R8.1 Zobrazovací rovnice čočky

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "R8.1 Zobrazovací rovnice čočky"

Transkript

1 Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit jen geometrický postup. Velikost obrazu a jeho polohu však můžeme určit také výpočtem. Zvětšení, popř. zmenšení velikosti obrazu ve vztahu k velikosti zobrazovaného předmětu udává měřítko optického zobrazení Z (často se pro tuto veličinu používá termín příčné zvětšení). Jestliže označímevýškupředmětu yavýškuobrazu y,platí Z= y y. Význačné paprsky na schématu optického zobrazení spojkou o ohniskové vzdálenosti f vymezují několik podobných trojúhelníků(obr. R8-1). Z nich pro měřítko optického zobrazení vyplývá, že Z= y y = a a = f a f = f a f, kde ajevzdálenostpředmětuodčočkyaa jevzdálenostobrazupředmětu. B y A F O a f f f a a F a f A y B Obr. R8-1 Znaménko minus ve vztazích vyjadřuje tzv. znaménkovou konvenci. Podle ní dohodou stanovíme znaménko u jednotlivých veličin tak, aby bylo možné rozhodnout, zda je obraz vzpřímený nebo převrácený. Při konstrukci obrazu obvykle volíme vzdálenost předmětu od čočky jako kladnou veličinu, tzn. +a. Vzdálenostobrazu a má kladnouhodnotu,kdyžobraz vzniknevkladném směru postupu světla prošlého čočkou a zápornou hodnotu, když se nachází

2 R8 ZOBRAZENÍ ZRCADLEM A ČOČKOU 70 v opačném směru(zdánlivý obraz). Převrácený obraz má pak záporné znaménko(y <0)avzpřímenýobrazmákladnéznaménko(y >0). Při dodržení znaménkové konvence platí: Z <0obrazpřevrácený Z >0obrazvzpřímený Z =1obrazstejněvelkýjakopředmět Z >1obrazzvětšený Z <1obrazzmenšený Ze vztahu pro měřítko optického zobrazení vyplývá rovnice a a = a f, f kterouupravímedotvaru a f + af = aa,dělímesoučinem aa f azískáme zobrazovací rovnici čočky: 1 a + 1 a = 1 f Zobrazovací rovnice vyjadřuje vzájemnou souvislost polohy předmětu aaobrazu a přizobrazováníčočkouoohniskovévzdálenosti f. Obdobná rovnice platí i pro zobrazování kulovými zrcadly. Příklad Předmět o výšce 1cm je zobrazen spojnoučočkou o ohniskovévzdálenosti 4 cm. Určete výpočtem polohu obrazu, jeho zvětšení a velikost obrazu. Řešte pro vzdálenosti předmětu od čočky a) 12cm, b) 6cm, c)2cm. Řešení y=1cm, f =4cm,a) a=12cm,b) a=6cm,c) a=2cm; a =?, y =?, Z=? a) Ze zobrazovací rovnice úpravou najdeme a = af a f = cm=6cm. Zvětšení obrazu najdeme ze vztahu Z= y y = f a f = 4cm (12 4)cm = 1 2,

3 R8.2 Mikroskop 71 takže y = Zy= 0,5cm. Obrazjevevzdálenosti6cmodčočkyvesměrupostupusvětla,jeskutečný, zmenšený a převrácený. Velikost obrazu je 0,5 cm. Obdobným postupem určíme: b) a =12cmay = 2cm;obrazjeskutečný,zvětšenýapřevrácený, c) a = 4cmay =2cm;obrazjezdánlivý,zvětšenýavzpřímený. Otázky a úlohy 1 Předcházející příklad řešte pro rozptylku o ohniskové vzdálenosti 4 cm. [ ] 2 Svítící žárovka je ve vzdálenosti 1 m od spojné čočky, která vytvořila ostrý obraz na stínítku ve vzdálenosti 0,25 m od čočky. Určete ohniskovou vzdálenost čočky. [20 cm] 3 Svíčka je umístěna 15 cm od spojné čočky s ohniskovou vzdáleností 10cm.Jakdalekoodčočkymusímeumístitstínítko,abynaněmvznikl ostrý obraz plamene svíčky? [30 cm] 4 Spojnáčočkavytváříobraz,prokterýplatí Z 1 = 2.Jestližeknípředmět přiblížímeo15cm,je Z 2 = 5.Určeteohniskovouvzdálenostčočky. [50 cm] 5 Čočka o ohniskové vzdálenosti 25 cm vytvořila na stínítku obraz se zvětšením 1.Jakébudezvětšeníobrazu,kdyžpředmětposunemeo20cm blíže k čočce? [ 5] R8.2 Mikroskop Mikroskop slouží ke zvětšení zorného úhlu při pozorování velmi malých objektů, např. mikroorganismů. Konstrukce přístroje je výsledkem úsilí několika učenců konce 16. a začátku 17. století a mikroskop sehrál významnou úlohu v rozvoji řady vědeckých oborů(biologie, mineralogie, lékařství aj.). Moderní mikroskopy dosahují zvětšení až 1 000krát a speciálními mikroskopy, které již nepoužívají k zobrazení světlo(elektronové mikroskopy), lze dosáhnout ještě větších zvětšení.

4 R8 ZOBRAZENÍ ZRCADLEM A ČOČKOU 72 Mikroskop charakterizují dva základní optické prvky: objektiv (blíže pozorovanému předmětu objektu) a okulár(blíže oku). Optická soustava mikroskopu je na obr. R8-2. Objektiv i okulár mikroskopu jsou spojné soustavy, které se liší především ohniskovými vzdálenostmi. Objektiv má malou ohniskovou vzdálenost f 1 a předmět je umístěn v blízkosti ohniska objektivu. Na rozdíl od lupyaletak,že a > f aobjektivvytvoří skutečný, převrácený a zvětšený obraz y vohniskuokuláru.okulármá většíohniskovouvzdálenost f 2 ajeto vlastně lupa, kterou prohlížíme obraz vytvořený objektivem. Z obr. R8-2 je patrné, že mezi obrazovým ohniskem F 1 objektivuapředmětovýmohniskem F 2 okuláru je určitá vzdálenost ( = = F 1 F 2),kterásenazýváoptickýinterval. Funkci mikroskopu při pozorování malých objektů charakterizuje veličina úhlové zvětšení γ. Je definováno vztahem y 0 0 F 1 F 2 F 0 1 y okulár f 2 f 1 objektiv Obr. R8-2 γ = τ τ, kde τ je úhel, pod kterým bychom viděli pozorovaný objekt v konvenční zrakovévzdálenosti d(d=25cm),aτ jeúhel,podkterýmobjektovelikostiy vidímevokulárumikroskopu.proúhel τjezobr.r8-3patrné,žetg τ = y/d aponěvadžúhel τjevelmimalý,jetgτ τ. y τ d Obr. R8-3

5 R8.3 Dalekohled 73 Proúhel τ,podkterýmvidímeobjektvmikroskopu,najdemezobr.r8-2 vztah tgτ τ = y f 2 = y f 1 f 2 a pro úhlové zvětšení mikroskopu platí: γ = τ τ = f 1 d f 2 Otázky a úlohy 1 Objektiv mikroskopu má ohniskovou vzdálenost 2,5 mm a okulár má ohniskovou vzdálenost 7,5 mm. Určete úhlové zvětšení mikroskopu, jestliže jeho optický interval je 150 mm. [2 000] 2 Školní mikroskop má následující parametry: zvětšení objektivu 50, zvětšení okuláru 10, optický interval 160 mm. Určete a) celkové zvětšení mikroskopu, b) ohniskovou vzdálenost objektivu, c) ohniskovou vzdálenostokuláru. [ (a)500;b)3,2mm;c)25mm)] R8.3 Dalekohled Přístroj, který zvětšuje zorný úhel, pod nímž vidíme velmi vzdálené předměty, je dalekohled. Také dalekohled má dlouhou historii. Na jejím počátku byl především dalekohled, jehož autorem je GALILEO GALILEI CD, a který znamenal revoluční krok v poznávání vesmíru. Největší uplatnění v astronomii však našel dalekohled zkonstruovaný na počátku 17. století astronomem JOHANNEM KEPLEREM CD. Keplerův dalekohled se skládá z objektivu o poměrně velké ohniskové vzdálenosti f 1 aokuláru,kterýmápodstatněmenšíohniskovouvzdálenost f 2 (obr.r8-4).propolohuohnisekobjektivuaokuláruplatí F 1 = F 2.Poněvadžje pozorovaný předmět velmi daleko, vstupuje objektivem do dalekohledu svazek rovnoběžnýchpaprskůavobrazovémohniskuobjektivuvznikáobraz y.ten pozorujemeokulárempodzvětšenýmzornýmúhlemτ.okulárjenastaventak, žezněhovystupujesvazekrovnoběžnýchpaprsků,takžeobraz y pozorujeme při minimální akomodaci oka.

6 R8 ZOBRAZENÍ ZRCADLEM A ČOČKOU 74 f 1 f 2 0 A y 0 0 B 0 Obr. R8-4 Jestliže např. pozorujeme dalekohledem na noční obloze dvě blízké hvězdy, přicházejí do objektivu dalekohledu dva svazky rovnoběžných paprsků. Jeden svazek paprsků má směr optické osy objektivu a druhý svazek paprsků svírá s optickou osou úhel τ. Úhel τ tedy představuje úhlovou vzdálenost obou objektů při pozorování bez dalekohledu. V ohniskové vzdálenosti objektivu tomu odpovídají obrazy dvou hvězd, které pozorujeme pod zvětšeným úhlem τ.jestližejsouúhly τa τ malé,najdemeproněpodleobr.r8-4vztahy τ = y /f 1 a τ = y /f 2.Proúhlovézvětšenídalekohledupakplatí γ = τ τ = y f 2 : y f 1 = f 1 f 2. Jak vyplývá z chodu paprsků na obr. R8-4, vidíme okulárem Keplerova dalekohledu sledovaný objekt převrácený. Při astronomickém pozorování to nevadí, ale pro pozorování pozemských objektů je třeba Keplerův dalekohled upravit, abychom v okuláru viděli objekt ve vzpřímené poloze. Dalekohled, který splňuje tento požadavek, se nazývá triedr(obr. R8-5). Konstrukční řešení triedru spočívá v tom, že se za objektiv triedru umístí dvojice odrazných hranolů, pomocí nichž se chod paprsků změní tak, že obraz vytvořený objektivem je vzpřímený. Současně se dalekohled celkově zkrátí. okulár odrazný hranol objektiv Obr. R8-5

7 R8.3 Dalekohled 75 Dalekohledy, u nichž se jako objektiv používají čočky, jsou refraktory, poněvadž se zde využívá zobrazení lomem světla, čili refrakcí. Astronomickými dalekohledy se pozorují vesmírné objekty, z nichž k pozorovateli přichází velmi málo světla. Proto by měly mít objektivy dalekohledů co největší průměr. Např. největší refraktor na observatoři Yerkes v USA má objektiv o průměru 102 cm a ohniskovou vzdálenost 19,8 m. Zvětšování rozměrů refraktorů má i další omezení, takže se dnes používají jen pro méně náročná astronomická pozorování. V astronomii se používají především zrcadlové dalekohledy s dutými zrcadly velkých rozměrů. Proto se tento typ dalekohledu označuje jako reflektor. Plocha zrcadla však není kulová, ale má tvar rotačního paraboloidu. Chod paprsků v zrcadlovém dalekohledu, jehož princip navrhl ISAAC NEW- TON CD, je patrný z obr. R8-6. Rovnoběžné paprsky přicházející ze vzdálené hvězdy jsou zrcadlem soustředěny do ohniska zrcadla. Aby bylo možné obraz hvězdy pozorovat, jsou paprsky odchýleny rovinným zrcadlem mimo tubus dalekohledu, kde je umístěn okulár, nebo častěji citlivá kamera se snímačem CCD, která obraz převede do elektronické podoby. okulár F rovinné zrcadlo duté zrcadlo Obr. R8-6 Zrcadla reflektorů na astronomických observatořích mají průměr i několik metrů. Největší zrcadlový dalekohled SUBARU byl vyroben v Japonsku a je vprovozuodroku1999naobservatořimaunakea(havaj)vevýšce4200m. Jehozrcadlomáprůměr8,2m,ohniskovouvzdálenost15mahmotnost22,8t (obr. R8-7). Mezi zrcadlové dalekohledy patří i Hubbleův dalekohled(obr. R8-8), který se od roku 1990 pohybuje ve vzdálenosti přibližně 600 km nad povrchem Země. Jeho zrcadlo má ve srovnání s pozemskými dalekohledy menší průměr (2,4 m). Poněvadž však světlo vesmírných objektů není pohlcováno ovzduším, jsou výsledky pozorování tímto dalekohledem srovnatelné s pozemským dalekohledem, jehož zrcadlo by mělo průměr 10 m.

8 R8 ZOBRAZENÍ ZRCADLEM A ČOČKOU 76 Obr. R8-7 Obr. R8-8 Otázky a úlohy 1 Uvažte, proč jsou pro astronomická pozorování potřebné dalekohledy s tak velkým průměrem objektivu? [ ] 2 Proč je nebezpečné pozorovat Slunce přímým pohledem do dalekohledu? [ ] 3 Keplerův dalekohled má objektiv o ohniskové vzdálenosti 1,2 m a okulár má optickou mohutnost 20 D. Urči: a) Jaké je zvětšení dalekohledu? b) Jaká je celková délka dalekohledu? [a) 24; b) 1,25 m] 4 Keplerův dalekohled, jehož objektiv má ohniskovou vzdálenost 24 cm, je nastavený na nekonečno. O jakou vzdálenost je třeba posunout okulár pro zaostření na vzdálenost 10 m? [ ] R8.4 Dataprojektor Dataprojektor je v podstatě projekční přístroj a z hlediska optického zobrazení se liší od snímacího přístroje především tím, že předmětem je obrazová předloha malých rozměrů a na projekční ploše vzniká její skutečný, převrácený a zvětšený obraz. Dataprojektory se liší zejména konstrukcí části, v níž se převádějí data z počítače na obraz, který je promítnut objektivem na projekční plochu. Ukážeme si to na příkladu tzv. transmisivní technologie, při níž je intenzita světla ovlivněna miniaturními panely LCD. Schematicky je princip tohoto dataprojektoru zobrazen na obr. R8-9. Bílé světlo výkonné halogenové žárovky nebo xenonové výbojky je zvláštním optickým prvkem rozděleno do tří svazků paprsků v základních barvách RGB a jejich průchodem přes panely LCD se získají tři barevné složky výsledného obrazu. Pak jsou barevné složky spojeny do jednoho svazku paprsků a objektivem jsou promítnuty na projekční plochu.

9 R8.4 Dataprojektor 77 3 panely obrazových buněk LCD zdroj bílého světla rozklad bílého světla R G spojení barevných světel projekční objektiv B Obr. R8-9 Aktivní plochu panelu LCD tvoří matice obrazových bodů(pixelů), jejichž počet určuje rozlišení panelu dané počtem obrazových bodů v řádku počet řádků. Např. dataprojektor na obr. R8-10 má rozlišení obrazových bodů ,tzn.celkem786432pixelů.Čímjerozlišenívětší,tímkvalitnějšíje zobrazení na projekční ploše. Obr. R8-10 Obr. R8-11 Jinou technologií používanou v dataprojektorech je tzv. reflektivní technologie založená na odrazu světla. Označuje se jako technologie DLP(Digital Light Processing). Základním prvkem projektoru je křemíkový čip se soustavou miniaturních čtvercových zrcátek(obr. R8-11). Zrcátka mají délku strany jen16 µmapůsobenímelektrostatickýchsilsenaklápějío10.každézrcátko odpovídájednomuobrazovémubodu,takžejetořádově10 5 zrcátek.mezi zdrojem světla a čipem se zrcátky je umístěn rotující kotouč se třemi výsečemisbarevnýmifiltryrgbačipjerychlezasebouosvětlovánčerveným,

10 R8 ZOBRAZENÍ ZRCADLEM A ČOČKOU 78 zeleným a modrým světlem. Průběhem obrazového signálu se ovlivňuje elektrické pole, které elektrostatickou silou působí na zrcátka a naklápí je. Tím se dosáhne, že na projekční plochu směřuje v určitém okamžiku jen světlo určité barvy a vytvářejí se obrazové pixely dané barvy. Zbývající barevné složky jsou odkloněny a jsou pohlceny v černém absorbéru světla uvnitř projektoru.

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo,

naše vlajka: Řešení prvního úkolu kategorie 3 druhý stupeň: Trochu teorie a historie: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, Řešení prvního úkolu kategorie 3 druhý stupeň: Kamarádi ZŠ Chrast S chutí do toho a půl je hotovo, rádi spolu tvoříme, na úkol se těšíme naše vlajka: Trochu teorie a historie: Dalekohled Dalekohled umožňuje

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

Fyzika_7_zápis_7.notebook April 28, 2015

Fyzika_7_zápis_7.notebook April 28, 2015 OPTICKÉ PŘÍSTROJE 1) Optické přístroje se využívají zejména k pozorování: velmi malých těles velmi vzdálených těles 2) Optické přístroje dělíme na: a) subjektivní: obraz je zaznamenáván okem např. lupa,

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

Optika pro studijní obory

Optika pro studijní obory Variace 1 Optika pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Světlo a jeho šíření Optika

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

VY_32_INOVACE_06_UŽITÍ ČOČEK_28

VY_32_INOVACE_06_UŽITÍ ČOČEK_28 VY_32_INOVACE_06_UŽITÍ ČOČEK_28 Autor: Mgr. Pavel Šavara Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace Název projektu: Zkvalitnění ICT ve slušovské škole Anotace Materiál (DUM digitální

Více

Metodika práce s astronomickými přístroji 1

Metodika práce s astronomickými přístroji 1 Science Academy - kritický způsob myšlení a praktické aplikace přírodovědných a technických poznatků v reálném životě reg.č. CZ.1.07/2.3.00/45.0040 Metodika práce s astronomickými přístroji 1 Historie

Více

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení.

Základní přehled. Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Základní přehled Dalekohled přístroj, který nám při pohledu do něj přiblíží daný předmět tolikrát, kolik činí jeho zvětšení. Reflektor zrcadlový dalekohled, používající ke zobrazení dvou (primárního a

Více

Optické přístroje. Oko

Optické přístroje. Oko Optické přístroje Oko Oko je orgán živočichů reagující na světlo. Obratlovci a hlavonožci mají jednoduché oči, členovci, kteří mají menší rozměry a jednoduché oko by trpělo difrakčními jevy, mají složené

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

6.1 Základní pojmy optiky

6.1 Základní pojmy optiky 6.1 Základní pojmy optiky 6.1 Při jednom kosmickém experimentu bylo na povrchu Měsíce umístěno speciální zrcadlo, které odráželo světlo výkonného laseru vysílané ze Země. Světelný impulz se vrátil po odrazu

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ Světlo - ze zdroje světla se světlo šíří jako elektromagnetické vlnění příčné, které má ve vakuu vlnovou délku c λ = υ, a to

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

VY_52_INOVACE_2NOV69. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9.

VY_52_INOVACE_2NOV69. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9. VY_52_INOVACE_2NOV69 Autor: Mgr. Jakub Novák Datum: 3. 4. 2013 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Optické čočky

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1.

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1. nauka o optickém zobrazování pracuje s pojmem světelného paprsku úzký svazek světla, který by vycházel z malého osvětleného otvoru v limitním případě, kdy by se jeho příčný rozměr blížil k nule a stejně

Více

Brána do vesmíru. Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline

Brána do vesmíru. Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Brána do vesmíru Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Základy observační astronomie Petr Scheirich Nejjednodušší pozorování Co k němu potřebujeme: Nejjednodušší pozorování Co k

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK,

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11. 2011 VZDĚL. OBOR, TÉMA: Fyzika, Planetárium

Více

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ

Identifikace práce. Žák jméno příjmení věk. Bydliště ulice, č.p. město PSČ. Škola ulice, č.p. město PSČ vyplňuje žák Identifikace práce Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ vyplňuje škola Učitel jméno příjmení podpis Škola ulice, č.p. město PSČ jiný kontakt (např. e-mail) A. Přehledový test

Více

Tvorba dalekohledu a hledání planety

Tvorba dalekohledu a hledání planety Tvorba dalekohledu a hledání planety Spojná a rozptylná čočka Zdroj: http://www.physics.uiowa.edu Čočkové dalekohledy ČČoččkový dalekohled - refraktor - se skládá z objektivu velká ččoččka vepřředu a okuláru

Více

5.2.11 Lupa, mikroskop

5.2.11 Lupa, mikroskop 5.2.11 Lupa, mikroskop Přepokla: 5210 Rozlišovací schopnost oka (schopnost rozlišit va bo): závisí na velikosti obrazu přemětu na oční sítnici, poku chceme rozlišit va tmavé bo, nesmí jejich obraz opanout

Více

Laboratorní úloha č. 6 - Mikroskopie

Laboratorní úloha č. 6 - Mikroskopie Laboratorní úloha č. 6 - Mikroskopie Úkoly měření: 1. Seznamte se s ovládáním stereoskopického mikroskopu, digitálního mikroskopu a fotoaparátu. 2. Studujte pod mikroskopem různé preparáty. Vyberte vhodný

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

DIGITÁLNÍ FOTOGRAFIE

DIGITÁLNÍ FOTOGRAFIE DIGITÁLNÍ FOTOGRAFIE - princip digitalizace obrazu, části fotoaparátů, ohnisková vzdálenost, expozice, EXIF data, druhy digitálních fotoaparátů Princip vzniku digitální fotografie digitální fotoaparáty

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

NATIS s.r.o. Seifertova 4313/10 767 01 Kroměříž T:573 331 563 E:natis@natis.cz www.natis.cz. Videoendoskopy a příslušenství

NATIS s.r.o. Seifertova 4313/10 767 01 Kroměříž T:573 331 563 E:natis@natis.cz www.natis.cz. Videoendoskopy a příslušenství Videoendoskopy a příslušenství Strana 2 Úvod Jsme rádi, že vám můžeme představit katalog videoendoskopů a jejich příslušenství. Přenosné videoendoskopy model V55100 a X55100 s velkým barevným LCD displejem,

Více

Obsah. Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost

Obsah. Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost Radek Lacina Obsah Historický vývoj Jednotlivé technologie 3D technologie Zobracovací zařízení Budoucnost Historie Bratři Lumiérové 1895 patentován kinematograf 35 mm film, 16 fps (převzato od Edisona)

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou

Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou SVĚTLO Paprsky světla létají úžasnou rychlostí. Když dorazí do našich očí, donesou nám mnoho informací o věcech kolem nás. Vlastnosti světla mohou být ukázány na celé řadě zajímavých pokusů. Uvidíš svíčku?

Více

FYZIKA (7. 9. ročník)

FYZIKA (7. 9. ročník) FYZIKA (7. 9. ročník) Charakteristika předmětu Předmět fyzika je zařazen do výuky na druhém stupni od sedmého do devátého ročníku. Vyučuje se v běžných učebnách s dostupnými pomůckami. Spolu s ostatními

Více

5.3.1 Disperze světla, barvy

5.3.1 Disperze světla, barvy 5.3.1 Disperze světla, barvy Předpoklady: 5103 Svítíme paprskem bílého světla ze žárovky na skleněný hranol. Světlo se láme podle zákona lomu na zdi vznikne osvětlená stopa Stopa vznikla, ale není bílá,

Více

DALEKOHLEDOVÉ SYSTÉMY

DALEKOHLEDOVÉ SYSTÉMY UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA OPTIKY DALEKOHLEDOVÉ SYSTÉMY BAKALÁŘSKÁ PRÁCE Vypracovala: Nina Mišingerová Obor 5345R008 Optometrie Studijní rok 2011/2012 Vedoucí práce:

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

26. Optické zobrazování lomem a odrazem, jeho využití v optických pístrojích

26. Optické zobrazování lomem a odrazem, jeho využití v optických pístrojích 26. Optické zobrazování lomem a odrazem, jeho využití v optických pístrojích Svtlo je elektromagnetické vlnní, které mžeme vnímat zrakem. Rozsah jeho vlnových délek je 400 nm 760 nm. ODRAZ A LOM SVTLA

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Návrh optické soustavy - Obecný postup

Návrh optické soustavy - Obecný postup Inovace a zvýšení atraktivity studia optiky reg. c.: CZ.1.07/2.2.00/07.0289 Přednášky - Metody Návrhu Zobrazovacích Soustav SLO/MNZS Návrh optické soustavy - Obecný postup Miroslav Palatka Tento projekt

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

pro gymnasia Optika Fysika mikrosvěta

pro gymnasia Optika Fysika mikrosvěta Fysikální měření pro gymnasia V. část Optika Fysika mikrosvěta Gymnasium F. X. Šaldy Honsoft Liberec 2009 ÚVODNÍ POZNÁMKA EDITORA Obsah. Pátá, poslední část publikace Fysikální měření pro gymnasia obsahuje

Více

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V

Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V Kapitola 2 Barvy, barvy, barvičky 2.1 Vnímání barev Světlo, které vnímáme, představuje viditelnou část elektromagnetického spektra. V něm se vyskytují všechny známé druhy záření, např. gama záření či infračervené

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy

Pozorování dalekohledy. Umožňují pozorovat vzdálenější a méně jasné objekty (až stonásobně více než pouhým okem). Dají se použít jakékoli dalekohledy Vesmírná komunikace Pozorování Za nejběžnější vesmírnou komunikaci lze označit pozorování vesmíru pouhým okem (možno vidět okolo 7000 objektů- hvězdy, planety ).Je to i nejstarší a nejběžnější prostředek.

Více

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10

Základy mikroskopie. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod: Úloha č. 10 Úloha č. 10 Základy mikroskopie Úkoly měření: 1. Seznamte se základní obsluhou třech typů laboratorních mikroskopů: - biologického - metalografického - stereoskopického 2. Na výše jmenovaných mikroskopech

Více

Venuše druhá planeta sluneční soustavy

Venuše druhá planeta sluneční soustavy Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

HVĚZDÁRNA FRANTIŠKA KREJČÍHO

HVĚZDÁRNA FRANTIŠKA KREJČÍHO HVĚZDÁRNA FRANTIŠKA KREJČÍHO WWW.ASTROPATROLA.CZ hvezdarna.kv@gmail.com telefon 357 070 595 JAK VYUŽÍT HVĚZDÁRNU FRANTIŠKA KREJČÍHO V KARLOVÝCH VARECH JAKO DOPLNĚK SOUČASNÉ ŠKOLNÍ VÝUKY Programy hvězdárny

Více

Název: Vlastnosti oka, porovnání s fotoaparátem

Název: Vlastnosti oka, porovnání s fotoaparátem Název: Vlastnosti oka, porovnání s fotoaparátem Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický celek: Optika

Více

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles

Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles 6.ročník Výstupy Žák : rozliší na příkladech těleso a látku a dovede uvést příklady látek a těles určí, zda je daná látka plynná, kapalná či pevná, a popíše rozdíl ve vlastnostech správně používá pojem

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu / Druh CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT

Více

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA Ota Kéhar Oddělení fyziky Katedry matematiky, fyziky a technické výchovy ZČU v Plzni Abstrakt: V příspěvku představím několik webových online aplikací

Více

Orbit TM Tellerium Kat. číslo 113.4000

Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium s velkým glóbusem Země pro demonstrování ročních období, stínů a dne a noci Orbit TM Tellerium s malou Zemí pro demonstrování fází Měsíce a zatmění

Více

TECHNICKÁ DOKUMENTACE

TECHNICKÁ DOKUMENTACE VŠB-TU Ostrava, Fakulta elektrotechniky a informatiky Katedra elektrických strojů a přístrojů KAT 453 TECHNICKÁ DOKUMENTACE (přednášky pro hodiny cvičení) Zobrazování Petr Šňupárek, Martin Marek 1 Co je

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace

Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace Fyzika - 6. ročník Uvede konkrétní příklady jevů dokazujících, že se částice látek neustále pohybují a vzájemně na sebe působí stavba látek - látka a těleso - rozdělení látek na pevné, kapalné a plynné

Více

Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace

Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max.

Více

Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví

Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví Klíma Miloš., Sulovský Petr Přírodovědecká fakulta Masarykovy univerzity

Více

Technický boroskop zařízení na monitorování spalovacích procesů

Technický boroskop zařízení na monitorování spalovacích procesů Technický boroskop zařízení na monitorování spalovacích procesů Katedra experimentální fyziky PřF UP Olomouc Doc. Ing. Luděk Bartoněk, Ph.D. Zvyšování účinnosti spalovacích procesů v různých odvětvích

Více

Věda ve vesmíru. Fakulta výrobních technologií a managementu. Věda pro život, život pro vědu. Registrační číslo: CZ.1.07/2.3.00/45.

Věda ve vesmíru. Fakulta výrobních technologií a managementu. Věda pro život, život pro vědu. Registrační číslo: CZ.1.07/2.3.00/45. Fakulta výrobních technologií a managementu Věda ve vesmíru Věda pro život, život pro vědu V Sokolově, 26. ledna 2015 Registrační číslo: CZ.1.07/2.3.00/45.0029 PhDr. Jan Novotný, Ph.D. Zkoumání vesmíru

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Novinky verze 5. Od verze 5.0 je v programu PRO100 implementován nový vizualizační modul založený na technologii Open GL.

Novinky verze 5. Od verze 5.0 je v programu PRO100 implementován nový vizualizační modul založený na technologii Open GL. Novinky verze 5 Od verze 5.0 je v programu PRO100 implementován nový vizualizační modul založený na technologii Open GL. Podporované grafické 3D karty: - NVIDIA GeForce 9600 a novější ATI Radeon X1900

Více

Optická (světelná) Mikroskopie pro TM I

Optická (světelná) Mikroskopie pro TM I Optická (světelná) Mikroskopie pro TM I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Typy klasických biologických a polarizačních mikroskopů Přehled součástí

Více

Jak na Slunce? Pozorování Slunce

Jak na Slunce? Pozorování Slunce Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Jak na Slunce? Ing. Jan Zahajský, Pražská pobočka ČAS Jak na Slunce? POZOROVÁNÍ

Více

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb

Trochu astronomie. v hodinách fyziky. Jan Dirlbeck Gymnázium Cheb Trochu astronomie v hodinách fyziky Jan Dirlbeck Gymnázium Cheb Podívejte se dnes večer na oblohu, uvidíte Mars v přiblížení k Zemi. Bude stejně velký jako Měsíc v úplňku. Konec světa. Planety se srovnají

Více

Cesta od středu Sluneční soustavy až na její okraj

Cesta od středu Sluneční soustavy až na její okraj Cesta od středu Sluneční soustavy až na její okraj miniprojekt Projekt vznikl podpory: Projekt vznikl za podpory: Projekt vznikl za za podpory: Jméno: Jméno: Škola: Škola: Datum: Datum: Cíl: Planeta Země,

Více

Spektroskop. Anotace:

Spektroskop. Anotace: Spektroskop Anotace: Je bílé světlo opravdu bílé? Liší se nějak světlo ze zářivky, žárovky, LED baterky, Slunce, UV baterky, výbojek a dalších zdrojů? Vyrobte si jednoduchý finančně nenáročný papírový

Více

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5

ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 ŠVP Gymnázium Jeseník Seminář z fyziky oktáva, 4. ročník 1/5 žák řeší úlohy na vztah pro okamžitou výchylku kmitavého pohybu, určí z rovnice periodu frekvenci, počáteční fázi kmitání vypočítá periodu a

Více

Terestrické 3D skenování

Terestrické 3D skenování Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního

Více

Tvorba technická dokumentace

Tvorba technická dokumentace Tvorba technická dokumentace Základy zobrazování na technických výkresech Zobrazování na technických výkresech se provádí dle normy ČSN 01 3121. Promítací metoda - je soubor pravidel, pro dvourozměrné

Více

Nabídka vybraných pořadů

Nabídka vybraných pořadů Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro 1. stupeň základních škol Pro zvídavé školáčky jsme připravili řadu naučných programů a besed zaměřených

Více

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289

C Mapy Kikuchiho linií 263. D Bodové difraktogramy 271. E Počítačové simulace pomocí programu JEMS 281. F Literatura pro další studium 289 OBSAH Předmluva 5 1 Popis mikroskopu 13 1.1 Transmisní elektronový mikroskop 13 1.2 Rastrovací transmisní elektronový mikroskop 14 1.3 Vakuový systém 15 1.3.1 Rotační vývěvy 16 1.3.2 Difúzni vývěva 17

Více

13 Barvy a úpravy rastrového

13 Barvy a úpravy rastrového 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII

ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII ELEKTRONOVÁ MIKROSKOPIE V TEXTILNÍ METROLOGII Lidské oko jako optická soustava dvojvypuklá spojka obraz skutečný, převrácený, mozek ho otočí do správné polohy, zmenšený rozlišovací schopnost oka cca 0.25

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

SADA PERFORMANCÍ Pokusy z geometrické optiky

SADA PERFORMANCÍ Pokusy z geometrické optiky SADA PERFORMANCÍ Pokusy z geometrické optiky Science Academy - kritický způsob myšlení a praktické aplikace přírodovědných a technických poznatků v reálném životě reg.č. CZ.1.07/2.3.00/45.0040 Hvězdárna

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE LABORATORNÍ PRÁCE Č. 34 MIKROSKOPIE PRINCIP V chemické laboratoři se používá k některým stanovením tzv. mikrokrystaloskopie. Jedná se o použití optického mikroskopu při kvalitativních důkazech látek na

Více