Laboratorní práce č. 4: Úlohy z paprskové optiky

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "Laboratorní práce č. 4: Úlohy z paprskové optiky"

Transkript

1 Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice

2

3 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata A. Ze dou prostředí je prí opticky řidší; pak A) je ěm rychlost šířeí sětla ětší ež e druhém prostředí B) je ěm rychlost šířeí sětla meší ež druhém prostředí C) je průhledější ež druhé prostředí D) ěm platí záko lomu přesěji ež e druhém prostředí. Sětlo dopadá a rozhraí dou prostředí; rychlost sětla prím prostředí je, druhém ( ). Mezí úhel α m můžeme určit ze ztahu: A) si α m = C) tg α m = B) si α m = D) tg α m = 3. Pomocí spojé čočky o ohiskoé zdáleosti 5 cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zmešeý? A) 60 cm B) 50 cm C) 30 cm D) 0 cm 4. Zobrazoací roice čočky má tar: A) C) r a a B) a a f D) r a a a a f

4 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata B. Rychlost sětla e skle je A) stejá jako e akuu B) meší ež e akuu C) ezáislá a frekeci sětla D) ezáislá a barě sětla. Sětlo dopadá a rozhraí dou prostředí; idex lomu sětla prího prostředí je, druhého ( ). Mezí úhel α m můžeme určit ze ztahu: A) si α m = C) tg α m = B) si α m = D) tg α m = 3. Pomocí spojé čočky o ohiskoé zdáleosti 5 cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zětšeý? A) 60 cm B) 50 cm C) 30 cm D) 0 cm 4. Pro ohiskoou zdáleost čočky lze ze zobrazoací roice ododit ztah: A) f = C) f = a. a a a a. a a a B) f = D) f = a a a. a a a a. a

5 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata C. Rychlost sětla e odě je A) meší ež e akuu B) stejá jako e akuu C) ezáislá a barě sětla D) ezáislá a frekeci sětla. Sětlo prochází rozhraím zduchu a skla. dex lomu skla je,5. Jaký je mezí úhel a rozhraí skla a zduchu? A) 5 B) 30 C) 4 D) Pomocí spojé čočky o ohiskoé zdáleosti cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zětšeý? A) 0 cm B) 5 cm C) 4 cm D) 30 cm 4. Ohiskoá zdáleost čočky o optické mohutosti 5 D je: A) 5 cm B) 5 cm C) 0 cm D) 5 cm

6 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata D. Ze dou prostředí je pré opticky hustší; pak A) je ěm rychlost šířeí sětla ětší ež e druhém prostředí B) je ěm rychlost šířeí sětla meší ež e druhém prostředí C) je průhledější ež druhé prostředí D) ěm platí záko lomu přesěji ež e druhém prostředí. Sětlo prochází rozhraím zduchu a ody. Rychlost sětla e odě je,5.0 8 m.s -, rychlost sětla e zduchu přibližě m.s -. Jaký je mezí úhel a rozhraí ody a zduchu? A) 3 B) 48,6 C) 70,5 D) 8,8 3. Pomocí spojé čočky o ohiskoé zdáleosti cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zmešeý? A) 0 cm B) 5 cm C) 4 cm D) 30 cm 4. Optická mohutost čočky, která má ohiskoou zdáleost 50 je: A) 5 D B) 0 D C) 0 D D) 50 D

7 Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia G Gymázium Hraice Laboratorí práce č. 4: Úlohy z paprskoé optiky Pomůcky: půlálec ze skla, optická deska s úhloměrou stupicí, zdroj sětla, cloa se štěrbiou, optická laice s příslušestím, cloa s yřízutým písmeem L (ebo síčka), stíítko, spojá čočka, zdroj střídaého apětí. Teorie: Paprskoá (geometrická) optika je založea a přímočarém šířeí sětla (šířící se sětlo pak lze zázorit pomocí přímek sětelých paprsků) a a pricipu ezáislosti chodu sětelých paprsků (paprsky od zdroje ycházejí šemi směry, mohou se azájem protíat, ale přitom se eoliňují a prostředím procházejí ezáisle jede a druhém). Paprskoá optika zaedbáá loou poahu sětla. Základími zákoy paprskoé optiky jsou záko odrazu a záko lomu sětla.. úloha: Měřeí idexu lomu skla dex lomu je fyzikálí eličia, která charakterizuje optické prostředí. Nejjedodušší metody pro měřeí idexu lomu ycházejí ze zákoa lomu. Měřeí idexu lomu skla a rozhraí se zduchem proeďte děma metodami: měřeím úhlu dopadu a úhlu lomu a měřeím mezího úhlu.. metoda: Měřeí úhlu dopadu a úhlu lomu Prochází-li sětlo rozhraím zduch sklo (iz obr.), lze použít záko lomu e taru: k si si () α zduch ( = ) sklo ( =?) β

8 Proedeí: Na optickou desku s úhloměrou stupicí umístěte půlálec ze skla tak, aby střed křiosti jeho ypuklé plochy splýal se středem desky a roá stěa půlálce splýala s jedím průměrem yzačeým a desce. Druhý průměr toří kolmici dopadu. Zdroj sětla opatřete štěrbiou a umístěte jej tak, aby a desce zikl úzký sětelý paprsek směřující do středu půlálce (iz obr. č. příloze). Pomocí úhloměré stupice astate určitý úhel dopadu α a změřte odpoídající úhel lomu β. Otáčeím optické desky s půlálcem (paprsek přitom musí stále směřoat do středu půlálce) astaujte postupě další čtyři hodoty úhlu dopadu α a určete k im odpoídající úhel lomu β. Naměřeé hodoty zapište do tabulky: Číslo měřeí α β si α si β Pomocí kalkulačky určete hodoty si α a si β a pro každé měřeí ypočítejte ze zorce () idex lomu skla. Z aměřeých hodot ypočítejte průměrou hodotu idexu lomu skla.. metoda: Měřeí mezího úhlu Přechází-li sětlo z prostředí opticky hustšího do prostředí opticky řidšího, zětšuje se s rostoucím úhlem dopadu i úhel lomu a při určitém, tz. mezím úhlu dopadu α m, je úhel lomu β = 90. Při ětších úhlech dopadu (α α m ) se sětlo je odráží astáá úplý odraz. Jestliže sětlo prochází ze skla do zduchu, lze pro teto případ zapsat záko lomu e taru: si α m =, kde je idex lomu skla. Odtud lze idex lomu skla určit pomocí upraeého ztahu: = si ()

9 Proedeí: Optickou desku otočte tak, aby sětelý paprsek dopadal a ypuklou stěu půlálce a procházel jejím středem (iz obr. č. příloze). Zola, po malých hodotách, zětšujte úhel dopadu až a hodotu, kdy práě astae úplý odraz (úhel lomu β = 90 ). Odpoídající úhel dopadu je mezí úhel α m. Měřeí opakujte pětkrát a aměřeé hodoty zapisujte do tabulky: Číslo měřeí α m si α m Pro každou hodotu α m určete siα m a pomocí ztahu () určete idex lomu. Potom ypočítejte průměrou hodotu idexu lomu skla a poroejte ji s hodotou určeou. metodou.. úloha: Měřeí ohiskoé zdáleosti čočky Ohiskoou zdáleost f spojé čočky můžeme určit úpraou zobrazoací roice a tar: f = a a f a. a a a (3), kde a je zdáleost předmětu a a je zdáleost obrazu od středu čočky. Vzhledem k určité tloušťce čočky je přesé určeí hodot a, a obtížé. Proto se přímé měřeí zdáleostí obchází použitím růzých metod. Například Abbeoa metoda je založea a určoáí příčého zětšeí. Besseloa metoda, kterou použijete této úloze, je založea a tom, že při kostatí zdáleosti l předmětu (cloy s písmeem L ebo síčky) a stíítka zike a stíítku ostrý obraz předmětu při dou polohách čočky ( poloze zětšeý, poloze zmešeý). Situaci schematicky zázorňuje obrázek: Vyjádříme-li zdáleosti a a a upraeé zobrazoací roici (3) pomocí zdáleosti l předmětu a stíítka a zdáleosti d poloh, čočky, obdržíme po dosazeí a úpraě ztah pro ohiskoou zdáleost čočky e taru: f l d (4) 4l

10 Stíítko X Y x d y y o l Proedeí: Na optické laici sestate zobrazoací soustau tořeou zdrojem sětla s cloou s písmeem L (ebo hořící síčkou), spojkou a stíítkem (iz obr. č. 3 příloze). Polohu čočky uprate tak, aby její optická osa byla rooběžá s optickou laicí e ýšce, íž se achází předmět. Zkusmo yhledejte hodou zdáleost l předmětu od stíítka, při íž ajdete polohy a čočky. Změřte zdáleost l předmětu od stíítka a zdáleosti x a x čočky od předmětu (cloy s písmeem L). Další měřeí opakujte pro změěou zdáleost l předmětu a stíítka. Naměřeé hodoty zapisujte do tabulky: Číslo měřeí l x x d f Vzdáleost d poloh čočky případech a pak určete ze ztahu d = x x. Dosazeím do ztahu (4) ypočítejte jedotliých případech ohiskoou zdáleost f. Dále ypočítejte průměrou hodotu ohiskoé zdáleosti f, yjádřete ji cm a poroejte ji s hodotou uedeou a objímce čočky. Záěr:

11 Obrázek č. Obrázek č. Obrázek č. 3

12 G y m á z i u m H r a i c e Přírodí ědy moderě a iteraktiě G Gymázium Hraice Protokol č. 4 Pracoal: Spolupracoal: Třída: Hodoceí: Pracoáo de: Vlhkost zduchu: Tlak zduchu: Teplota zduchu: Náze úlohy: Úlohy z paprskoé optiky Pomůcky: půlálec ze skla, optická deska s úhloměrou stupicí, zdroj sětla, cloa se štěrbiou, optická laice s příslušestím, cloa s yřízutým písmeem L (ebo síčka), stíítko, spojá čočka, zdroj střídaého apětí. Vypracoáí:. úloha: Měřeí idexu lomu skla dex lomu je fyzikálí eličia, která charakterizuje optické prostředí. Nejjedodušší metody pro měřeí idexu lomu ycházejí ze zákoa lomu. Měřeí idexu lomu skla a rozhraí se zduchem jsme proáděli děma metodami: měřeím úhlu dopadu a úhlu lomu a měřeím mezího úhlu.. metoda: Měřeí úhlu dopadu a úhlu lomu Prochází-li sětlo rozhraím zduch - sklo, lze použít záko lomu e taru: si si () α k zduch ( = ) sklo ( =?) β

13 Na optickou desku s úhloměrou stupicí jsme umístili půlálec ze skla tak, aby střed křiosti jeho ypuklé plochy splýal se středem desky a roá stěa půlálce splýala s jedím průměrem yzačeým a desce. Druhý průměr toří kolmici dopadu. Zdroj sětla jsme opatřili štěrbiou a umístili jej tak, aby a desce zikl úzký sětelý paprsek směřující do středu půlálce. Pomocí úhloměré stupice jsme astaili úhel dopadu α a změřili odpoídající úhel lomu β. Otáčeím optické desky s půlálcem (paprsek přitom stále směřoal do středu půlálce) jsme astaili postupě další čtyři hodoty úhlu dopadu α a určili k im odpoídající úhel lomu β. Naměřeé hodoty jsme zapsali do tabulky: Číslo měřeí α β si α si β Pomocí kalkulačky jsme určili hodoty si α a si β a pro každé měřeí ypočítali ze zorce () idex lomu skla. Z aměřeých hodot jsme ypočítali průměrou hodotu idexu lomu skla: =. metoda: Měřeí mezího úhlu Přechází-li sětlo z prostředí opticky hustšího do prostředí opticky řidšího, zětšuje se s rostoucím úhlem dopadu i úhel lomu a při určitém, tz. mezím úhlu dopadu α m, je úhel lomu β = 90. Jestliže sětlo prochází ze skla do zduchu, lze pro teto případ zapsat záko lomu e taru: si α m =, kde je idex lomu skla. Odtud lze idex lomu skla určit pomocí upraeého ztahu: = si ()

14 Optickou desku jsme otočili tak, aby sětelý paprsek dopadal a ypuklou stěu půlálce a procházel jejím středem. Zola, po malých hodotách, jsme zětšoali úhel dopadu až a hodotu, kdy práě astal úplý odraz (úhel lomu β = 90 ). Odpoídající úhel dopadu byl mezí úhel α m. Měřeí jsme opakoali pětkrát a aměřeé hodoty zapsali do tabulky: Číslo měřeí α m si α m Pro každou hodotu α m jsme určili siα m a pomocí ztahu () určili idex lomu. Průměrá hodota idexu lomu skla je: = Poroáí s hodotou určeou. metodou:. úloha: Měřeí ohiskoé zdáleosti čočky Ohiskoou zdáleost f spojé čočky můžeme určit úpraou zobrazoací roice a. a a tar: f = (3), a a f a a kde a je zdáleost předmětu a a je zdáleost obrazu od středu čočky. Vzhledem k určité tloušťce čočky je přesé určeí hodot a, a obtížé. Proto se přímé měřeí zdáleostí obchází použitím růzých metod. Besseloa metoda, kterou jsme použili této úloze, je založea a tom, že při kostatí zdáleosti předmětu (cloy s písmeem L ebo síčky) a stíítka zike a stíítku ostrý obraz předmětu při dou polohách čočky. Situaci schematicky zázorňuje obrázek: Stíítko X Y x d y y o l

15 Vyjádříme-li zdáleosti a a a upraeé zobrazoací roici (3) pomocí zdáleosti l předmětu a stíítka a zdáleosti d poloh, čočky, obdržíme po dosazeí a úpraě ztah pro ohiskoou zdáleost čočky e taru: l d f (4) 4l Proedeí: Na optické laici jsme sestaili zobrazoací soustau tořeou zdrojem sětla s cloou s písmeem L (ebo hořící síčkou), spojkou a stíítkem. Zkusmo jsme yhledali hodou zdáleost l předmětu od stíítka, při íž jsme ašli dě polohy a čočky (a stíítku zikl ostrý obraz předmětu, prím případě zětšeý, e druhém zmešeý). Změřili jsme zdáleost l předmětu (cloy s písmeem L) od stíítka a zdáleosti x a x čočky od předmětu. Další měřeí jsme opakoali pro změěou zdáleost l předmětu a stíítka. Naměřeé hodoty jsme zapsali do tabulky: Číslo měřeí l x x d f Vzdáleost d poloh čočky případech a jsme pak určili ze ztahu d = x x. Dosazeím do ztahu (4) jsme ypočítali jedotliých případech ohiskoou zdáleost f. f = Průměrá hodota ohiskoé zdáleosti čočky: Poroáí s hodotou uedeou a objímce čočky: Záěr: Zdroje Lepil, Oldřich. Fyzika pro gymázia.optika. Praha: Prometheus, 00. SBN Obrázky: lastí torba

PaedDr. Jozef Beňuška ODRAZ A LOM SVĚTLA aneb Zákony při průchodu světla rozhraním

PaedDr. Jozef Beňuška ODRAZ A LOM SVĚTLA aneb Zákony při průchodu světla rozhraním PaedDr. Jozef Beňuška jbeuska@extra.sk ODRAZ A LOM SVĚTLA aeb Zákoy při průchodu sětla rozhraím Vlěí, jež dopadá a rozhraí dou prostředí se může: - odrazit od rozhraí, - projít do druhého prostředí. Odraz

Více

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké

Více

Měření indexu lomu pevných látek a kapalin refraktometrem

Měření indexu lomu pevných látek a kapalin refraktometrem F Měřeí idexu lomu pevých látek a kapali refraktometrem Úkoly : 1. Proveďte kalibraci refraktometru 2. Změřte idex lomu kapali 1-3 3. Změřte idex lomu ezámých vzorků optických skel Postup : 1. Pricip měřeí

Více

sin n sin n 1 n 2 Obr. 1: K zákonu lomu

sin n sin n 1 n 2 Obr. 1: K zákonu lomu MĚŘENÍ INDEXU LOMU REFRAKTOMETREM Jedou z charakteristických optických veliči daé látky je absolutím idexu lomu. Je to podíl rychlosti světla ve vakuu c a v daém prostředí v: c (1) v Průchod světla rozhraím

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 3: Měření součinitele smykového tření Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

11. STUDIUM JEVŮ GEOMETRICKÉ A VLNOVÉ OPTIKY POMOCÍ CENTIMETROVÝCH VLN

11. STUDIUM JEVŮ GEOMETRICKÉ A VLNOVÉ OPTIKY POMOCÍ CENTIMETROVÝCH VLN 8 11. STUDIUM JEVŮ GEOMETRICKÉ A VLNOVÉ OPTIKY POMOCÍ CENTIMETROVÝCH VLN Měřicí potřeby: 1) Guova dioda s vysílací trychtýřovou atéou ) apájecí zdroj pro Guovu diodu 3) přijímací atéa 4) polovodičová dioda

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu

Laboratorní práce č. 2: Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a. ročník čtyřletého studia Laboratorní práce č. : Měření velikosti zrychlení přímočarého pohybu Přírodní vědy moderně a interaktivně

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program)

4. Tvorba náhradního schématu Před provedením výpočtu sítě nutno ji nadefinovat (i v případě, že využíváme počítačový program) 4. Torba áhradího schématu Před proedeím ýpočtu sítě uto ji adefioat (i případě, že yužíáme počítačoý program) Pro optimálí olbu řešeí jsou důležité zjedodušující předpoklady chceme sestait áhradí schéma

Více

Inovace předmětu K-Aplikovaná fyzika (KFYZ) byla financována z projektu OPVK Inovace studijních programů zahradnických oborů, reg. č.

Inovace předmětu K-Aplikovaná fyzika (KFYZ) byla financována z projektu OPVK Inovace studijních programů zahradnických oborů, reg. č. Iovace předmětu K-Aplikovaá fyzika (KFYZ) byla fiacováa z projektu OPVK Iovace studijích programů zahradických oborů, reg. č.: CZ..07/..00/8.00 Připravil: Roma Pavlačka K-Aplikovaá fyzika Optika a zářeí

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického odporu

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického odporu rčeo studetům středího vzděláváí s maturití zkouškou, druhý ročík, měřeí elektrického odporu Pracoví list - příklad vytvořil: Ig. Lubomír Koříek Období vytvořeí VM: říje 2013 Klíčová slova: elektrický

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10 Ústav yzikálího ižeýrství Fakulta strojího ižeýrství VUT v Brě GEOMETRICKÁ OPTIKA Předáška 10 1 Obsah Základy geometrické (paprskové) optiky - Zobrazeí cetrovaou soustavou dvou kulových ploch. Rovice čočky.

Více

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí: Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B) Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

stručná osnova jarní semestr podzimní semestr

stručná osnova jarní semestr podzimní semestr Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Lom světla

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/21.2759 Název DUM: Opakování - optika

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Laboratorní práce č. 3: Měření elektrického proudu a napětí

Laboratorní práce č. 3: Měření elektrického proudu a napětí Přírodní vědy moderně a interaktivně FYZIK 1. ročník šestiletého studia Laboratorní práce č. 3: Měření elektrického proudu a napětí Přírodní vědy moderně a interaktivně FYZIK 1. ročník šestiletého studia

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

VY_52_INOVACE_2NOV67. Autor: Mgr. Jakub Novák. Datum: Ročník: 9.

VY_52_INOVACE_2NOV67. Autor: Mgr. Jakub Novák. Datum: Ročník: 9. VY_52_INOVACE_2NOV67 Autor: Mgr. Jakub Novák Datum: 3. 4. 2013 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Lom světla

Více

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku.

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku. Základí vlastosti světla - auka o světle; Světlo je elmg. vlěí, které vyvolává vjem v ašem oku. Přehled elmg. vlěí: - dlouhé vly - středí rozhlasové - krátké - velmi krátké - ifračerveé zářeí - viditelé

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ FYZIKÁLNÍ ZÁKLADY TECHNIKY áody do cičeí prof. Ig. Bořioj Groda, DrSc. Ig. Tomáš Vítěz, Ph.D. 007 I. Staoeí polytropického expoetu... 3 0. Zadáí cičeí...

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at PROMOTE MSc POPIS TÉMATU FYZIKA 4 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Software Dynamická geometrie v optice Optika Andreas Ulovec Andreas.Ulovec@univie.ac.at Užití

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT Základy práce s tabulkou Výukový modul III. Iovace a zkvalitěí výuky prostředictvím ICT Téma III..3, pracoví list 3 Techická měřeí v MS Ecel Průměry a četosti, odchylky změřeých hodot. Ig. Jiří Chobot

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití

Učební texty z fyziky 2. A OPTIKA. Obor zabývající se poznatky o a zákonitostmi světelných jevů. V posledních letech rozvoj optiky vynález a využití OPTIKA Obor zabývající se poznatky o a zákonitostmi světelných jevů Světlo je vlnění V posledních letech rozvoj optiky vynález a využití Podstata světla Světlo je elektromagnetické vlnění Zdrojem světla

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

stručná osnova jarní semestr podzimní semestr

stručná osnova jarní semestr podzimní semestr Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich

Více

Mikrovlny. 1 Úvod. 2 Použité vybavení

Mikrovlny. 1 Úvod. 2 Použité vybavení Mikrovlny * P. Spáčil, ** J. Pavelka, *** F. Jareš, **** V. Šopík Gymnázium Vídeňská Brno; ** Gymnázium tř. Kpt. Jaroše; *** Arcibiskupské gymnázium; **** Gymnázium Jeseník; pavelspacil@tiscali.cz; **

Více

Laboratorní práce č. 2: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 2: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 2: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Polarizace. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 9: Polarizace. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měřeí: 9. 3. 00 Úloha 9: Polarizace Jméo: Jiří Slabý Pracoví skupia: 4 Ročík a kroužek:. ročík,. kroužek, podělí 3:30 Spolupracovala: Eliška Greplová Hodoceí:

Více

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

ENERGIE MEZI ZÁŘENZ VZORKEM

ENERGIE MEZI ZÁŘENZ VZORKEM METODY BEZ VÝMĚNY V ENERGIE MEZI ZÁŘENZ ENÍM M A VZORKEM SPEKTROMETRIE VYUŽÍVAJÍCÍ ROZPTYL Meoda založeá a měřeí idexu lomu láek (). Prochází-li paprsek moochromaického zářeí rozhraím raspareích prosředí,

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr

IAM SMART F7.notebook. March 01, : : : :23 FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY. tuna metr FYZIKÁLNÍ VELIČINY A JEJICH JEDNOTKY Sada interaktivních materiálů pro 7. ročník Fyzika CZ.1.07/1.1.16/02.0079 plocha čas délka hmotnost objem teplota Interaktivní materiály slouží k procvičování, upevňování

Více

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou

LABORATORNÍ CVIČENÍ Z FYZIKY. Měření objemu tuhých těles přímou metodou ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméo: Petr Česák Datum měřeí:.3.000 Studjí rok: 999-000, Ročík: Datum odevzdáí: 6.3.000 Studjí skupa: 5 Laboratorí skupa:

Více

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Laboratorní práce č. 2: Ověření činnosti transformátoru

Laboratorní práce č. 2: Ověření činnosti transformátoru Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. : Ověření činnosti transformátoru G Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

Metoda datových obalů DEA

Metoda datových obalů DEA Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího

Více

SVĚTLO / ZÁKON. EU OPVK III/2/1/3/17 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace

SVĚTLO / ZÁKON. EU OPVK III/2/1/3/17 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace SVĚTLO / ZÁKON LOMU 1 ZÁKON LOMU Lom nastává na rovinném rozhraní dvou optických prostředí. Lom paprsku ke kolmici nastane, jestliže se paprsek šíří z opticky řidšího do opticky hustšího prostředí. Úhel

Více

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné

Chyby měření: 1. hrubé chyby - nepozornost, omyl, únava pozorovatele... - významně převyšuje rozptyl náhodné chyby 2. systematické chyby - chybné CHYBY MĚŘENÍ Opakovaé měřeí téže fyzkáí večy evede vždy k přesě stejým výsedkům. Této skutečost bychom se evyhu, kdybychom měřeí provádě s ejvětší důkadostí a precsostí aopak, čím ctvější a přesější jsou

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí . Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

6. Geometrická optika

6. Geometrická optika 6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil

Více

Náhodný výběr 1. Náhodný výběr

Náhodný výběr 1. Náhodný výběr Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti

Více

1. Úkol. 2. Teorie. Fyzikální základy techniky

1. Úkol. 2. Teorie. Fyzikální základy techniky Fyzikálí základy tehiky Protokol č.: Náze: Staoeí olytroikého exoetu a idikátoroého diagramu komresoru yraoáo de: 5..007 yraoali: Roma Stae, Odřej Soboda, Sabia Zoroá, Marti Smažil. Úkol Naším úkolem bylo

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu ýuky obecné fyziky MFF UK Praktikum I Mechanika a molekuloá fyzika Úloha č. XXI Náze: Měření tíhoého zrychlení Pracoal: Matyáš Řehák stud.sk.: 16 dne: 9.5.008

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pržost a plasticita II CD3 Lděk Brdčko VUT Brě Faklta stabí Ústa stabí mchaik tl: 541147368 mail: brdcko.l @ fc.tbr.c http:www.fc.tbr.cstbrdcko.lhtmldistc.htm Obsah přdmět 1. přdáška spolhliost kostrkcí

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

VY_52_INOVACE_2NOV66. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9.

VY_52_INOVACE_2NOV66. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9. VY_52_INOVACE_2NOV66 Autor: Mgr. Jakub Novák Datum: 3. 4. 2013 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Zákon odrazu

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

P1: Úvod do experimentálních metod

P1: Úvod do experimentálních metod P1: Úvod do epermetálích metod Chyby a ejstoty měřeí - Každé měřeí je zatížeo určtou epřesostí, která je způsobea ejrůzějším egatvím vlvy, vyskytujícím se v procesu měřeí. - Výsledek měřeí se díky tomu

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

VY_52_INOVACE_J 05 01

VY_52_INOVACE_J 05 01 Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí

Více

Odchylka přímek

Odchylka přímek 734 Odchylka římek Předoklady: 708, 7306 Pedagogická ozámka: Pokd chcete hladký růěh začátk hodiy, je leší dořed ozorit žáky, že do otřeoat zorec ro úhel do ektorů Př : Urči úhel, který sírají ektory (

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla:

Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Optika Jednou z nejstarších partií fyziky je nauka o světle tj. optika. Existovaly dva názory na fyzikální podstatu světla: Světlo je proud částic (I. Newton, 1704). Ale tento částicový model nebyl schopen

Více