Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření."

Transkript

1 Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce z teorie principu měření, vše doloženo výpočty, přípdně nákresy vlstní relizcí měření. Posluchči provedou odpovídjící selekci syntézu inormcí uceleně je uvedou do teoretického zákldu vlstního měření. Optické jevy netrdičně -využití žákovské souprvy pro pokusy z optiky Pvel Kříž, Frntišek Špulák, Ktedr yziky, PF JU České Budějovice V článku popisujeme několik experimentů se žákovskou souprvou pro pokusy z optiky []. Abychom mohli uvedené pokusy provádět, je třeb udělt drobné úprvy s některými součástmi této souprvy. Stolek (součást č. 0) optickou lvici (součást č. ) provrtáme sešroubujeme tk, by bylo možno optickou lvici postvit do svislé polohy (viz obr. ). Obr. : - optická lvice, - stolek, 3 - šrouby, 4 - držáky, 5 - duté zrcdlo, 6 - mtnice s ryskmi N mtnici (součást č. ) připevníme ppírovou pásku, která má přes okrj mtnice prvidelně rozmístěné tři rysky, přičemž prostřední rysk je nejsilnější obě krjní jsou stejně silné. Pro všechn měření je zpotřebí uprvená optická lvice ve svislé poloze, dv držáky optických prvků (součást č. ) mtnice s ppírovou páskou ryskmi. N optickou lvici připevníme držáky, jeden do polohy nul druhý kmkoliv nd něj. Do horního držáku vložíme mtnici s páskou ryskmi. Tím je souprv připrven k dlšímu využití. Osttní pomůcky uvedeme u kždého experimentu zvlášť. Princip všech experimentů je stejný. Ze vzdálenosti minimálně 5 cm pozorujeme jedním okem rysky n mtnici zároveň s jejich obrzem v příslušné optické soustvě umístěné v dolním držáku. Nstvíme-li polohu mtnice tk, by se vzdálenosti rysek n mtnici v obrze shodovly (viz obr. ), potom je příčné zvětšení soustvy jednotkové ze vzthu y y vyplývá, že vzdálenost mtnice od optické soustvy je. Po změření této vzdálenosti lze určit ohniskovou vzdálenost použité optické soustvy následně i jiné prmetry (poloměry křivosti, index lomu tp.). Pro zdárný průběh měření je důležité, by os optické soustvy procházel okrjem mtnice v místě, kde je nkreslen nejsilnější rysk. Toho lze docílit posunem mtnice v držáku posunem ppírové pásky po mtnici v nvzájem kolmých směrech. Poznámk: Místo mtnice s ppírovou páskou ryskmi lze použit i obyčejného školního prvítk.

2 Experiment č. : Měření ohniskové vzdálenosti dutého zrcdl (obr. ) Pomůcky: optická lvice, mtnice s ryskmi, dv držáky, duté zrcdlo. Souprvu připrvíme k měření výše popsným způsobem. Do dolního držáku vložíme duté zrcdlo odrzným povrchem vzhůru. Po nstvení polohy mtnice tk, by se vzdálenosti rysek n mtnici v obrze shodovly, změříme vzdálenost mtnice od vrcholu zrcdl. Ohniskovou vzdálenost dutého zrcdl pk určíme ze vzthu: Obr. : 5 - duté zrcdlo, 6 - mtnice s ryskmi Experiment č. : Měření indexu lomu kpliny pomocí dutého zrcdl (obr. 3) Pomůcky: optická lvice, mtnice s ryskmi, dv držáky, duté zrcdlo, kplin Souprvu připrvíme k měření výše popsným způsobem. Do dolního držáku vložíme duté zrcdlo odrzným povrchem vzhůru. Ohniskovou vzdálenost zrcdl určíme jko u experimentu č.. Poté do dutého zrcdl nlijeme mlé množství kpliny. Opět nstvíme polohu mtnice tk, by se vzdálenosti rysek n mtnici v obrze shodovly. Odečteme vzdálenost mtnice od vrcholu zrcdl. Pro ohniskovou vzdálenost vzniklé optické soustvy pltí: pro index lomu kpliny (tvoří ploskovypuklou čočku) pltí vzth: n z P P r h Obr. 3: P - poloh mtníce bez vody, P - poloh mtníce s vodou, M - duté zrcdlo, r -poloměr křivosti zrcdl, h - poloměr křivosti soustvy zrcdlo vod

3 Experiment č. 3: Měření ohniskové vzdálenosti spojky pomoci rovinného zrcdl (obr. 4) Pomůcky: optická lvice, mtnice s ryskmi, dv držáky, rovinné zrcdlo, spojná čočk Souprvu připrvíme k měření výše popsným způsobem. Do dolního držáku vložíme rovinné zrcdlo odrzným povrchem vzhůru. N zrcdlo položíme spojnou čočku. Nstvíme polohu mtnice tk, by se vzdálenosti rysek n mtnici v obrze shodovly, odečteme vzdálenost mtnice od středu spojky. Světelná vln šířící se mezi čočkou rovinným zrcdlem musí být v tomto přípdě rovinná tedy pro ohniskovou vzdálenost spojky pltí: Obr. 4: M - rovinné zrcdlo, - spojná čočk, P - poloh mtnice, - ohnisková vzdálenost čočky ve vzduchu Experiment č. 4: Měření poloměru křivosti spojky jejího indexu lomu (obr. 5) Pomůcky: optická lvice, mtnice s ryskmi, dv držáky, rovinné zrcdlo, spojná čočk, uhlový ppír Souprvu připrvíme k měření výše popsným způsobem. Do dolního držáku vložíme rovinné zrcdlo odrzným povrchem vzhůru. N zrcdlo položíme spojnou čočku. Změříme ohnisko- vou vzdálenost čočky jko u experimentu č. 3. Poté pod čočku umístíme uhlový ppír. Opět nlezneme polohu mtnice tk, by se vzdálenosti rysek n mtnici v obrze shodovly, odměříme vzdálenost mtnice od spodního povrchu čočky. Potom lze určit poloměr křivosti spodního povrchu čočky podle následujícího vzthu:. Poloměr křivosti druhého povrchu čočky lze po otočení čočky zjistit stejným Způsobem. S použitím rovnice: ( n ) lze vypočítt index lomu n skl, z kterého je čočk vyroben. V přípdě rovnosti obou poloměrů křivosti čočky je n Experiment č. 5: Měření indexu lomu kpliny pomocí spojky rovinného zrcdl (obr. 6) Pomůcky: optická lvice, mtnice s ryskmi, dv držáky, rovinné zrcdlo, spojná čočk, uhlový ppír, kplin Souprvu připrvíme k měření výše popsným způsobem. Do dolního držáku vložíme rovinné zrcdlo odrzným povrchem vzhůru. N zrcdlo položíme spojnou čočku. Změříme ohnisko- vou vzdálenost čočky jko u experimentu č. 3. Poté určíme poloměr křivosti spodního povrchu čočky jko u experimentu č. 4. Odstrníme uhlový ppír mezi čočku rovinné zrcdlo nkpeme trochu kpliny (prostor mezi čočkou zrcdlem musí být kp

4 linou vyplněn). Opět nstvíme polohu mtnice tk, by se vzdálenosti rysek n mtnici v obrze shodovly, odečteme vzdálenost mezi mtnicí rovinným zrcdlem. Potom pro ohniskovou vzdálenost K kplinové čočky pltí: K. Pro index lomu kpliny dostneme vzth: ( ) n. Měření indexu lomu destilovné vody (stislv Bník - prktická úloh č. 6 z XXI. ročníku yzikální olympiády ktegorie A. SPN, Prh, 98 - neutorizovný překld ze slovenštiny) Pomůcky: destilovná vod, sttivový mteriál, duté sérické zrcdlo n kterém nejsou uvedeny žádné údje (npř. zrcdlo z velké optické souprvy), miniturní žárovk 3,5 V/0,3 A s objímkou přípojné vodiče, bílé mtné stínítko, délkové pásmové měřidlo m ž m, bterie 4,5 V. Postup:. Určete ohniskovou vzdálenost zrcdl. Žárovku postvte do vzdálenosti od zrcdl pokusně určete vzdálenost b stínítk od zrcdl tk, by obrz vlákn žárovky n stínítku byl co nejostřejší. Z hodnot, b určete ohniskovou vzdálenost. Zrcdlo je přitom pomocí sttivového mteriálu upevněné ve vodorovné poloze.. Do dutiny zrcdl nlijte destilovnou vodu. Podobným způsobem jko v bode. určete ohniskovou vzdálenost optické soustvy tvořené zrcdlem vodným tělesem, které vytváří ploskovypuklou čočku. Vzdálenost žárovky od volného povrchu vody oznčte, vzdálenost stínítk od volného povrchu vody při nejlepším zostření oznčte b. 3. Výpočtem dokžte, že pro index lomu vody pltí vzth: n 4. Všechny měření vykonejte desetkrát s různými hodnotmi, b,, b, výsledky zpište do tbulky. 5. Průměrnou hodnotu n p určeného indexu lomu porovnejte s hodnotou indexu lomu pro destilovnou vodu uvedenou v tbulkách. Řešení: Ohnisková vzdálenost smotného dutého sérického zrcdl je. Ohniskovou vzdálenost kplinové čočky oznčíme. Pro ohniskovou vzdálenost dutého sérického zrcdl pltí vzth: () přičemž je poloměr křivosti zrcdl. Pro ohniskovou vzdálenost kplinové ploskovypuklé čočky pltí vzth: odkud vyplývá: ( n ) n ()

5 Vzhledem n skutečnost, že světelné pprsky procházejí kplinovou čočkou dvkrát, můžeme celou soustvu povžovt z pevnou soustvu složenou z dutého zrcdl dvou ploskovypuklých čoček. Pro výslednou ohniskovou vzdálenost pltí: Při použití vzthů () () dostáváme: n Pro index lomu kpliny pltí: n Ohniskové vzdálenosti, určíme ze vzthů: b b itertur: stislv Bník: Měření indexu lomu destilovné vody - prktická úloh č. 6 z XXI. ročníku yzikální olympiády ktegorie A. SPN, Prh, 98; str. 56

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

VY_52_INOVACE_2NOV69. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9.

VY_52_INOVACE_2NOV69. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9. VY_52_INOVACE_2NOV69 Autor: Mgr. Jakub Novák Datum: 3. 4. 2013 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Optické čočky

Více

pro gymnasia Optika Fysika mikrosvěta

pro gymnasia Optika Fysika mikrosvěta Fysikální měření pro gymnasia V. část Optika Fysika mikrosvěta Gymnasium F. X. Šaldy Honsoft Liberec 2009 ÚVODNÍ POZNÁMKA EDITORA Obsah. Pátá, poslední část publikace Fysikální měření pro gymnasia obsahuje

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1.

Někdy je výhodné nerozlišovat mezi odrazem a lomem tím způsobem, že budeme pokládat odraz za lom s relativním indexem lomu n = 1. nauka o optickém zobrazování pracuje s pojmem světelného paprsku úzký svazek světla, který by vycházel z malého osvětleného otvoru v limitním případě, kdy by se jeho příčný rozměr blížil k nule a stejně

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky. SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

1. Vznik zkratů. Základní pojmy.

1. Vznik zkratů. Základní pojmy. . znik zkrtů. ákldní pojmy. E k elektrizční soustv, zkrtový proud. krt: ptří do ktegorie příčných poruch, je prudká hvrijní změn v E, je nejrozšířenější poruchou v E, při zkrtu vznikjí přechodné jevy v

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Šablona III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

R8.1 Zobrazovací rovnice čočky

R8.1 Zobrazovací rovnice čočky Fyzika pro střední školy II 69 R8 Z O B R A Z E N Í Z R C A D L E M A Č O Č K O U R8.1 Zobrazovací rovnice čočky V kap. 8.2 je ke konstrukci chodu světelných paprsků při zobrazování tenkou čočkou použit

Více

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám

Téma 4 Rovinný rám Základní vlastnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzavřený rám Sttik stvebních konstrukcí I.,.ročník bklářského studi Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Návrh optické soustavy - Obecný postup

Návrh optické soustavy - Obecný postup Inovace a zvýšení atraktivity studia optiky reg. c.: CZ.1.07/2.2.00/07.0289 Přednášky - Metody Návrhu Zobrazovacích Soustav SLO/MNZS Návrh optické soustavy - Obecný postup Miroslav Palatka Tento projekt

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí.

10. Nebezpečné dotykové napětí a zásady volby ochran proti němu, ochrana živých částí. 10. Nebezpečné dotykové npětí zásdy volby ochrn proti němu, ochrn živých částí. Z hledisk ochrny před nebezpečným npětím rozeznáváme živé neživé části elektrického zřízení. Živá část je pod npětím i v

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004.

ČSN EN 1991-1-1 (Eurokód 1): Zatížení konstrukcí Objemové tíhy, vlastní tíha a užitná zatížení pozemních staveb. Praha : ČNI, 2004. STÁLÁ UŽITNÁ ZTÍŽENÍ ČSN EN 1991-1-1 (Eurokód 1): Ztížení konstrukcí Objemové tíhy, vlstní tíh užitná ztížení pozemních stveb. Prh : ČNI, 004. 1. Stálá ztížení stálé (pevné) ztížení stvebních prvků zhrnuje

Více

Lupa a mikroskop příručka pro učitele

Lupa a mikroskop příručka pro učitele Obecné informace Lupa a mikroskop příručka pro učitele Pro vysvětlení chodu světelných paprsků lupou a mikroskopem je nutno navázat na znalosti o zrcadlech a čočkách. Hodinová dotace: 1 vyučovací hodina

Více

Video mikroskopická jednotka VMU

Video mikroskopická jednotka VMU Video mikroskopická jednotka VMU Série 378 VMU je kompaktní, lehká a snadno instalovatelná mikroskopická jednotka pro monitorování CCD kamerou v polovodičových zařízení. Mezi základní rysy optického systému

Více

Optika pro studijní obory

Optika pro studijní obory Variace 1 Optika pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Světlo a jeho šíření Optika

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou.

1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 1 Pracovní úkoly 1. Z přiložených objektivů vyberte dva, použijte je jako lupy a změřte jejich zvětšení a zorná pole přímou metodou. 2. Změřte zvětšení a zorná pole mikroskopu pro všechny možné kombinace

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

6.1 Základní pojmy optiky

6.1 Základní pojmy optiky 6.1 Základní pojmy optiky 6.1 Při jednom kosmickém experimentu bylo na povrchu Měsíce umístěno speciální zrcadlo, které odráželo světlo výkonného laseru vysílané ze Země. Světelný impulz se vrátil po odrazu

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

II. termodynamický zákon a entropie

II. termodynamický zákon a entropie Přednášk 5 II. termodynmický zákon entropie he lw tht entropy lwys increses holds, I think, the supreme position mong the lws of Nture. If someone points out to you tht your pet theory of the universe

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Objektiv Merz 160/1790 refraktoru Hvězdárny v Úpici

Objektiv Merz 160/1790 refraktoru Hvězdárny v Úpici Objektiv Merz 160/1790 refraktoru Hvězdárny v Úpici Zdeněk Rail 1, Bohdan Šrajer 2, Vít Lédl 1, Daniel Jareš 1, Pavel Oupický 1, Radek Melich 1, Zbyněk Melich 1 1 Ústav fyziky plazmatu AV ČR, v.v.i., oddělení

Více

Národní centrum výzkumu polárních oblastí

Národní centrum výzkumu polárních oblastí Národní centrum výzkumu polárních oblstí Dohod o spolupráci při výzkumu polárních oblstí Země Msrykov univerzit Žerotínovo nám. 9, 601 77 Brno, IČ 00216224, zstoupená rektorem Prof. PhDr. Petrem Filou,

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

5.3.4 Využití interference na tenkých vrstvách v praxi

5.3.4 Využití interference na tenkých vrstvách v praxi 5.3.4 Využití intefeence na tenkých vstvách v paxi Předpoklady: 5303 1. kontola vyboušení bousíme čočku, potřebujeme vyzkoušet zda je spávně vyboušená (má spávný tva) máme vyobený velice přesný odlitek

Více

visual identity guidelines Česká verze

visual identity guidelines Česká verze visul identity guidelines Česká verze Osh 01 Filosofie stylu 02 Logo 03 Firemní rvy 04 Firemní písmo 05 Vrice log 06 Komince rev Filosofie stylu Filozofie společnosti Sun Mrketing vychází ze síly Slunce,

Více

Optika Emisní spektra různých zdrojů Mirek Kubera

Optika Emisní spektra různých zdrojů Mirek Kubera Výstup RVP: Klíčová slova: informace pro učitele Optika Mirek Kubera žák využívá poznatky o kvantování energie záření a mikročástic k řešení fyzikálních problémů optický hranol, spektrum, emisní spektrum,

Více

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR

MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinaci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR MINISTERSTVO PRO MÍSTNÍ ROZVOJ Národní orgán pro koordinci POKYN PRO TVORBU A OBSAH ZPRÁVY O REALIZACI OPERAČNÍHO PROGRAMU PRO MONITOROVACÍ VÝBOR ŘÍJEN 2014 MINISTERSTVO PRO MÍSTNÍ ROZVOJ Odbor řízení

Více

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU

NAVRHOVÁNÍ BETONOVÝCH MOSTŮ PODLE EUROKÓDU 2 ČÁST 2 MOSTY Z PŘEDPJATÉHO BETONU POZVÁNKA A ZÁVAZNÁ PŘIHLÁŠKA DOPORUČENO PRO AUTORIZOVANÉ OSOBY SLEVY: AO ČKAIT 10 %, ČBS 20 %, AO+ČBS 30 % PŘI ÚČASTI NA 5. NEBO 6. BĚHU ŠKOLENÍ EC2-1 DALŠÍ SLEVA 5 % Ktedrou betonových zděných konstrukcí

Více

Dveřní a podlahové zavírače

Dveřní a podlahové zavírače Dveřní podlhové zvírče Dveřní zvírče, s.r.o., člen celosvětového zámkřského koncernu ASSA ABLOY AB, zujímá vedoucí postvení n českém trhu změřeném n bezpečnostní systémy, zámky ochrnu mjetku. Výrobky společnosti,

Více

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM

ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM ZATÍŽENÍ KRUHOVÝCH ŠACHET PROSTOROVÝM ZEMNÍM TLAKEM Ing. Michl Sedláček, Ph.D. ko-k s.r.o., Thákurov 7, Prh 6 Sptil erth pressure on circulr shft The pper present method for estimtion sptil erth pressure

Více

P ř íklady použití. Zásobník pro jednodenní zásobu, LED-kontrolky funkcí s kalotou... Textilní silo, šnekové dávkovače...

P ř íklady použití. Zásobník pro jednodenní zásobu, LED-kontrolky funkcí s kalotou... Textilní silo, šnekové dávkovače... P ř íkldy použití Obsh Zásobník plněný pneumtickou doprvou... Zásobník pro jednodenní zásobu, LED-kontrolky funkcí s klotou... Textilní silo, šnekové dávkovče... Zbudování do zásobníku, vícenásobná limitní

Více

SADA PERFORMANCÍ Pokusy z geometrické optiky

SADA PERFORMANCÍ Pokusy z geometrické optiky SADA PERFORMANCÍ Pokusy z geometrické optiky Science Academy - kritický způsob myšlení a praktické aplikace přírodovědných a technických poznatků v reálném životě reg.č. CZ.1.07/2.3.00/45.0040 Hvězdárna

Více

Z600 Series Color Jetprinter

Z600 Series Color Jetprinter Z600 Series Color Jetprinter Uživtelská příručk pro Windows Řešení prolémů s instlcí Kontrolní seznm pro řešení ěžných prolémů při instlci. Zákldní informce o tiskárně Informce o částech tiskárny softwru

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Podmínky externí spolupráce

Podmínky externí spolupráce Podmínky externí spolupráce mezi tlumočnicko překldtelskou genturou Grbmüller Jzykový servis předstvující sdružení dvou fyzických osob podniktelů: Mrek Grbmüller, IČO: 14901820, DIČ: CZ6512231154, místo

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru:

KATEGORIE D. Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: KATEGORIE D Na první list řešení každé úlohy napište záhlaví podle následujícího vzoru: Jméno a příjmení: Kategorie: D Třída: Školní rok: Škola: I. kolo: Vyučující fyziky: Posudek: Okres: Posuzovali: Úloha

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2F3 Vlnové

Více

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE

MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE MĚSTO KOPŘIVNICE MĚSTSKÝ ÚŘAD KOPŘIVNICE Zstupitelstvo měst Kopřivnice PŘÍLOHA č. 1 k č. j.: 41/2006/OPE&33934/2010/Šo ZPRACOVATEL: Kteřin Šodková ČÍSLA USNESENÍ: 575-597 Usnesení 26. zsedání Zstupitelstv

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ

MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ MODUL 4. OPTIKA 4.1. ÚVODNÍ POJMY, SVĚTLO, ŠÍŘENÍ SVĚTLA, INDEX LOMU SHRNUTÍ Světlo - ze zdroje světla se světlo šíří jako elektromagnetické vlnění příčné, které má ve vakuu vlnovou délku c λ = υ, a to

Více

ROZVAHA Burza cenných papírů Praha a.s. v plném rozsahu 31.3.2015 (v celých tisících Kč) Rybná 14 Praha 1 47115629 110 05

ROZVAHA Burza cenných papírů Praha a.s. v plném rozsahu 31.3.2015 (v celých tisících Kč) Rybná 14 Praha 1 47115629 110 05 Minimální závzný výčet informcí podle vyhlášky č. 500/00 Sb ROZVAHA v plném rozshu ke dni... 3.3.05 (v celých tisících Kč) IČ 47569 Obchodní firm nebo jiný název účetní jednotky Burz cenných ppírů Prh.s.

Více

Seznam - specifikace doplňkového materiálu

Seznam - specifikace doplňkového materiálu K LEMPÍŘSKÉ PRVKY K Klempířské prvky stndrd dle tbulek specifikce KA Klempířské prvky typické - nutno nkreslit okótovt PREFABRIKOVANÉ ŽLABOVÉ PRVKY L01 Prefbrikovné zteplené mezistřešní žlby - PUR L02

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Konvence Integrovaného dopravního systému Libereckého kraje (IDOL) Účastníci Konvence:

Konvence Integrovaného dopravního systému Libereckého kraje (IDOL) Účastníci Konvence: Konvence Integrovného doprvního systému Libereckého krje (IDOL) Účstníci Konvence: KORID LK, spol. s r.o. Liberecký krj Město Česká Líp Město Jblonec nd Nisou Sttutární město Liberec Město Turnov České

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná fyzika Top-Hit Atomy a molekuly Atom Brownův pohyb Difúze Elektron Elementární náboj Jádro atomu Kladný iont Model atomu Molekula Neutron Nukleonové číslo Pevná látka Plyn Proton Protonové číslo

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012

Ulice Agentura sociální práce, o. s. Účetní závěrka za rok 2012 Ulice Agentur sociální práce, o. s. Účetní závěrk z rok 2012 Osh: I. OBECNÉ INFORMACE... 2 1. POPIS ÚČETNÍ JEDNOTKY... 2 2. ZAMĚSTNANCI A OSOBNÍ NÁKLADY... 2 3. POSKYTNUTÉ PŮJČKY, ZÁRUKY ČI JINÁ PLNĚNÍ...

Více

Rozvh podle Přílohy č. vyhlášky č. 504/00 S. Účetní jednotk doručí: x příslušnému fin. orgánu Rozvh v plném rozshu k..0 ( v celých tisících Kč ) Název, sídlo právní form účetní jednotky IČO 8589 Společenství

Více

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236

01-09.7 10.14.CZ Zpětné ventily a zpětné uzavíratelné ventily ZV 226 a ZV 236 01-09.7 10.14.CZ Zpětné ventily zpětné uzvírtelné ventily ZV 226 ZV 26-1- ZV 226 ZV 26 Zpětné ventily zpětné uzvírtelné ventily 15 ž 200, PN 16, 25 Popis Zpětné ventily ZV 2x6 jsou smočinné uzávěry s vynikjícími

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin

Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin Vliv realizace, vliv přesnosti centrace a určení výšky přístroje a cíle na přesnost určovaných veličin doc. Ing. Martin Štroner, Ph.D. Fakulta stavební ČVUT v Praze 1 Úvod Při přesných inženýrsko geodetických

Více

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli

smlouvu o složení finanční částky do advokátní úschovy Níže uvedeného dne, měsíce a roku uzavřeli Níže uvedeného dne, měsíce roku uzvřeli 1. Zdeněk Berntík, nr. 14.5.1954 Jrmil Berntíková, nr. 30.12.1956 ob bytem Stroveská 270/87, Ostrv-Proskovice ob jko Smluvní strn 1 2. Tělovýchovná jednot Petřvld

Více

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui

Stavební firma. Díky nám si postavíte svůj svět. 1.D Klára Koldovská Šárka Baronová Lucie Pancová My Anh Bui Stvební firm Díky nám si postvíte svůj svět. 1.D Klár Koldovská Šárk Bronová Lucie Pncová My Anh Bui Obsh 1) Úvod 2) Přesvědčení bnky 3) Obchodní jméno, chrkteristik zákzník, propgce 4) Seznm mjetku 5)

Více

Krafková, Kotlán, Hiessová, Nováková, Nevímová

Krafková, Kotlán, Hiessová, Nováková, Nevímová Krafková, Kotlán, Hiessová, Nováková, Nevímová Optická čočka je optická soustava dvou centrovaných ploch, nejčastěji kulových, popř. jedné kulové a jedné rovinné plochy. Čočka je tvořena z průhledného

Více

PREZENTACE DAT: JEDNODUCHÉ GRAFY

PREZENTACE DAT: JEDNODUCHÉ GRAFY PREZENTACE DAT: JEDNODUCHÉ GRAFY V tabulce 8.1 uvádíme přehled některých ukazatelů fiktivní firmy Alfa Blatná. Tabulka 8.1 je prostá, je v ní navíc časové srovnání hodnot v roce 2011 a v roce 2012. a)

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více