Fyzikálním ústavu ČSAV, rubínový ve Vojenském výzkumném ústavu Praha a heliumneonové lasery v Ústavu přístrojové techniky ČSAV v Brně a v Tesla VÚST A.S. Popova v Praze. Česká vědecká veřejnost se v průběhu celých padesáti let podílela nezanedbatelnou měrou na výzkumu laserů a jejich aplikací. Princip činnosti laseru Laser je zdroj koherentního infračerveného viditelného nebo ultrafialového záření, založený na rezonanční interakci mezi souborem kvantových soustav (u rubínu soubor trojmocných iontů chromu v krystalografické mříži) a elektromagnetickým zářením definované frekvence (např. rezonanční frekvence optického Fabryova-Perotova rezonátoru) [1,3]. Základními stavebními prvky laseru jsou zesilující (aktivní) prostředí A (obr. 2) a optický rezonátor, tvořený zpravidla dvěma zrcadly Z 1 Z 2, z nichž jedno bývá vysoce odrazné a druhé polopropustné a slouží k vyvázání laserového záření z rezonátoru. Obr.2: Základní prvky laseru; A- Zesilující (aktivní) prostředí, Z 1 Z 2 Zrcadla Aktivní prostředí A je soubor kvantových soustav (tj. atomů, iontů nebo molekul), umístěný v jisté konečné části prostoru. Kvantové soustavy mají obecně diskrétní spektrum vázaných stavů a jim přísluší diskrétní spektrum energetických hladin, např. E 1 a E 2. Při zářivých přechodech mezi dvěma vybranými stavy dochází k výměně energie s rezonančním elektromagnetickým zářením, tj. se zářením, jehož kruhová frekvence ω, se rovná frekvenci kvantového přechodu ω 21 = (E 2 -E 1 )/h. O tom, jestli bude aktivní prostředí zesilovat nebo zeslabovat záření rozhodují tzv. populace energetických hladin N i,, tj. počty kvantových soustav nacházející se na příslušné hladině E i. Aktivní prostředí zesiluje, je-li N 2 > N 1. Takový stav se označuje jako stav souboru s inverzí populace hladin. K tomu, aby se v aktivním E prostředí ustavila inverze, musí být vnější činidlem (buzením) 2 - N 2 dodávána energie a přednostně zaplňovány horní hladiny E 2 a E 1 - N 1 populace spodní hladiny N 1 snižována prostřednictvím interakce s jinou složkou okolního prostředí (tlumením). Čím větší je rozdíl populací hladin N 2 N 1 tím účinněji je rezonanční záření zesilováno. Když zesílení záření při průchodu aktivním prostředím kompenzuje ztráty při odrazu na polopropustném zrcadle, je překročen práh a systém se stává generátorem optického záření. Frekvence ω 21 vystupujícího záření je dána Obr.3: Eenergetické hladiny energetickými hladinami kvantových soustav (atomů, iontů nebo molekul). Generovat je možné jen záření těch vlnových délek (resp. frekvencí), u kterých se nám podaří nalézt kvantovou soustavu s odpovídající frekvencí 4

5 kvantového přechodu a současně nalézt metodu vytvoření inverze populace na tomto přechodu, tj. nalézt metodu buzení. Přehled známých typů laserů Vlnové délky záření, které mohou být generovány dosud známými lasery, leží v širokém pásmu od měkké rentgenové oblasti (1 nm) až po submilimetrové vlny (100 µm). Pro generaci laserového rentgenového záření se využívají kvantové přechody mezi elektronickými stavy mnohonásobně nabitých iontů. Ultrafialové a viditelné záření je generováno prostřednictvím elektronických přechodů atomů kovů, iontů v plynu a iontových příměsí v pevných látkách. Pro generaci záření ve střední (resp. daleké) infračervené oblasti se využívá kvantových přechodů mezi vibračními (resp. rotačními) stavy molekul. Rentgenové lasery využívají kvantových přechodů mnohonásobně ionizovaných iontů v plazmatu. Přehled vlnových délek záření vysílaného nejvíce používanými lasery je patrný z grafu na obr. 4. 5

6 obr. 4: Přehled vlnových délek generovaných lasery 6

7 Principy i techniky buzení laserů mají řadu různých podob a závisejí na zvoleném kvantovém přechodu a na fyzikálním stavu aktivního prostředí. Plynové lasery (např. argonový laser, helium-neonový, CO 2,) bývají buzeny elektrickým výbojem. Pro buzení pevnolátkových laserů (např. rubín, Nd:YAG, Ti:safír) se používá optické záření výbojek, polovodičových luminiscenčních diod apod. Různé principy buzení pro různé druhy aktivního prostředí jsou uvedeny v přehledové tabulce č. 1. Tabulka 1: Třídění laserů podle aktivního prostředí a buzení Aktivní prostředí Označení Buzení Dielektrické krystaly Skla Pevné Vlastní látky Polovodiče Příměsové Kapaliny organická barviva Plyny Elektrický výboj Plazma Laserové plazma Pevnolátkové Polovodičové Barvivové Fotodisociační Elektroionizační Atomové Iontové Plynové Molekulární Excimerové Dynamické plynové Chemické Plazmatické Optické Elektrickým proudem Elektronovým svazkem Optické Optické Elektronovým svazkem Elektrickým výbojem Expanzí plynu Chemickou reakcí Rekombinační Srážkové Jednotlivé lasery se navzájem liší nejen vlnovou délkou záření a principem buzení, ale také režimem generace. Některé lasery pracují kontinuálně a jejich základním parametrem je výstupní výkon, který bývá podle typu laseru v rozmezí několika mikrowattů až stovek kilowattů. Neméně důležitým parametrem je divergence (rozbíhavost) svazku, která předurčuje míru fokuzovatelnosti svazku. U kvalitních laserů bývá divergence rovna zlomkům miliradiánu a minimální dosažitelný rozměr ohniska dosahuje několikanásobku vlnové délky záření. U laserů impulsních je důležitým parametrem doba trvání impulsu. Ta je pro různé typy laserů a 7

8 různé metody generace různá a pohybuje se v intervalu od několika femtosekund (10-15 s) až do několika milisekund. Lasery, u nichž je výstup tvořen dlouhým sledem impulsů označujeme jako lasery pulsní. Důležitými parametry pulsních laserů jsou opakovací frekvence a střední výkon. Aplikace laserů Lasery se využívají v nejrůznějších oborech lidské činnosti. Ve strojírenství pro sváření, řezání, vrtání, kalení, v mikroelektronice pro litografii, v elektronice pro dostavování a nařezávání odporů. V astronomii a geodézii jsou základním prvkem v systémech měření velkých vzdáleností s vysokou přesností, sloužící například ke zpřesňování údajů o Zemi a Měsíci. Široké pole uplatnění mají lasery i v technice spojů, vojenské technice restaurátorství i v medicíně. Pro každou aplikaci je potřebné pochopit princip interakce záření s látkou, který má být využit a potom optimálním způsobem zvolit vlnovou délku záření (nalézt laserové prostředí), zvolit režim generace (např. délku impulsu), získat potřebný výkon nebo energii a doladit plošnou hustotu výkonu (energie) záření v místě interakce (např. vhodnou fokuzací) atd. Jako příklad uvedeme použití laserů v medicíně. Při interakci s biologickými materiály dochází k různým účinkům záření na tkáň v závislosti na tom, jakou vlnovou délku a jaký výkon má dopadající laserové záření. Účinky lze charakterizovat následujícím výčtem Tepelné efekty se uplatňují, když dochází ke zvyšování teploty prostřednictvím absorpce pigmentů v tkáni. Důsledkem může být např. fotokoagulace Ho:YAG laserem. Fotochemické procesy dominují, když ultrafialové a viditelné záření vyvolává destrukci chemických vazeb. To se využívá např. při fotodynamické terapii zlatým laserem nebo při úpravě rohovky excimerovými lasery. Mechanické účinky vznikají při vytváření plazmatu zejm. při optickém průrazu v látce, který vede k vytvoření tlakové vlny a k roztržení tkáně, tj. fotodestrukci impulsním Nd:YAG laserem. Odpaření a mikroexploze, která nastává v důsledku náhlého vzrůstu teploty nad bod varu v důsledku absorpce ve vodě (např. při ozáření Er: YAG). Jedním z mnoha způsobů použití laseru v medicíně je léčení diabetické retinopatie. Tam se využívá fotokoagulace na sítnici lidského oka, tedy mírného ohřátí sítnice v důsledku absorpce záření v místě, kam dopadá záření fokusované vlastní čočkou. Vhodná vlnová délka laserového záření je dána podmínkou, aby záření ve tkáni sítnice bylo dobře absorbováno a současně nebylo absorbováno a nepoškozovalo ostatními části oka, kterými musí projít než dopadne na sítnici. Této podmínce dobře vyhovují vlnové délky v okolí 500 nm (zelené světlo). Nejčastěji se pro danou aplikaci využívá argonový iontový laser. V úvahu však připadají i jiné pulsní lasery vysílající zelené světlo, mj. i druhá harmonická záření Nd:YAG. Extrémní lasery pro vybrané aplikace Aplikace laserů se rozšířili a stále rozšiřují do nejrůznějších oborů lidské činnosti vedou k tomu, že jsou vyráběny jednak velké série laserů pro širokou spotřebu např. pro čtečky čárových kódů, pro záznam a čtení DVD, pro laserovou show, jednak se vyvíjejí stále nové speciální i velmi extrémní typy laserů pro nové velmi náročné aplikace. Níže uvádíme výběr 8

9 extrémních laserů z roku 2007 [4], přesněji přehled nejznámějších reprezentantů ve vybraných extrémních kategoriích. Největší energie laserového impulsu: 150 kj v jediném 10 ns impulsu bylo dosaženo na laserovém systému National Ignition Facility (NIF) v Lawrence Livermore National Laboratory in Livermore v r Energie obsažená v takovém impulsu odpovídá kinetické energii tumového automobilu pohybujícího se rychlostí asi 90 km/s. NIF má v plánu dosáhnout energie až 1 MJ. Všechna tato energie má být namířena na maličkou kuličku obsahující deuterium. Cílem je dosáhnout lasere iniciace termojaderného slučování, které bude základem řešení budoucího energetického zdroje. Nejkratší laserový impuls: Impuls kratší než 1 femtosekunda (10-15 s) byl vytvořen v Max Planck Institute for Quantum Optics v Garchingu. Délka impulsu je kratší než jedna perioda kmitu optického záření. Takový impuls obsahuje velmi široké spektrum frekvencí od viditelných do ultrafialových a je generován prostřednictvím kontinua. Podle frekvenčního spektra se tak velmi liší od představy jednofrekvenčního spektra obvyklých laserů. Takto krátký impuls má umožnit nahlédnout do rychlých procesů na molekulární úrovni. Největší okamžitý výkon: Výkon vyšší než 1 PW (10 15 W) byl poprvé dosažen v Lawrence Livermore National Laboratory v roce Tento výkon převyšuje tisíckrát výkon všech amerických elektráren. Trvá však jen po dobu 440 fs, čemuž odpovídá celková energie jen 680 J. Vzhledem k tomu, že optický výkon může být fokusován do malého objemu, odpovídá jeho fokuzovatelná energie hustotu J.cm -3. To je více než objemová hustota energie uvnitř hvězd. Při takových hustotách energie dosahují elektrony v plazmatu relativistických rychlostí. Největší střední výkon: Více než 1 MW kontinuálního výkonu bylo dosaženo s chemicky buzeným laserem MIRACL (Mid-Infrared Advanced Chemical Laser) na zkušebně ve White Sands Missile Range, New Mexico. Protože je jeho výkon obrovský, může pracovat po dobu jen několika sekund aby nedošlo k destrukci jeho prvků (např. zrcadel). Celková výstupní energie je pak několik MJ. Nejstrašnější laser: Blízký příbuzný MIRACL umístěný na letadle Boeing F pro vojenské účely, vysílá MW impulsy o době trvání několika sekund, jeho určením je sestřelení balistických střel apod. Nejdelší laser: 1,3 km dlouhý laser s volnými elektrony, jehož součástí je lineární urychlovač elektronů ve Standfordu. Obsluha laseru využívá golfové vozíky k překonávání vzdáleností. Nejkratší laser: Několik mikrometrů dlouhý rezonátor vertikální dutiny povrchově emitujících polovodičových laserů sestrojených v Tokyo Institute of Technology pro telekomunikační účely. Nejstabilnější laser: V National Institute of Standards and Technology (NIST) pracuje laser jehož frekvence nevykazuje žádnou změnu po dobu 13 s. T zn., že během této doby nepřibude, ani neubude ani jedna perioda kmitu. Takto stabilní laser je základem atomových hodin, např. synchronizujících GPS. Nejpřesnější měření délky pomocí laseru: 1 attometr (10-18 m). Tato změna délky je omnoho řádu menší než rozměr atomu, bylo jí dosaženo pomocí laserového interferometru (LIGO) se zrcadly vzdálenými od sebe 4 km určeného pro detekci gravitačních kmitů. 9

10 Nositelé Nobelových cen za lasery Laser byl a je jak objektem, tak nástrojem aktuálního výzkumu nejen ve fyzice, chemii, technice, ale i v biologii, medicíně, astronomii, geodezii a dalších. Vědecké úspěchy v této oblasti dokládá řada Nobelových cen, udělených vědcům za rozvoj poznání v oblasti laserů a jejich aplikací. Uvádíme prostý výčet v období 1964 až 2005: 1964: Američan Charles Townes spolu s ruskými fyziky Nikolajem Basovem a Aleksandrem Prokhorovem za objem maseru v r : Američan Nicolas Bloembergen spolu s Arthur Schawlowem za rozvoj laserové spektroskoppie. 1997: Francouzský vědec Claude Cohen-Tannoudji spolu s Američany Stephen Chu a William Phillips za rozvoj metod chlazení a záchyt atomů laserovým zářením. 1999: Ahmed Zewail z CalTech cenu za využití laserové techniky pro zviditelnění pohybu atomův molekule během chemické reakce. 2000: Rus Zhores Alferov a Američan Herbert Kroemer za vývoj polovodičových heterostruktur používaných v optoelektronice, umožňující práci při pokojové teplotě a za kontinuální polovodičové diodové lasery. 2001: Američané Eric Cornell, Wolfgang Ketterle, and Carl E. Wieman za dosažené výsledky Bose-Einsteinovy kondenzace ve zředěných plynech alkalických atomů. 2005: Němec Theodor Hansch a Američan John Hall za rozvoj laserové přesné spektroskopie, zahrnující techniku optických frekvenčních hřebenů. Literatura [1] O. Svelto: Principles of lasers, Plenum Press, New York, 1982 [2] J.Hecht: Laser Pioneers, ISBN , Academic Press, 1991 [3] M. Vrbová a kol.: Lasery a moderní optika. Oborová encyklopedie. Prometheus, Praha, 1994 [4] Kontakt: Prof. Ing. Miroslava Vrbová, CSc. České vysoké učení technické v Praze, Fakulta biomedicínského inženýrství nám. Sítná Kladno 2 10

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

SBORNÍK ODBORNÝ SEMINÁŘ

SBORNÍK ODBORNÝ SEMINÁŘ SBORNÍK ODBORNÝ SEMINÁŘ Pořádá: Terinvest spol. s.r.o. ve spolupráci s Českou a slovenskou společností pro fotoniku Termín: 14. 15. 4. 2010 Místo : PVA Letňany, Vstupní hala I, Malý konferenční sál III

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice přednášky 4-7 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Co vás v příštích třech týdnech čeká: Dnes Za týden

Více

Plynové lasery pro průmyslové využití

Plynové lasery pro průmyslové využití Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne

Více

1. Zdroje a detektory optického záření

1. Zdroje a detektory optického záření 1. Zdroje a detektory optického záření 1.1. Zdroje optického záření výkon a jeho časový průběh spektrální charakteristika a její stabilita v čase koherenční vlastnosti 1.1.1. Tepelné zdroje velmi malá

Více

1/2008 Sb. NAŘÍZENÍ VLÁDY ČÁST PRVNÍ PŘEDMĚT ÚPRAVY

1/2008 Sb. NAŘÍZENÍ VLÁDY ČÁST PRVNÍ PŘEDMĚT ÚPRAVY 1/2008 Sb. NAŘÍZENÍ VLÁDY o ochraně zdraví před neionizujícím zářením Vláda nařizuje podle 108 odst. 3 zákona č. 258/2000 Sb., o ochraně veřejného zdraví a o změně některých souvisejících zákonů, 21 písm.

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

LASERY. Light Amplification by Stimulated Emission of Radiation

LASERY. Light Amplification by Stimulated Emission of Radiation LASERY Light Amplification by Stimulated Emission of Radiation Interakce záření látkou Indukovaná (Stimulovaná) Absorpce E j hυ ij =Ei-Ej E i B ij j i Spontánní Emise Indukovaná (Stimulovaná) Emise E j

Více

11. Polovodičové diody

11. Polovodičové diody 11. Polovodičové diody Polovodičové diody jsou součástky, které využívají fyzikálních vlastností přechodu PN nebo přechodu kov - polovodič (MS). Nelinearita VA charakteristiky, zjednodušeně chápaná jako

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

1 Nekonvenční metody svařování - laser. 2 Svařování laserem (51)

1 Nekonvenční metody svařování - laser. 2 Svařování laserem (51) 1 Nekonvenční metody svařování - laser Nové nekonvenční technologie zaujímají širokou a velice rozmanitou oblast. Charakterizují je využití různých fyzikálních jevů, které mohou být zdrojem tepla nebo

Více

Úvod do fyziky plazmatu

Úvod do fyziky plazmatu Úvod do fyziky plazmatu Plazma Velmi často se o plazmatu mluví jako o čtvrtém skupenství hmoty Název plazma pro ionizovaný plyn poprvé použil Irwing Langmuir (1881 1957) v roce 1928, protože mu chováním

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

CW01 - Teorie měření a regulace

CW01 - Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 6.1a 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace emisivní

Více

Za hranice současné fyziky

Za hranice současné fyziky Za hranice současné fyziky Zásadní změny na počátku 20. století Kvantová teorie (Max Planck, 1900) teorie malého a lehkého Teorie relativity (Albert Einstein) teorie rychlého (speciální relativita) Teorie

Více

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el.

Fyzika pro 6.ročník. Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly. Elektrické vlastnosti látek, el. Fyzika pro 6.ročník výstupy okruh učivo dílčí kompetence Stavba látek-vlastnosti, gravitace, částice, atomy a molekuly Elektrické vlastnosti látek, el.pole, model atomu Magnetické vlastnosti látek, magnetické

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013

Gymnázium, Havířov - Město, Komenského 2 MATURITNÍ OTÁZKY Z FYZIKY Školní rok: 2012/2013 1. a) Kinematika hmotného bodu klasifikace pohybů poloha, okamžitá a průměrná rychlost, zrychlení hmotného bodu grafické znázornění dráhy, rychlosti a zrychlení na čase kinematika volného pádu a rovnoměrného

Více

Chování látek v nanorozměrech

Chování látek v nanorozměrech Univerzita J.E. Purkyně v Ústí nad Labem Chování látek v nanorozměrech Pavla Čapková Přírodovědecká fakulta Univerzita J.E. Purkyně v Ústí nad Labem Březen 2014 Chování látek v nanorozměrech: Co se děje

Více

Laserové a plazmové řezání (84, 83)

Laserové a plazmové řezání (84, 83) Laserové a plazmové řezání (84, 83) Dělení materiálů je stále velmi důležitou nepominutelnou výrobní operací. Používá se k tomu celá řada metod, každá z nich si vytvořila svoji oblast optimálního použití.

Více

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9.

Podivuhodný grafen. Radek Kalousek a Jiří Spousta. Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně. Čichnova 19. 9. Podivuhodný grafen Radek Kalousek a Jiří Spousta Ústav fyzikálního inženýrství a CEITEC Vysoké učení technické v Brně Čichnova 19. 9. 2014 Osnova přednášky Úvod Co je grafen? Trocha historie Některé podivuhodné

Více

Filip VOJTA, MVT bak., II. ročník, kombinované studium PRINCIP LASERU

Filip VOJTA, MVT bak., II. ročník, kombinované studium PRINCIP LASERU Filip VOJTA, MVT bak., II. ročník, kombinované studium PRINCIP LASERU Zkratka LASER je složeninou ze začátečních písmen anglických slov popisujících jeho funkci: Light Amplification by Stimulated Emission

Více

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm

Spektroskopie v UV-VIS oblasti. UV-VIS spektroskopie. Roztok KMnO 4. pracuje nejčastěji v oblasti 200-800 nm Spektroskopie v UV-VIS oblasti UV-VIS spektroskopie pracuje nejčastěji v oblasti 2-8 nm lze měřit i < 2 nm či > 8 nm UV VIS IR Ultra Violet VISible Infra Red Roztok KMnO 4 roztok KMnO 4 je červenofialový

Více

Využití UV/VIS a IR spektrometrie v analýze potravin

Využití UV/VIS a IR spektrometrie v analýze potravin Využití UV/VIS a IR spektrometrie v analýze potravin Chemické laboratorní metody v analýze potravin MVDr. Zuzana Procházková, Ph.D. MVDr. Michaela Králová, Ph.D. Spektrometrie: základy Interakce záření

Více

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku 4. Akustika 4.1 Úvod Fyzikálními ději, které probíhají při vzniku, šíření či vnímání zvuku, se zabývá akustika. Lidské ucho je schopné vnímat zvuky o frekvenčním rozsahu 16 Hz až 16 khz. Mechanické vlnění

Více

Bezkontaktní termografie

Bezkontaktní termografie Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

Ústav fotoniky a elektroniky AVČR

Ústav fotoniky a elektroniky AVČR Optická vlákna metody přípravy a použití pro vláknové senzory, zesilovače a lasery Ústav fotoniky a elektroniky AVČR, v.v.i. www.ufe.cz/dpt240, www.ufe.cz/~kasik Ústav fotoniky a elektroniky AVČR ZÁKLADNÍ

Více

Základy NIR spektrometrie a její praktické využití

Základy NIR spektrometrie a její praktické využití Nicolet CZ s.r.o. The world leader in serving science Základy NIR spektrometrie a její praktické využití NIR praktická metoda molekulové spektroskopie, nahrazující pracnější, časově náročnější a dražší

Více

Pokusy s ultrafialovým a infračerveným zářením

Pokusy s ultrafialovým a infračerveným zářením Pokusy s ultrafialovým a infračerveným zářením ZDENĚK BOCHNÍČEK, JIŘÍ STRUMIENSKÝ Přírodovědecká fakulta MU, Brno Úvod Ultrafialové (UV) a infračervené (IR) záření jsou v elektromagnetickém spektru nejbližšími

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program 1 VY_32_INOVACE_01_13 fyzika 6. Elektrické vlastnosti těles Výklad učiva PowerPoint 6 4 2 VY_32_INOVACE_01_14 fyzika 6. Atom Výklad učiva

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

Testové otázky za 2 body

Testové otázky za 2 body Přijímací zkoušky z fyziky pro obor PTA K vypracování písemné zkoušky máte k dispozici 90 minut. Kromě psacích potřeb je povoleno používání kalkulaček. Pro úspěšné zvládnutí zkoušky je třeba získat nejméně

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Charakterizace diodových laserů v blízké IČ oblasti

Charakterizace diodových laserů v blízké IČ oblasti Středoškolská technika 2013 Setkání a prezentace prací středoškolských studentů na ČVUT Charakterizace diodových laserů v blízké IČ oblasti Lucie Brichová První soukromé jazykové gymnázium Hradec Králové,

Více

Školení CIUR termografie

Školení CIUR termografie Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie

Více

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU

I. diskusní fórum. Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) VZDĚLÁVACÍ MATERIÁL O DISKUTOVANÉM TÉMATU I. diskusní fórum K projektu Cesty na zkušenou Na téma Možnosti zajištění kvality stavby (diagnostická metoda infračervená termografie) které se konalo dne 30. září 2013 od 12:30 hodin v místnosti H108

Více

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta

Tabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Laserové depoziční metody - obecná charakteristika

Laserové depoziční metody - obecná charakteristika Laserové depoziční metody - obecná charakteristika Laserové odprašování zdrojového materiálu z tzv. targetu (terče), upraveného do zhutnělé formy (lisovaná či zmražená tableta) vhodné pro depozici. Laserové

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

FLUORESCENČNÍ MIKROSKOP

FLUORESCENČNÍ MIKROSKOP FLUORESCENČNÍ MIKROSKOP na gymnáziu Pierra de Coubertina v Táboře Pavla Trčková, kabinet Biologie, GPdC Tábor Co je fluorescence Fluorescence je jev spočívající v tom, že některé látky (fluorofory) po

Více

Fyzika opakovací seminář 2010-2011 tematické celky:

Fyzika opakovací seminář 2010-2011 tematické celky: Fyzika opakovací seminář 2010-2011 tematické celky: 1. Kinematika 2. Dynamika 3. Práce, výkon, energie 4. Gravitační pole 5. Mechanika tuhého tělesa 6. Mechanika kapalin a plynů 7. Vnitřní energie, práce,

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Ústav fyziky a měřicí techniky Vysoká škola chemicko-technologická v Praze Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II. Výrobci, specializované technologie a aplikace Obsah

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

SNÍMAČE PRO MĚŘENÍ TEPLOTY

SNÍMAČE PRO MĚŘENÍ TEPLOTY SNÍMAČE PRO MĚŘENÍ TEPLOTY 10.1. Kontaktní snímače teploty 10.2. Bezkontaktní snímače teploty 10.1. KONTAKTNÍ SNÍMAČE TEPLOTY Experimentální metody přednáška 10 snímač je připevněn na měřený objekt 10.1.1.

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (40) Zveřejněno 31 07 79 N ČESKOSLOVENSKÁ SOCIALISTICKÁ R E P U B L I K A (19) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 196670 (11) (Bl) (51) Int. Cl. 3 H 01 J 43/06 (22) Přihlášeno 30 12 76 (21) (PV 8826-76) (40) Zveřejněno 31 07

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země strana 2 Co je DPZ Dálkový průzkum je umění rozdělit svět na množství malých barevných čtverečků, se kterými si lze hrát na počítači a odhalovat jejich neuvěřitelný

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

VY_32_INOVACE_FY.19 VESMÍR

VY_32_INOVACE_FY.19 VESMÍR VY_32_INOVACE_FY.19 VESMÍR Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Vesmír je souhrnné označení veškeré hmoty, energie

Více

Polovodičové lasery pro spektroskopické účely

Polovodičové lasery pro spektroskopické účely INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Polovodičové lasery pro spektroskopické účely Učební texty k semináři Autoři: Ing. Ondřej Číp, Ph.D. (ÚPT AV ČR, v.v.i.) Ing. Zdeněk Buchta, Ph.D. (ÚPT AV ČR, v.v.i.) Datum:

Více

Gymnázium, Český Krumlov

Gymnázium, Český Krumlov Gymnázium, Český Krumlov Vyučovací předmět Fyzika Třída: 6.A - Prima (ročník 1.O) Úvod do předmětu FYZIKA Jan Kučera, 2011 1 Organizační záležitosti výuky Pomůcky související s výukou: Pracovní sešit (formát

Více

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.

Více

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky

Tématické okruhy teoretických zkoušek Part 66 1 Modul 3 Základy elektrotechniky Tématické okruhy teoretických zkoušek Part 66 1 3.1 Teorie elektronu 1 1 1 Struktura a rozložení elektrických nábojů uvnitř: atomů, molekul, iontů, sloučenin; Molekulární struktura vodičů, polovodičů a

Více

Laserové technologie v praxi

Laserové technologie v praxi I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Laserové technologie v praxi Hana Lapšansk anská Společná laboratoř optiky Univerzity Palackého a Fyzikáln lního ústavu Akademie věd v České republiky

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU

FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU FLUORIMETRICKÉ STANOVENÍ FLUORESCEINU návod vznikl jako součást bakalářské práce Martiny Vidrmanové Fluorimetrie s využitím spektrofotometru SpectroVis Plus firmy Vernier (http://is.muni.cz/th/268973/prif_b/bakalarska_prace.pdf)

Více

Laserové technologie v praxi

Laserové technologie v praxi Hana Lapšanská Laserové technologie v praxi Laser je zdrojem zvláštního druhu světla, které se v přírodě nikde nevyskytuje. Je monochromatické a má podobu úzkého směrovaného paprsku s velmi nízkou rozbíhavostí

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření hodnoty ph a vodivosti kapalin Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření hodnoty ph a vodivosti

Více

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta

Tabulace učebního plánu. Obecná chemie. Vzdělávací obsah pro vyučovací předmět : Ročník: 1.ročník a kvinta Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : CHEMIE Ročník: 1.ročník a kvinta Obecná Bezpečnost práce Názvosloví anorganických sloučenin Zná pravidla bezpečnosti práce a dodržuje je.

Více

Koloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti?

Koloidní zlato. Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Koloidní zlato Tradiční rekvizita alchymistů v minulosti sofistikovaný (nano)nástroj budoucnosti? Dominika Jurdová Gymnázium Velké Meziříčí, D.Jurdova@seznam.cz Tereza Bautkinová Gymnázium Botičská, tereza.bautkinova@gybot.cz

Více

Vozítko na solární pohon. Hung Pham Huy, Le Dinh Tuan, Jan Novák 7.A Gymnázium Cheb Nerudova 7

Vozítko na solární pohon. Hung Pham Huy, Le Dinh Tuan, Jan Novák 7.A Gymnázium Cheb Nerudova 7 Vozítko na solární pohon Hung Pham Huy, Le Dinh Tuan, Jan Novák 7.A Gymnázium Cheb Nerudova 7 Krátký souhrn projektu: Náš tým věří, že perspektiva lidstva leží v obnovitelných zdrojích. Proto jsme se rozhodli

Více

Elektronová mikroskopie SEM, TEM, AFM

Elektronová mikroskopie SEM, TEM, AFM Elektronová mikroskopie SEM, TEM, AFM Historie 1931 E. Ruska a M. Knoll sestrojili první elektronový prozařovací mikroskop 1939 první vyrobený elektronový mikroskop firma Siemens rozlišení 10 nm 1965 první

Více

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08

POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ. (Bl) (И) ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) (SI) Int Cl* G 21 G 4/08 ČESKOSLOVENSKA SOCIALISTICKÁ REPUBLIKA ( 1S ) POPIS VYNÁLEZU K AUTORSKÉMU OSVĚDČENÍ 262470 (И) (Bl) (22) přihláženo 25 04 87 (21) PV 2926-87.V (SI) Int Cl* G 21 G 4/08 ÚFTAD PRO VYNÁLEZY A OBJEVY (40)

Více

Absorpční fotometrie

Absorpční fotometrie Absorpční fotometrie - v ultrafialové (UV) a viditelné (VIS) oblasti přechody mezi elektronovými stavy +... - v infračervené (IČ) oblasti přechody mezi vibračními stavy +... - v mikrovlnné oblasti přechody

Více

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika

Užití mikrovlnné techniky v termojaderné fúzi. A. Křivská 1,2. Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika Užití mikrovlnné techniky v termojaderné fúzi A. Křivská 1,2 1 Ústav fyziky plazmatu AV ČR, v.v.i., Česká republika 2 České vysoké učení technické v Praze, Fakulta elektrotechnická, katedra telekomunikační

Více

Infrazvuk a ultrazvuk

Infrazvuk a ultrazvuk Základní škola a Mateřská škola Kladno, Vodárenská 2115 Název práce: Infrazvuk a ultrazvuk Absolventská práce Autor: Dominik Tománek Třída: IX. A Školní rok: 2013/2014 Datum odevzdání: 23. 5. 2014 Vedoucí

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ

DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ DYNAMIKA PROMĚNLIVOSTI KONVERZNÍHO FAKTORU ZA TYPICKÝCH DNŮ Marcela Mašková, Jaroslav Rožnovský Ústav krajinné ekologie, Vysoká škola zemědělská Brno ÚVOD Základem existence a produkční aktivity rostlin

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

Spektroskop. Anotace:

Spektroskop. Anotace: Spektroskop Anotace: Je bílé světlo opravdu bílé? Liší se nějak světlo ze zářivky, žárovky, LED baterky, Slunce, UV baterky, výbojek a dalších zdrojů? Vyrobte si jednoduchý finančně nenáročný papírový

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

11 Manipulace s drobnými objekty

11 Manipulace s drobnými objekty 11 Manipulace s drobnými objekty Zpracování rozměrově malých drobných objektů je zpravidla spojeno s manipulací s velkým počtem objektů, které jsou volně shromažďovány na různém stupni uspořádanosti souboru.

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí.

energetického využití odpadů, odstraňování produktů energetického využití odpadů, hodnocení dopadů těchto technologií na prostředí. Příjemce projektu: Partner projektu: Místo realizace: Ředitel výzkumného institutu: Celkové způsobilé výdaje projektu: Dotace poskytnutá EU: Dotace ze státního rozpočtu ČR: VŠB Technická univerzita Ostrava

Více

Úspěch na MFO v Mexiku: 5 medailí Bohumil Vybíral

Úspěch na MFO v Mexiku: 5 medailí Bohumil Vybíral Úspěch na MFO v Mexiku: 5 medailí Bohumil Vybíral vedoucí české reprezentace na 40. MFO, 2009 40. ročník Mezinárodní fyzikální olympiády v Mexiku Soutěž se konala 11. až 19. července 2009 ve městě Mérida,

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 19. 12. 2012 Pořadové číslo 09 1 RADIOAKTIVITA Předmět: Ročník: Jméno autora:

Více

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15

Proč studovat hvězdy? 9. 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů... 13 1.3 Model našeho Slunce 15 Proč studovat hvězdy? 9 1 Úvod 11 1.1 Energetické úvahy 11 1.2 Zjednodušení použitá při konstrukci sférických modelů.... 13 1.3 Model našeho Slunce 15 2 Záření a spektrum 21 2.1 Elektromagnetické záření

Více

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní.

Všechny galaxie vysílají určité množství elektromagnetického záření. Některé vyzařují velké množství záření a nazývají se aktivní. VESMÍR Model velkého třesku předpovídá, že vesmír vznikl explozí před asi 15 miliardami let. To, co dnes pozorujeme, bylo na začátku koncentrováno ve velmi malém objemu, naplněném hmotou o vysoké hustotě

Více

Spektrální charakteristiky optických komponentů

Spektrální charakteristiky optických komponentů Úloha č. 5 pro laserová praktika KFE, FJFI, ČVUT Praha, verze 27.2.2014 Spektrální charakteristiky optických komponentů Úvod V laboratorní praxi často řešíme otázku, jak v experimentu použitý optický prvek

Více