Jaderná energie a energetika

Rozměr: px
Začít zobrazení ze stránky:

Download "Jaderná energie a energetika"

Transkript

1 Jaderná energie a energetika Hvězdárna Vsetín, Chip 2003

2 Historie W.C. Roentgen objevil záření X A.H. Becquerel objevil radioaktivitu Curieovi objevili radium O.Walkhoff zjistil, že záření ničí tkáň E.Rutherford a F.Soddy zjistili, že vyzářením alfa částice vzniká z uranu jiný prvek B.B. Boltwodd zkoumal rozpadovou řadu uranu Rutherford sestrojil první model atomu: těžké pozitivně nabité jádro lehké negativně nabité elektrony

3 Historie A.H.D.Bohr vylepšil Rutherfordův model atomu Rutherford provedl první transmutaci prvku Rutherford rozbil atom a vyrazil z něj protony W Pauli objevil jaderný spin W.K.Heisenberg vyvinul mechaniku - kvantovou G.Gamov navrhuje používat protony místo alfa částic při pokusech E.Lawrence sestrojil cyklotron

4 Historie J.D. Cockroft a E.T. Walton uskutečnili první jadernou reakci. R Chadwick dokázal, že se uvolňovaly neutrony, nikoli gama záření, jak Cockfort s Waltonem čekali Heisenberg sestavil novou teorii o fyzice atomového jádra, která zahrnovala neutrony a vysvětlovala pomocí nich stabilitu jádra I. a F. Joliot - Curieovým se podařila přeměna atomů na atomy vyššího řádu O.Hahn a F.Strassman štěpí jádro uranu. L.Meitnerová uvažuje o uvolňování energie při štěpení

5 Historie dopis A. Einsteina Roosveltovi v 15:45 m.č. uvedena do chodu první štěpná řetězová reakce navozená člověkem E.Fermi, Chicago, univerzitní stadion

6 Historie projekt Manhattan - 6./ atomové útoky: Hirošima, Nagasaki v Idaho spuštěn první množivý reaktor EBR - I. Jako první na světě dodával el. energii - červen první komerční jaderná elektrárna v Obninsku v SSSR o výkonu 5 MW v Calder Hall první moderní jaderná elektrárna s reaktorem typu MAGNOX

7 Princip

8 Princip dvouokruhové řešení výhodou je, že chladivo v sekundárním okruhu není radioaktivní

9 Typy reaktorů 1) Lehkovodní (LWR) (85%): moderátorem i chladivem je lehká voda Rozlišujeme dva druhy: a) tlakovodní (PWR) (63%) b) varný (BWR) (22%) 2) Grafitové (9%) moderátorem grafit, chladivem CO2, He nebo lehká voda Rozlišujeme: a) plynem chlazený (MAGNOX/GCR) (1,5%) b) zdokonalený plynem chlazený (AGR) (2,5%)

10 Typy reaktorů c) vodou chlazený (LWGR) (5%) d) vysokoteplotní (HTGR) 3) Těžkovodní (HWR) (5%) moderátorem těžká voda chladivem voda, CO2 nebo těžká voda 4) Rychlé množivé (FBR) (1%) bez moderátoru, chladivem sodík

11 Podíl jednotlivých typů na výrobě energie

12 Počty reaktorů (podle států) USA 104 Ukrajina 13 Maďarsko 4 Francie 59 Švédsko 11 Finsko 4 Japonsko 54 Španělsko 9 Argentina, Brazílie, Velká Británie 31 Belgie 7 Litva, Mexiko, Rusko 30 Čína 7 Pákistán, JAR 2 Německo 19 ČR 6 Arménie, Nizozemí, Již. Korea 18 Slovensko 6 Rumunsko, Slovinsko -1 Kanada 14 Švýcarsko 5 Indie - 14 Bulharsko 4

13 Dokončené a rozestavěné reaktory rok 2002 Dokončené: Rozestavěné: Čína Čchin-Šan 610/650 MW Indie Kaiga 2*202 MW Čína Lingao 2*938 MW Indie Radžastán 2*202 MW ČR Temelín 912 MW Indie Kudankulam 2*905 MW JK Yonggwan 950 MW KLDR PWR 1040 MW

14 Popisy jednotlivých typů

15 PWR (VVER) Moderátor: lehká voda Chladivo: lehká voda

16 Aktivní zóna: Palivem je obohacený uran ve formě tabletek oxidu uraničitého uspořádaných do palivových tyčí. Výměna paliva probíhá při odstaveném reaktoru zpravidla jednou za 1 až 1 a půl roku. Nahradí se 1/3 vyhořelých článků. Typické parametry reaktoru: - obohacení U235 na 3,1% až 4,4% - rozměry: 3 * 3.5 m - tlak vody: 17,5 MPa - teplota vody na výstupu: 324 C - účinnost: 32,7% - množství paliva: 60 až 80 tun UO2

17 BWR Moderátor: lehká voda Chladivo: lehká voda

18 Aktivní zóna: Palivem je obohacený uran ve formě tabletek oxidu uraničitého uspořádaných do palivových tyčí. Výměna paliva probíhá při odstaveném reaktoru zpravidla jednou za 1 až 1 a půl roku. Typické parametry reaktoru: - obohacení na 2,1% - rozměry: 4,5 * 3,7 m - tlak vody: 7 MPa - teplota páry na výstupu: 286 C - účinnost: 33,3% - množství paliva: 122,3 tun UO2

19 GCR (MAGNOX) Moderátor: grafit Chladivo: oxid uhličitý

20 Aktivní zóna: Palivem je přírodní kovový uran ve formě tyčí po krytých oxidem magnezia, které tvoří palivové tyče. Palivo se vyměňuje za provozu. Typické parametry reaktoru: - obohacení na 0,7% tj. přírodní uran - rozměry: 17,4 * 9,1 m - tlak CO2: 2,75 MPa - teplota CO2 na výstupu: 360 C - teplota moderátoru: 340 C - účinnost: 25,8% - množství paliva: 595 tun uranu

21 AGR Moderátor: grafit Chladivo: oxid uhličitý

22 Aktivní zóna: Palivem je uran obohacený izotopem 235U ve formě oxidu uraničitého, moderátorem grafit, chladivem oxid uhličitý. Typické parametry reaktoru: - obohacení na 2,3% - rozměry: 9,1 * 8,5 m - tlak CO2: 5,5 MPa - teplota CO2 na výstupu 450 C

23 LWGR (RBMK) Moderátor: grafit Chladivo: lehká voda Černobylský typ

24 Aktivní zóna: Palivem je přírodní nebo slabě obohacený uran ve formě oxidu uraničitého.palivové tyče jsou vloženy v kanálech, kudy proudí chladivo obyčejná voda Typické parametry reaktoru: - obohacení na 1,8% - rozměry: 11,8 * 7,0 m - tlak nas. páry: 6,9 MPa - teplota směsi páry a vody na výstupu: 284 C - účinnost: 31,3% - množství paliva: 197 tun UO2

25 HTGR(N) Moderátor: grafit Chladivo: hélium

26 HTGR(A) Moderátor: grafit Chladivo: hélium

27 Aktivní zóna: Palivem je vysoce obohacený uran ve formě malých kuliček oxidu uraničitého (0,5 mm v průměru).kuličky povlékané třemi vrstvami karbidu křemíku a uhlíku jsou rozptýlené v koulích z grafitu. Typické parametry reaktoru: - obohacení na 93%! - rozměry: 5,6 * 6 m ( graf. koulí) - teplota hélia na výstupu: 750 C - tlak hélia: 5 MPa - účinnost: 39% - množství paliva: 0,33 tuny UO2 a 6,06 tuny ThO2

28 HWR (CANDU) Moderátor: těžká voda Chladivo: těžká voda

29 Aktivní zóna: Palivem je pří rodní uran ve formě oxidu uraničitého, chladivem a moderátorem těžká voda.. Těžkovodní moderátor v nádobě musí být chlazen, neboť moderační schopnost se snižuje se zvyšující se teplotou. Typické parametry reaktoru: - obohacení na 0,7% tj. přírodní uran - rozměry: 7 * 5,9 m - teplota těžké vody na výstupu: 305 C - tlak těžké vody: 9,3 MPa - teplota moderátorové těžké vody: 30 C - účinnost: 30% - množství paliva: 117 tun UO2

30

31 FBR Moderátor: není Chladivo: kapalný sodík

32 Aktivní zóna: Palivem je plutonium ve směsi oxidu plutoničitého a uraničitého. Během provozu vyprodukuje více nového plutoniového paliva, než kolik sám spálí. Reaktor nemá moderátor, pracuje na rychlých neutronech Typické parametry reaktoru: - obohacení plutoniem: 16,6% - rozměry: 3,7 * 1 m - teplota sodíku na výstupu: 545 C - tlak sodíku: 0,25 MPa - účinnost: 42% - množství paliva: 31,5 tuny PuO2/UO2

33 Reaktorové machrovinky - ADTT - urychlovačem řízená transmutační technologie: urychlovač bombarduje terčík z těžkého kovu protony, dochází k transmutaci prvku a jeho rozpadu, přičemž se uvolňují neutrony, které způsobují samotnou štěpnou reakci.

34 ITER (International Thermonuclear Experimental Reactor) Funguje na principu tokamaku

35 ITER

36 České jaderné elektrárny

37 Temelín

38 Temelín

39 Dukovany

40 Dukovany

41 Temelín Elektřinu vyrábí ve dvou výrobních blocích s tlakovodními reaktory VVER 1000 typu V 320. Na jaře 2003 se temelínská elektrárna s instalovaným elektrickým výkonem 1962 MW stala největším energetickým zdrojem České republiky. Po roce 1990 došlo v projektu elektrárny Temelín k řadě úprav za účelem zvýšení spolehlivosti a bezpečnosti na úroveň západních elektráren. Od roku 1991 byla elektrárna podrobena již 20 nejrůznějším kontrolám inspektorů Mezinárodní agentury pro atomovou energii a jejich doporučení ke zlepšení spolehlivosti a bezpečnosti elektrárny byla v průběhu výstavby a spouštění realizována. Zkušební provoz prvního bloku byl zahájen 10. června Na druhém bloku začal 18. dubna Uvedením dvou temelínských bloků do zkušebního provozu se spolu s jadernou elektrárnou Dukovany zvýšil podíl výroby jaderných zdrojů akciové společnosti ČEZ na 45 %

42 Dukovany Jaderná elektrárna Dukovany je dosud největší elektrárnou s instalovaným elektrickým výkonem MW. V elektrárně jsou ve dvou dvojblocích instalovány celkem čtyři tlakovodní reaktory typu VVER model V 213, každý o elektrickém výkonu 440 MW. Palivem je oxid uraničitý UO2 s průměrem 3,82 % obohacením uranu o štěpitelný izotop uranu Palivo je v reaktoru umístěno v 312 palivových článcích. Každý článek je tvořen 126 palivovými proutky, ve kterých je palivo hermeticky uzavřeno. Mimo to je v reaktoru 37 regulačních kazet s palivovou částí. Zlepšené parametry paliva umožnily přejít v roce 1997 z tříletého na čtyřletý palivový cyklus.

43 Havárie

44 Hodnocení jaderných havárií (INES) INES = (The International Nuclear Event Scale) 4. Havárie s účinky v jaderném zařízení Malý únik radioaktivity mimo elektrárnu. Okamžité následky na pracovníky jaderné elektrárny a následuje kontrola potravin v okolí. 5. Havárie s účinky na okolí - Únik radioaktivních štěpných produktů mimo elektrárnu. Velká část aktivní zóny je poškozena tavením nebo mechanicky. 6. Závažná havárie Únik radioaktivních štěpných produktů mimo elektrárnu. Opatření pro obyvatelstvo evakuace nebo ukrytí. 7. Velká havárie Únik velkého množství radioaktivních látek z aktivní zóny reaktoru mimo elektrárnu. Dlouhodobé následky pro životní prostředí.

45 Havárie v jaderných elektrárnách (výběr) - WINDSCALE (VB 1957) INES SAINT LAURENT (Fr 1969 a 1980) INES JASLOVSKÉ BOHUNICE (ČSSR 1977) INES THREE MILE ISLAND (USA 1979) INES ČERNOBYL (SSSR 1986) INES - 7

46 WINDSCALE (VB 1957) INES první závažnější havárie - požár reaktoru - reaktor nebyl energetický, pokusný pro výrobu plutonia - došlo k úniku radioaktivních látek - nehoda nebyla brána příliš vážně - dnes Sellafield

47 SAINT LAURENT (Fr 1969 a 1980) INES - 4 Při noční směně vložil operátor do snímače manipulátoru děrnou pásku s programem automatické výměny několika článků. Spuštěný manipulátor se po chvíli zastavil a signalizoval, že adresovaný box čerstvých článků je prázdný. Operátor v rozporu s předpisy automatiku vyřadil a ručně navedl stroj k jiné přihrádce, v níž však místo článků ležely grafitové zátky. Po jejich vložení se v kanálu zastavil průtok vody a zbývající články (asi 50 kg) se roztavily. Jakmile z nich uvolněné štěpné produkty kontaminovaly vody primárního okruhu, automatika reaktor odstavila a vyhlásila poplach. Zbavit reaktor taveniny a kontaminace trvalo více než rok a vyžádalo si mimořádné úsilí. Ze závěrů komise EdF vyplynulo, že do programu se sice vloudila chyba, avšak operátor v několika bodech porušil předpisy, a byl proto potrestán třemi roky vězení. Podobná nehoda se opakovala v roce 1980 i na sousedním reaktoru. V obou případech vznikla značná škoda na zařízení i výpadku výkonu po dobu víc než jednoho roku, nikdo však neutrpěl zranění a mimo elektrárnu neunikla radioaktivita.

48 JASLOVSKÉ BOHUNICE (ČSSR 1977) INES - 4 K havárii těžkou vodou moderovaného a plynem (CO2) chlazeného reaktoru čs. jaderné elektrárny A -1 s výkonem 103 MWe došlo po čtyřletém ověřovacím provozu 22. února 1977 při výměně paliva. Ve snaze urychlit výměnu palivového článku, aby nedošlo k samovolnému odstavení reaktoru, neodstranila obsluha jeho ochrannou silikagelovou vložku. Ta v kanálu znemožnila průtok chladícího plynu a palivo se začalo tavit. Když se protavila i kanálová trubka, dostala se do primárního okruhu těžká voda. Rychlou erozí narušila povlak čtvrtiny z 570 založených článků. Radioaktivní zplodiny zamořily primární okruh a přes netěsnosti parogenerátorů došlo i ke kontaminaci sekundárního okruhu parovodů, turbíny a kondenzátoru. Ani zde nebyl nikdo zraněn nebo nadměrně ozářen.

49 THREE MILE ISLAND (USA 1979) INES - 5 Reaktor pracoval na 98% nominálního výkonu, když se ráno kole 4:00 m.č. odpojil oběh vody pro turbíny. Tím vypadlo chlazení a došlo k přehřátí reaktoru. Automatický havarijní systém selhal. radioaktivní voda vytekla mezi Reaktor a obal, radioaktivní látky unikly i do řeky lidí bylo evakuováno v okolí 8 km od elektrárny. Exemplární příklad selhání techniky i lidí. Tento incident značně otřásl vírou v jadernou energetiku.

50 ČERNOBYL (SSSR 1986) INES - 7 Elektroinženýři prováděli plánované testy. Došlo ke snížení výkonu reaktoru. Po různých pokusech a vypnutích všech bezpečnostních a havarijních došlo k rozpadu paliva, to proniklo ochrannými trubkami, čímž vznikla pára. Ta měla tak vysoký tlak, že odhodila betonový kontejment o hmotnosti 1000 tun! Dále došlo k rozmetání Grafitového moderátoru a úniku radioaktivních látek do volné atmosféry.

51 ČERNOBYL - pokračování

52 Aplikace v kosmonautice - plutoniové termoelektrické generátory: (Pioneer, Voyager, Galileo, Cassini, Viking Lander) - NERVA - americký projekt v 70. Letech. Využití jaderných reaktorů pro pohon raket pro dobytí Marsu. - Prometheus - současný projekt NASA. Nejde o pohon raket, ale jako energetický zdroj sond. - JIMO - Jupiter Icy Moons Orbiter předváděcí mise projektu Prometheus. Plánovaný start 2011 :-)))))))))

53 Nukleární pohony raket

54 Nukleární pohony raket

55 Nukleární pohony raket

56 Nukleární pohony raket

57 JIMO

58 Při zpracování použity materiály: ČEZ a.s. ( MAAE ( Kronika techniky (Fortuna Print, 1993) Doporučené odkazy:

59 KONEC

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

Tento zdroj tepla nahrazuje chemickou energii, tj. spalování např. uhlí v klasické elektrárně.

Tento zdroj tepla nahrazuje chemickou energii, tj. spalování např. uhlí v klasické elektrárně. Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 28 Téma: JE A JEJICH BEZPEČNOST Lektor: Ing. Petr Konáš Třída/y: 1STB Datum konání: 4.

Více

Jaderná elektrárna. Martin Šturc

Jaderná elektrárna. Martin Šturc Jaderná elektrárna Martin Šturc Princip funkce Štěpení jader Štěpení jader Štěpení těžkých se nejsnáze vyvolá neutronem. Přestože štěpení jader je vždy exotermická reakce, musí mít dopadající neutron určitou

Více

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

ATOMOVÁ FYZIKA JADERNÁ FYZIKA ATOMOVÁ FYZIKA JADERNÁ FYZIKA 16. JADERNÝ REAKTOR Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÝ REAKTOR Jaderný reaktor je zařízení, ve kterém probíhá řetězová jaderná reakce, kterou lze

Více

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Osnova předmětu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) Úvod Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Ostatní tepelné elektrárny Kombinovaná výroba elektřiny a tepla

Více

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček JADERNÁ ENERGETIKA JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie Jiří Kameníček Osnova přednášky Styčné body mezi fyzikou a chemií Způsoby získávání energie Uran a jeho izotopy, princip štěpné

Více

Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména:

Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména: Jaderná energetika První jaderný reaktor 2.12.1942 stadion Chicago USA 1954 první jaderná elektrárna rna (Obninsk( Obninsk,, SSSR)grafitový reaktor, 30MWt, 5MWe 1956 první jaderná elektrárna rna v ČSR

Více

VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY

VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY Jaderné elektrárny Jak fungují jaderné elektrárny Schéma Informace Fotografie úkol Jaderné elektrárny Dukovany a Temelín Schéma jaderné elektrárny Energie vzniklá

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o Anotace Učební materiál EU V2 1/F18 je určen k výkladu učiva jaderná energetika fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru, zhodnotí výhody a nevýhody využívání různých

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích

Více

Materiály AZ jaderných reaktorů

Materiály AZ jaderných reaktorů Jaderná paliva Povlakové materiály Moderátory Chladiva Materiály absorpčních tyčí Jaderná paliva - hlavní funkce: - štěpení tepelnými neutrony - 1. bariéra mezi štěpnými produkty a životním prostředím

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Simulace provozu JE s reaktory VVER 440 a CANDU 6

Simulace provozu JE s reaktory VVER 440 a CANDU 6 Simulace provozu JE s reaktory VVER 440 a CANDU 6 Jakub Tejchman jakub.tejchman@seznam.cz Martin Veselý martin.veslo@seznam.cz JE s reaktorem VVER 440 VVER = PWR (anglický ekvivalent) - tlakovodní reaktor,

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine

Více

Metodické pokyny k pracovnímu listu č třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT

Metodické pokyny k pracovnímu listu č třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT Metodické pokyny k pracovnímu listu č. 6 7. třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT DOPORUČENÝ ČAS K VYPRACOVÁNÍ: 45 minut INFORMACE K TÉMATU: JADERNÁ ENERGIE A ŽIVOTNÍ PROSTŘEDÍ Za normálního

Více

Jaderná energetika (JE)

Jaderná energetika (JE) Jaderná energetika (JE) Pavel Zácha 2015-02 Program přednášek - úvod do jaderné energetiky - základy jaderné fyziky - skladba atomu, stabilita jader, vazebná energie, radioaktivita, jaderné reakce, štěpná

Více

JE+ZJE Přednáška 1. Jak stará je jaderná energetika?

JE+ZJE Přednáška 1. Jak stará je jaderná energetika? JE+ZJE Přednáška 1 Jak stará je jaderná energetika? Experimental Breeder Reactor 1. kritický stav 24. srpna 1951. 20. prosince poprvé vyrobena elektřina z jaderné energie. Příští den využita pro osvětlení

Více

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti aneb co umí, na čem pracují a o čem sní jaderní inženýři a vědci... Tomáš Bílý tomas.bily@fjfi.cvut.cz

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 30.5. 2013 Anotace

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

Jaderné reaktory a jak to vlastně funguje

Jaderné reaktory a jak to vlastně funguje Jaderné reaktory a jak to vlastně funguje O. Novák Katedra jaderných reaktorů 24. května 2018 O. Novák (ČVUT v Praze) Jaderné reaktory 24. května 2018 1 / 45 Obsah 1 Jederná energetika v České republice

Více

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896

Více

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník

Více

Jaderné reaktory a jak to vlastně vše funguje

Jaderné reaktory a jak to vlastně vše funguje Jaderné reaktory a jak to vlastně vše funguje Lenka Heraltová Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze 1 Výroba energie v České republice Typy zdrojů elektrické energie

Více

Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor)

Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor) Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor) zvláštností rychlých reaktorů s Pu palivem je jejich množivý charakter při štěpení Pu238 vzniká více neutronů než v případě U (rozštěpením U

Více

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO

Více

A) Štěpná reakce obecně

A) Štěpná reakce obecně 21. Jaderná energetika A) Štěpná reakce obecně samovolné štěpení těžkých jader nemá z hlediska uvolňování energie praktický význam v úvahu přichází pouze 238 U, poločas přeměny je velký a uvolněná energie

Více

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99,

Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, Lukáš Feřt SPŠ dopravní, Plzeň, Karlovarská 99, 326 00 V rámci projektu: Inovace odborného vzdělávání na středních školách zaměřené na využívání energetických zdrojů pro 21. století něco jako kuličku První

Více

Decommissioning. Marie Dufková

Decommissioning. Marie Dufková Decommissioning Marie Dufková Stěhování tlakové nádoby do elektrárny Civaux Veze se nová. Ale: Jak bezpečně a levně zlikvidovat takto veliký výrobek po použití? 2 Vyřazování jaderných zařízení z provozu

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Jaderné elektrárny. Tomáš Vysloužil. Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem

Jaderné elektrárny. Tomáš Vysloužil. Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem Jaderné elektrárny Tomáš Vysloužil Fakulta výrobních technologií a managementu Univerzita Jana Evangelisty Purkyně Ústí nad Labem Sokolov, 28. 1. 2015 Registrační číslo: CZ.1.07/2.3.00/45.0029 Název projektu:

Více

Jaderné elektrárny I, II.

Jaderné elektrárny I, II. Jaderné elektrárny I, II. Jaderné elektrárny I. Úvod do jaderných elektráren, teorie reaktorů, vznik tepla v reaktoru a ochrana před ionizujícím zářením. Jaderné elektrárny II. Jaderné elektrárny typu

Více

PROVOZ JADERNÉHO REAKTORU

PROVOZ JADERNÉHO REAKTORU INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 PROVOZ JADERNÉHO REAKTORU Mgr.

Více

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení. JADERNÁ ENERGIE Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.. Jaderná syntéza (termonukleární reakce): Je děj, při němž složením dvou lehkých jader

Více

Vyhořelé jaderné palivo

Vyhořelé jaderné palivo Vyhořelé jaderné palivo Jaderné palivo - složení Jaderné palivo je palivo, z něhož se energie uvolňuje prostřednictvím jaderných reakcí Nejběžnějším typem jaderného paliva je obohacený uran ve formě oxidu

Více

6.3.1 Jaderné štěpení, jaderné elektrárny

6.3.1 Jaderné štěpení, jaderné elektrárny 6.3.1 Jaderné štěpení, jaderné elektrárny ředpoklady: Druhý způsob výroby energie štěpení těžkých jader na jádra lehčí, lépe vázaná. ostupný rozpad těžkých nestabilních nuklidů probíhá v přírodě neustále

Více

Nezkreslená věda Jak funguje jaderná elektrárna

Nezkreslená věda Jak funguje jaderná elektrárna Nezkreslená věda Jak funguje jaderná elektrárna Víte, že jaderná elektrárna je ekologičtější než elektrárna uhelná? Pokud ne, podívejte se na tento díl nezkreslené vědy ještě jednou a vyřešte následující

Více

SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I.

SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I. SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I. doc. Ing. Ivo Hlavatý, Ph.D. Český svářečský ústav s.r.o., Areál VŠB TU Ostrava, 17. listopadu 2172/15, 708 33 Ostrava Poruba, Česká republika Annotation: This

Více

Jaderná energie v kosmickém výzkumu

Jaderná energie v kosmickém výzkumu Světový kosmický týden 2004 Hvězdárna Vsetín Jaderná energie v kosmickém výzkumu minulost, současnost, budoucnost Martin Zapletal 2004 Základy jaderné fyziky Základy jaderné fyziky Základy jaderné fyziky

Více

Tvorba výukových materiálů jaderná energie a energetika

Tvorba výukových materiálů jaderná energie a energetika Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta Katedra aplikované fyziky a techniky Závěrečná práce Tvorba výukových materiálů jaderná energie a energetika Vypracoval: Mgr. Lukáš Filip

Více

Jaderná fyzika. Zápisy do sešitu

Jaderná fyzika. Zápisy do sešitu Jaderná fyzika Zápisy do sešitu Vývoj modelů atomu 1/3 Antika intuitivně zavedli pojem atomos nedělitelná část hmoty Pudinkový model J.J.Thomson (1897) znal elektron a velikost atomu 10-10 m v celém atomu

Více

Štěpení těžkých jader

Štěpení těžkých jader 1 Štěpení těžkých jader 1934 Enrico Fermi ostřeloval postupně prvky svazkem neutronů s cílem vyrobit umělé radioizotopy. (podobné pokusy prováděl i James Chadwick). Zjistil, že větší efekt vykazují neutrony

Více

Přílohy. Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu.

Přílohy. Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu. Přílohy Příloha č. 1: Počet jaderných reaktorů ve světě (439) a rozložení dle toho, kolik let jsou v provozu. (Zdroj: Nuclear Power Reactors in the World, IAEA, REFERENCE DATA SERIES No. 2, 2014 Edition,

Více

Radioaktivita,radioaktivní rozpad

Radioaktivita,radioaktivní rozpad Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

4.4.9 Energie z jader

4.4.9 Energie z jader 4.4.9 Energie z jader Předpoklady: 040408 Graf závislosti vazebné energie na počtu nukleonů v jádře (čím větší je vazebná energie, tím pevněji jsou nukleony chyceny v jádře, tím menší mají energii a tím

Více

Komu lze nejvíc věřit, když mluvíme o jaderné energetice: Dana Drábová, předsedkyně SÚJB

Komu lze nejvíc věřit, když mluvíme o jaderné energetice: Dana Drábová, předsedkyně SÚJB Havárie jaderné elektrárny Fukushima Ing. Ivan Beneš, CityPlan spol. s r.o. Vyšší odborná škola a Střední škola, s. r. o. České Budějovice, 21.3.2011 1 2 Komu lze nejvíc věřit, když mluvíme o jaderné energetice:

Více

Jaderný palivový cyklus - Pracovní list

Jaderný palivový cyklus - Pracovní list Číslo projektu Název školy Předmět CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Ročník 2. Autor Klasické energie

Více

Ocelov{ n{stavba (horní blok) jaderného reaktoru

Ocelov{ n{stavba (horní blok) jaderného reaktoru Anotace Učební materiál EU V2 1/F17 je určen k výkladu učiva jaderný reaktor fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru. Jaderný reaktor Jaderný reaktor je zařízení,

Více

Simulace provozu JE s bloky VVER 1000 a ABWR

Simulace provozu JE s bloky VVER 1000 a ABWR Simulace provozu JE s bloky VVER 1000 a ABWR Martina Veselá - Gymnázium T.G.M. Hustopeče - marta.ves@seznam.cz Tomáš Peták - Gymnázium Karla Sladkovského - t.petak@seznam.cz Adam Novák - Gymnázium, Brno,

Více

CZ.1.07/1.1.30/01.0038

CZ.1.07/1.1.30/01.0038 Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 ENERGETICKÁ ÚVAHA Mgr. LUKÁŠ FEŘT

Více

Ekonomika nových jaderných zdrojů. Economics of new nuclear power plants

Ekonomika nových jaderných zdrojů. Economics of new nuclear power plants ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta Elektrotechnická Katedra Ekonomiky, Manažerství a Humanitních věd Ekonomika nových jaderných zdrojů Economics of new nuclear power plants Bakalářská práce Studijní

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Pokročilé jaderné technologie

Pokročilé jaderné technologie Pokročilé jaderné technologie a Skupina ČEZ SKUPINA ČEZ Rubrika obsah Šance jaderné energetiky 5 370 000 MW čistého výkonu 6 Proč právě jádro 6 Použité palivo cennou surovinou 9 Jak udělat z použitého

Více

Předmět: Stavba a provoz strojů Ročník: 4.

Předmět: Stavba a provoz strojů Ročník: 4. Předmět: Stavba a provoz strojů Ročník: 4. Anotace : Tento digitální učební materiál poskytuje ucelený přehled o základních typech jaderných reaktorů pouţívaných v současné energetice. Důraz je kladen

Více

Základní škola a Mateřská škola Nová Bystřice Hradecká 390, Nová Bystřice. Absolventská práce JADERNÁ ENERGETIKA

Základní škola a Mateřská škola Nová Bystřice Hradecká 390, Nová Bystřice. Absolventská práce JADERNÁ ENERGETIKA Základní škola a Mateřská škola Nová Bystřice Hradecká 390, 378 33 Nová Bystřice Absolventská práce JADERNÁ ENERGETIKA Vít Jaroš 9. A Vedoucí práce: Mgr. Aneta Přílepková Školní rok 2017/2018 Prohlášení

Více

Simulace jaderné elektrárny s reaktorem VVER-440

Simulace jaderné elektrárny s reaktorem VVER-440 Simulace jaderné elektrárny s reaktorem VVER-440 J. Slabihoudek 1, M. Rzehulka 2 1 Gymnázium J. K. Tyla, Hradec Králové, 2 Wichterlovo gymnázium, Ostrava-Poruba jakub.slabihoudek@seznam.cz 20. června 2017

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy

Více

BULLETIN. Zahájena štěpná řetězová reakce rychlého reaktoru BN-800. Klasické a rychlé množivé reaktory. První jaderná elektrárna v Obninsku

BULLETIN. Zahájena štěpná řetězová reakce rychlého reaktoru BN-800. Klasické a rychlé množivé reaktory. První jaderná elektrárna v Obninsku BULLETIN 4 2014 Zahájena štěpná řetězová reakce rychlého reaktoru BN-800 Vladimír Wagner, ÚJF AV ČR, v. v. i. Ruská jaderná energetika prožívá další historickou událost: v Bělojarsku byla spuštěna štěpná

Více

$ %&#! '! ( $ )* +, '!'!!,!! )" )!)' -!!! 9# )# ) 8)!# ) )! 2 %,"$ +#""#!,!, )!#!:6 8)! ) )! ' '! -. +#""#!!# )!!# '!#! ) )),#!#

$ %&#! '! ( $ )* +, '!'!!,!! ) )!)' -!!! 9# )# ) 8)!# ) )! 2 %,$ +##!,!, )!#!:6 8)! ) )! ' '! -. +##!!# )!!# '!#! ) )),#!# ! "#! $%!!"# $ %&#! '! ( $ )* +, '!'!!,!! )" )!)' -!!! &#./01 + # +! &' () '!,! # 2#!!!! 3!#! +-+!#,! #! 4 *" "! # #!! #!!,! # ' ") ) " # 5'!! "!! &"!#!!!.0678'# 9# )# +#"+""+! ' ) 8)!# ) )! 2 %,"$ +#""#!,!,

Více

Inovace výuky Člověk a svět práce. Pracovní list

Inovace výuky Člověk a svět práce. Pracovní list Inovace výuky Člověk a svět práce Pracovní list Čp 07_09 Jaderná elektrárna Vzdělávací oblast: Vzdělávací obor: Tematický okruh: Cílová skupina: Klíčová slova: Očekávaný výstup: Člověk a svět práce Člověk

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Téma: Státní úřad pro jadernou bezpečnost

Téma: Státní úřad pro jadernou bezpečnost Fakulta vojenského leadershipu Katedra krizového řízení Veřejná správa a její fungování v krizových situacích Téma: Státní úřad pro jadernou bezpečnost Zpracovala: pplk. Ing. Hana Malachová, Ph.D. Tel:

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Bedřich Heřmanský Vliv jaderných elektráren na životní prostředí Pokroky matematiky, fyziky a astronomie, Vol. 25 (1980), No. 6, 324--333 Persistent URL: http://dml.cz/dmlcz/138193

Více

ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE

ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE ENCYKLOPEDIE ENERGETIKY JADERNÁ ENERGIE OBSAH 3 OBSAH Tajemství atomů Pavel Augusta 7 Energie bez kouře Michael Sovadina, Marie Dufková 17 Trezor na tisíc let

Více

29. Atomové jádro a jaderné reakce

29. Atomové jádro a jaderné reakce 9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION ÚSTAV ELEKTROENERGETIKY DEPARTMENT OF

Více

Poučení z havárií a událostí v jaderné oblasti. Zdeněk Kříž, CV Řež

Poučení z havárií a událostí v jaderné oblasti. Zdeněk Kříž, CV Řež Poučení z havárií a událostí v jaderné oblasti Zdeněk Kříž, CV Řež Historický začátek - po konci 2.světové války se kromě závodů ve zbrojení-výrobě atomové pumy- začala rozvíjet jaderná energetika - US

Více

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19 Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ.1.07/1.1.30/01.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň Monitorovací indikátor: 06.43.10

Více

Jaderné elektrárny. Těžba uranu v České republice

Jaderné elektrárny. Těžba uranu v České republice Jaderné elektrárny Obrovské množství energie lidé objevili v atomu a naučili se tuto energii využívat k výrobě elektrické energie. Místo fosilních paliv se v atomových elektrárnách k ohřívání vody využívá

Více

Jaderná energetika v číslech

Jaderná energetika v číslech Jaderná energetika v číslech SKUPINA ČEZ Jaderná energetika je a bude důležitou součástí vyváženého mixu energetických zdrojů dnes i v budoucnosti. Ve snaze omezit emise oxidu uhličitého, čelit výpadkům

Více

ČERNOBYL PŘÍČINY, NÁSLEDKY, ŘEŠENÍ

ČERNOBYL PŘÍČINY, NÁSLEDKY, ŘEŠENÍ Greenpeace International ČERNOBYL PŘÍČINY, NÁSLEDKY, ŘEŠENÍ Zpráva Greenpeace, duben 1996 1 Úvod Katastrofa v Černobylu byla nazvána "největší technologickou katastrofou v historii lidstva". Způsobila

Více

Windscale 1957 INES 5

Windscale 1957 INES 5 Windscale 1957 INES 5 Václav Písek 1 Jaderný komplex Sellafield, Cumbria UK Po 2.sv válce USA vylučuje UK ze svého jaderného výzkumu UK chce za každou cenu vybudovat svou atomovou zbraň Zdroj: maps.google.com

Více

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE. Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.

Více

FYZIKA ATOMOVÉHO JÁDRA

FYZIKA ATOMOVÉHO JÁDRA FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru

Více

21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují

21.6.2011. Projekt realizovaný na SPŠ Nové Město nad Metují Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje ing.jan Šritr 1 ing.jan Šritr 2 1 Parní generátory (parní

Více

DOBRÝ SLUHA ALE ZLÝ PÁN. Dana Drábová

DOBRÝ SLUHA ALE ZLÝ PÁN. Dana Drábová DOBRÝ SLUHA ALE ZLÝ PÁN Dana Drábová JADERNÁ ENERGIE: DOBRÝ SLUHA, ALE ZLÝ PÁN Potenciální riziko jaderných elektráren spočívá v možnosti ztráty kontroly nad įízením štěpné įetězové reakce a v množství

Více

30 dnů poté aneb zkáza JE Fukushima 1

30 dnů poté aneb zkáza JE Fukushima 1 11. 4. 2011, Brno Připravil: prof. RNDr. Michael Pöschl, CSc. Ústav molekulární biologie a radiobiologie 30 dnů poté aneb zkáza JE Fukushima 1 Informace a workshop o následcích zemětřesení o 8,9 RS a následné

Více

Znečištění životního prostředí radionuklidy po zničení jaderné elektrárny Fukushima 1. Připravil: Tomáš Valenta

Znečištění životního prostředí radionuklidy po zničení jaderné elektrárny Fukushima 1. Připravil: Tomáš Valenta Znečištění životního prostředí radionuklidy po zničení jaderné elektrárny Fukushima 1 Připravil: Tomáš Valenta Umělé (antropogenní) radionuklidy, které se mohou potencionálně uvolnit při nehodě jaderného

Více

POŽÁRNÍ OCHRANA ELEKTRÁREN A ENERGETICKÝCH ZAŘÍZENÍ

POŽÁRNÍ OCHRANA ELEKTRÁREN A ENERGETICKÝCH ZAŘÍZENÍ POŽÁRNÍ OCHRANA ELEKTRÁREN A ENERGETICKÝCH ZAŘÍZENÍ Doc.Ing.Václav Kupilík, CSc. Osnova: 1) Jaderné elektrárny a) Princip termojaderné fúze b) Základní principy jaderného reaktoru c) Zvyšování bezpečnosti

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak

Více

Palivový cyklus. Pavel Zácha Zdroj: Heraltová - Katedra jaderných reaktorů, FJFI, ČVUT v Praze

Palivový cyklus. Pavel Zácha Zdroj: Heraltová - Katedra jaderných reaktorů, FJFI, ČVUT v Praze Palivový cyklus Pavel Zácha 2014-03 Zdroj: Heraltová - Katedra jaderných reaktorů, FJFI, ČVUT v Praze 1 Palivový cyklus Označuje celkový koloběh paliva (uranu) v komerčním využití, tj. od okamžiku vytěžení

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_136 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE)

ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) ŠTĚPNÁ REAKCE (JADERNÁ ENERGIE) Tadeáš Simon, Dominik Němec, David Čížek Štěpení jader informace jádro atomu- rozštěpí se, vzniklé části se rozletí velkými rychlostmi ->kinetická energie (energie pohybu)-

Více

Svět t energie. Dana Drábová Státní úřad pro jadernou bezpečnost Praha

Svět t energie. Dana Drábová Státní úřad pro jadernou bezpečnost Praha Svět t energie Dana Drábová Státní úřad pro jadernou bezpečnost Praha To je náš svět. A jiný nemáme... Několik čísel: V současné době žije na Zemi více než 6,3 miliard obyvatel s průměrným ročním přírůstkem

Více

Západočeská univerzita v Plzni Fakulta pedagogická Katedra chemie

Západočeská univerzita v Plzni Fakulta pedagogická Katedra chemie Západočeská univerzita v Plzni Fakulta pedagogická Katedra chemie Atomové jádro a jaderné reakce Bakalářská práce Andrea Lecjaksová B1001 Chemie se zaměřením na vzdělávání Plzeň 2013 Prohlašuji, že jsem

Více

Historie. Účel reaktoru. Obr. 1: Pohled na reaktor LVR-15

Historie. Účel reaktoru. Obr. 1: Pohled na reaktor LVR-15 REAKTOR LVR-15 LVR-15 je výzkumný lehkovodní reaktor tankového typu umístěný v beztlakové nádobě pod stínícím víkem, s nuceným chlazením a s provozním tepelným výkonem do 10 MW. Obr. 1: Pohled na reaktor

Více

REAKTOR LR- 0. Základní charakteristiky

REAKTOR LR- 0. Základní charakteristiky REAKTOR LR- 0 Reaktor LR-0 je lehkovodní reaktor nulového výkonu. Slouží jako experimentální reaktor pro měření neutronově fyzikálních charakteristik reaktorů typu VVER a PWR (Vodovodní energetický reaktor

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV ELEKTROENERGETIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF

Více

Jaká je budoucnost jaderné energetiky?

Jaká je budoucnost jaderné energetiky? Jaká je budoucnost jaderné energetiky? Vladimír Wagner Ústav jaderné fyziky AV ČR, energetická komise AV ČR 1) Úvod 2) Současnost přechod k III. generaci 3) Malé modulární reaktory 4) Budoucnost reaktory

Více

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění

2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:

Více

Potřebné pomůcky Sešit, učebnice, pero

Potřebné pomůcky Sešit, učebnice, pero Potřebné pomůcky Druh interaktivity Cílová skupina Stupeň a typ vzdělání Potřebný čas Velikost Zdroj Sešit, učebnice, pero Výklad, aktivita žáků 9. ročník 2. stupeň, ZŠ 45 minut 754 kb Viz použité zdroje

Více