Laboratorní práce č. 4: Úlohy z paprskové optiky

Rozměr: px
Začít zobrazení ze stránky:

Download "Laboratorní práce č. 4: Úlohy z paprskové optiky"

Transkript

1 Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice

2

3 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata A. Ze dou prostředí je prí opticky řidší; pak A) je ěm rychlost šířeí sětla ětší ež e druhém prostředí B) je ěm rychlost šířeí sětla meší ež druhém prostředí C) je průhledější ež druhé prostředí D) ěm platí záko lomu přesěji ež e druhém prostředí. Sětlo dopadá a rozhraí dou prostředí; rychlost sětla prím prostředí je, druhém ( ). Mezí úhel α m můžeme určit ze ztahu: A) si α m = C) tg α m = B) si α m = D) tg α m = 3. Pomocí spojé čočky o ohiskoé zdáleosti 5 cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zmešeý? A) 60 cm B) 50 cm C) 30 cm D) 0 cm 4. Zobrazoací roice čočky má tar: A) C) r a a B) a a f D) r a a a a f

4 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata B. Rychlost sětla e skle je A) stejá jako e akuu B) meší ež e akuu C) ezáislá a frekeci sětla D) ezáislá a barě sětla. Sětlo dopadá a rozhraí dou prostředí; idex lomu sětla prího prostředí je, druhého ( ). Mezí úhel α m můžeme určit ze ztahu: A) si α m = C) tg α m = B) si α m = D) tg α m = 3. Pomocí spojé čočky o ohiskoé zdáleosti 5 cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zětšeý? A) 60 cm B) 50 cm C) 30 cm D) 0 cm 4. Pro ohiskoou zdáleost čočky lze ze zobrazoací roice ododit ztah: A) f = C) f = a. a a a a. a a a B) f = D) f = a a a. a a a a. a

5 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata C. Rychlost sětla e odě je A) meší ež e akuu B) stejá jako e akuu C) ezáislá a barě sětla D) ezáislá a frekeci sětla. Sětlo prochází rozhraím zduchu a skla. dex lomu skla je,5. Jaký je mezí úhel a rozhraí skla a zduchu? A) 5 B) 30 C) 4 D) Pomocí spojé čočky o ohiskoé zdáleosti cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zětšeý? A) 0 cm B) 5 cm C) 4 cm D) 30 cm 4. Ohiskoá zdáleost čočky o optické mohutosti 5 D je: A) 5 cm B) 5 cm C) 0 cm D) 5 cm

6 Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého studia a. ročík čtyřletého studia Gymázium G Hraice Test k laboratorí práci č. 4: Úlohy z paprskoé optiky Variata D. Ze dou prostředí je pré opticky hustší; pak A) je ěm rychlost šířeí sětla ětší ež e druhém prostředí B) je ěm rychlost šířeí sětla meší ež e druhém prostředí C) je průhledější ež druhé prostředí D) ěm platí záko lomu přesěji ež e druhém prostředí. Sětlo prochází rozhraím zduchu a ody. Rychlost sětla e odě je,5.0 8 m.s -, rychlost sětla e zduchu přibližě m.s -. Jaký je mezí úhel a rozhraí ody a zduchu? A) 3 B) 48,6 C) 70,5 D) 8,8 3. Pomocí spojé čočky o ohiskoé zdáleosti cm zobrazíme určitý předmět. Do které z uedeých zdáleostí od čočky umístíme předmět, aby jeho obraz byl skutečý, přeráceý a zmešeý? A) 0 cm B) 5 cm C) 4 cm D) 30 cm 4. Optická mohutost čočky, která má ohiskoou zdáleost 50 je: A) 5 D B) 0 D C) 0 D D) 50 D

7 Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia G Gymázium Hraice Laboratorí práce č. 4: Úlohy z paprskoé optiky Pomůcky: půlálec ze skla, optická deska s úhloměrou stupicí, zdroj sětla, cloa se štěrbiou, optická laice s příslušestím, cloa s yřízutým písmeem L (ebo síčka), stíítko, spojá čočka, zdroj střídaého apětí. Teorie: Paprskoá (geometrická) optika je založea a přímočarém šířeí sětla (šířící se sětlo pak lze zázorit pomocí přímek sětelých paprsků) a a pricipu ezáislosti chodu sětelých paprsků (paprsky od zdroje ycházejí šemi směry, mohou se azájem protíat, ale přitom se eoliňují a prostředím procházejí ezáisle jede a druhém). Paprskoá optika zaedbáá loou poahu sětla. Základími zákoy paprskoé optiky jsou záko odrazu a záko lomu sětla.. úloha: Měřeí idexu lomu skla dex lomu je fyzikálí eličia, která charakterizuje optické prostředí. Nejjedodušší metody pro měřeí idexu lomu ycházejí ze zákoa lomu. Měřeí idexu lomu skla a rozhraí se zduchem proeďte děma metodami: měřeím úhlu dopadu a úhlu lomu a měřeím mezího úhlu.. metoda: Měřeí úhlu dopadu a úhlu lomu Prochází-li sětlo rozhraím zduch sklo (iz obr.), lze použít záko lomu e taru: k si si () α zduch ( = ) sklo ( =?) β

8 Proedeí: Na optickou desku s úhloměrou stupicí umístěte půlálec ze skla tak, aby střed křiosti jeho ypuklé plochy splýal se středem desky a roá stěa půlálce splýala s jedím průměrem yzačeým a desce. Druhý průměr toří kolmici dopadu. Zdroj sětla opatřete štěrbiou a umístěte jej tak, aby a desce zikl úzký sětelý paprsek směřující do středu půlálce (iz obr. č. příloze). Pomocí úhloměré stupice astate určitý úhel dopadu α a změřte odpoídající úhel lomu β. Otáčeím optické desky s půlálcem (paprsek přitom musí stále směřoat do středu půlálce) astaujte postupě další čtyři hodoty úhlu dopadu α a určete k im odpoídající úhel lomu β. Naměřeé hodoty zapište do tabulky: Číslo měřeí α β si α si β Pomocí kalkulačky určete hodoty si α a si β a pro každé měřeí ypočítejte ze zorce () idex lomu skla. Z aměřeých hodot ypočítejte průměrou hodotu idexu lomu skla.. metoda: Měřeí mezího úhlu Přechází-li sětlo z prostředí opticky hustšího do prostředí opticky řidšího, zětšuje se s rostoucím úhlem dopadu i úhel lomu a při určitém, tz. mezím úhlu dopadu α m, je úhel lomu β = 90. Při ětších úhlech dopadu (α α m ) se sětlo je odráží astáá úplý odraz. Jestliže sětlo prochází ze skla do zduchu, lze pro teto případ zapsat záko lomu e taru: si α m =, kde je idex lomu skla. Odtud lze idex lomu skla určit pomocí upraeého ztahu: = si ()

9 Proedeí: Optickou desku otočte tak, aby sětelý paprsek dopadal a ypuklou stěu půlálce a procházel jejím středem (iz obr. č. příloze). Zola, po malých hodotách, zětšujte úhel dopadu až a hodotu, kdy práě astae úplý odraz (úhel lomu β = 90 ). Odpoídající úhel dopadu je mezí úhel α m. Měřeí opakujte pětkrát a aměřeé hodoty zapisujte do tabulky: Číslo měřeí α m si α m Pro každou hodotu α m určete siα m a pomocí ztahu () určete idex lomu. Potom ypočítejte průměrou hodotu idexu lomu skla a poroejte ji s hodotou určeou. metodou.. úloha: Měřeí ohiskoé zdáleosti čočky Ohiskoou zdáleost f spojé čočky můžeme určit úpraou zobrazoací roice a tar: f = a a f a. a a a (3), kde a je zdáleost předmětu a a je zdáleost obrazu od středu čočky. Vzhledem k určité tloušťce čočky je přesé určeí hodot a, a obtížé. Proto se přímé měřeí zdáleostí obchází použitím růzých metod. Například Abbeoa metoda je založea a určoáí příčého zětšeí. Besseloa metoda, kterou použijete této úloze, je založea a tom, že při kostatí zdáleosti l předmětu (cloy s písmeem L ebo síčky) a stíítka zike a stíítku ostrý obraz předmětu při dou polohách čočky ( poloze zětšeý, poloze zmešeý). Situaci schematicky zázorňuje obrázek: Vyjádříme-li zdáleosti a a a upraeé zobrazoací roici (3) pomocí zdáleosti l předmětu a stíítka a zdáleosti d poloh, čočky, obdržíme po dosazeí a úpraě ztah pro ohiskoou zdáleost čočky e taru: f l d (4) 4l

10 Stíítko X Y x d y y o l Proedeí: Na optické laici sestate zobrazoací soustau tořeou zdrojem sětla s cloou s písmeem L (ebo hořící síčkou), spojkou a stíítkem (iz obr. č. 3 příloze). Polohu čočky uprate tak, aby její optická osa byla rooběžá s optickou laicí e ýšce, íž se achází předmět. Zkusmo yhledejte hodou zdáleost l předmětu od stíítka, při íž ajdete polohy a čočky. Změřte zdáleost l předmětu od stíítka a zdáleosti x a x čočky od předmětu (cloy s písmeem L). Další měřeí opakujte pro změěou zdáleost l předmětu a stíítka. Naměřeé hodoty zapisujte do tabulky: Číslo měřeí l x x d f Vzdáleost d poloh čočky případech a pak určete ze ztahu d = x x. Dosazeím do ztahu (4) ypočítejte jedotliých případech ohiskoou zdáleost f. Dále ypočítejte průměrou hodotu ohiskoé zdáleosti f, yjádřete ji cm a poroejte ji s hodotou uedeou a objímce čočky. Záěr:

11 Obrázek č. Obrázek č. Obrázek č. 3

12 G y m á z i u m H r a i c e Přírodí ědy moderě a iteraktiě G Gymázium Hraice Protokol č. 4 Pracoal: Spolupracoal: Třída: Hodoceí: Pracoáo de: Vlhkost zduchu: Tlak zduchu: Teplota zduchu: Náze úlohy: Úlohy z paprskoé optiky Pomůcky: půlálec ze skla, optická deska s úhloměrou stupicí, zdroj sětla, cloa se štěrbiou, optická laice s příslušestím, cloa s yřízutým písmeem L (ebo síčka), stíítko, spojá čočka, zdroj střídaého apětí. Vypracoáí:. úloha: Měřeí idexu lomu skla dex lomu je fyzikálí eličia, která charakterizuje optické prostředí. Nejjedodušší metody pro měřeí idexu lomu ycházejí ze zákoa lomu. Měřeí idexu lomu skla a rozhraí se zduchem jsme proáděli děma metodami: měřeím úhlu dopadu a úhlu lomu a měřeím mezího úhlu.. metoda: Měřeí úhlu dopadu a úhlu lomu Prochází-li sětlo rozhraím zduch - sklo, lze použít záko lomu e taru: si si () α k zduch ( = ) sklo ( =?) β

13 Na optickou desku s úhloměrou stupicí jsme umístili půlálec ze skla tak, aby střed křiosti jeho ypuklé plochy splýal se středem desky a roá stěa půlálce splýala s jedím průměrem yzačeým a desce. Druhý průměr toří kolmici dopadu. Zdroj sětla jsme opatřili štěrbiou a umístili jej tak, aby a desce zikl úzký sětelý paprsek směřující do středu půlálce. Pomocí úhloměré stupice jsme astaili úhel dopadu α a změřili odpoídající úhel lomu β. Otáčeím optické desky s půlálcem (paprsek přitom stále směřoal do středu půlálce) jsme astaili postupě další čtyři hodoty úhlu dopadu α a určili k im odpoídající úhel lomu β. Naměřeé hodoty jsme zapsali do tabulky: Číslo měřeí α β si α si β Pomocí kalkulačky jsme určili hodoty si α a si β a pro každé měřeí ypočítali ze zorce () idex lomu skla. Z aměřeých hodot jsme ypočítali průměrou hodotu idexu lomu skla: =. metoda: Měřeí mezího úhlu Přechází-li sětlo z prostředí opticky hustšího do prostředí opticky řidšího, zětšuje se s rostoucím úhlem dopadu i úhel lomu a při určitém, tz. mezím úhlu dopadu α m, je úhel lomu β = 90. Jestliže sětlo prochází ze skla do zduchu, lze pro teto případ zapsat záko lomu e taru: si α m =, kde je idex lomu skla. Odtud lze idex lomu skla určit pomocí upraeého ztahu: = si ()

14 Optickou desku jsme otočili tak, aby sětelý paprsek dopadal a ypuklou stěu půlálce a procházel jejím středem. Zola, po malých hodotách, jsme zětšoali úhel dopadu až a hodotu, kdy práě astal úplý odraz (úhel lomu β = 90 ). Odpoídající úhel dopadu byl mezí úhel α m. Měřeí jsme opakoali pětkrát a aměřeé hodoty zapsali do tabulky: Číslo měřeí α m si α m Pro každou hodotu α m jsme určili siα m a pomocí ztahu () určili idex lomu. Průměrá hodota idexu lomu skla je: = Poroáí s hodotou určeou. metodou:. úloha: Měřeí ohiskoé zdáleosti čočky Ohiskoou zdáleost f spojé čočky můžeme určit úpraou zobrazoací roice a. a a tar: f = (3), a a f a a kde a je zdáleost předmětu a a je zdáleost obrazu od středu čočky. Vzhledem k určité tloušťce čočky je přesé určeí hodot a, a obtížé. Proto se přímé měřeí zdáleostí obchází použitím růzých metod. Besseloa metoda, kterou jsme použili této úloze, je založea a tom, že při kostatí zdáleosti předmětu (cloy s písmeem L ebo síčky) a stíítka zike a stíítku ostrý obraz předmětu při dou polohách čočky. Situaci schematicky zázorňuje obrázek: Stíítko X Y x d y y o l

15 Vyjádříme-li zdáleosti a a a upraeé zobrazoací roici (3) pomocí zdáleosti l předmětu a stíítka a zdáleosti d poloh, čočky, obdržíme po dosazeí a úpraě ztah pro ohiskoou zdáleost čočky e taru: l d f (4) 4l Proedeí: Na optické laici jsme sestaili zobrazoací soustau tořeou zdrojem sětla s cloou s písmeem L (ebo hořící síčkou), spojkou a stíítkem. Zkusmo jsme yhledali hodou zdáleost l předmětu od stíítka, při íž jsme ašli dě polohy a čočky (a stíítku zikl ostrý obraz předmětu, prím případě zětšeý, e druhém zmešeý). Změřili jsme zdáleost l předmětu (cloy s písmeem L) od stíítka a zdáleosti x a x čočky od předmětu. Další měřeí jsme opakoali pro změěou zdáleost l předmětu a stíítka. Naměřeé hodoty jsme zapsali do tabulky: Číslo měřeí l x x d f Vzdáleost d poloh čočky případech a jsme pak určili ze ztahu d = x x. Dosazeím do ztahu (4) jsme ypočítali jedotliých případech ohiskoou zdáleost f. f = Průměrá hodota ohiskoé zdáleosti čočky: Poroáí s hodotou uedeou a objímce čočky: Záěr: Zdroje Lepil, Oldřich. Fyzika pro gymázia.optika. Praha: Prometheus, 00. SBN Obrázky: lastí torba

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla

Světlo jako elektromagnetické vlnění Šíření světla, Odraz a lom světla Disperze světla Paprskoá optika Sětlo jako elektromagetiké lěí Šířeí sětla, Odraz a lom sětla Disperze sětla Sětlo jako elektromagetiké lěí James Clerk Maxwell (83 879) agliký fyzik autorem teorie, podle íž elektro-magetiké

Více

sin n sin n 1 n 2 Obr. 1: K zákonu lomu

sin n sin n 1 n 2 Obr. 1: K zákonu lomu MĚŘENÍ INDEXU LOMU REFRAKTOMETREM Jedou z charakteristických optických veliči daé látky je absolutím idexu lomu. Je to podíl rychlosti světla ve vakuu c a v daém prostředí v: c (1) v Průchod světla rozhraím

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody

Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody Přírodní vědy moderně a interaktivně FYZIKA 2. ročník šestiletého studia Laboratorní práce č. 3: Určení voltampérové charakteristiky polovodičové diody G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Lom světla

Více

stručná osnova jarní semestr podzimní semestr

stručná osnova jarní semestr podzimní semestr Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 5 íé= Zpracováno v rámci OP VK - EU peníze školám Jednička ve vzdělávání CZ.1.07/1..00/21.2759 Název DUM: Opakování - optika

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa

Úloha č. 10. Měření rychlosti proudu vzduchu. Měření závislosti síly odporu prostředí na tvaru tělesa yzikálí praktiku I Úloha č10 Měřeí oporu prouícího zuchu (erze 0/01) Úloha č 10 Měřeí rychloti prouu zuchu Měřeí záiloti íly oporu protřeí a taru tělea 1) Poůcky: Aeroyaický tuel, ikroaoetr, Pratloa trubice,

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Uiverzita Tomáše Bati ve Zlíě LABORATORNÍ CVIČENÍ Z FYZIKY II Název úlohy: Iterferece a teké vrstvě Jméo: Petr Luzar Skupia: IT II/ Datum měřeí: 3.říja 007 Obor: Iformačí techologie Hooceí: Přílohy: 0

Více

Název: Odraz a lom světla

Název: Odraz a lom světla Název: Odraz a lom světla Autor: Mgr. Petr Majer Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika, Informatika) Tematický celek: Optika Ročník:

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ FYZIKÁLNÍ ZÁKLADY TECHNIKY áody do cičeí prof. Ig. Bořioj Groda, DrSc. Ig. Tomáš Vítěz, Ph.D. 007 I. Staoeí polytropického expoetu... 3 0. Zadáí cičeí...

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely

KABELY. Pro drátové okruhy (za drát se považuje i světlovodné vlákno): metalické kabely optické kabely KABELY Pro drátové okruhy (za drát se považuje i světlovodé vláko): metalické kabely optické kabely Metalické kabely: osou veličiou je elektrické apětí ebo proud obvykle se jedá o vysokofrekvečí přeos

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku.

FYZIKA 4. ROČNÍK. Optika. Základní vlastnosti světla. Optika - nauka o světle; Světlo je elmg. vlnění, které vyvolává vjem v našem oku. Základí vlastosti světla - auka o světle; Světlo je elmg. vlěí, které vyvolává vjem v ašem oku. Přehled elmg. vlěí: - dlouhé vly - středí rozhlasové - krátké - velmi krátké - ifračerveé zářeí - viditelé

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

Laboratorní práce č. 3: Měření elektrického proudu a napětí

Laboratorní práce č. 3: Měření elektrického proudu a napětí Přírodní vědy moderně a interaktivně FYZIK 1. ročník šestiletého studia Laboratorní práce č. 3: Měření elektrického proudu a napětí Přírodní vědy moderně a interaktivně FYZIK 1. ročník šestiletého studia

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at PROMOTE MSc POPIS TÉMATU FYZIKA 4 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Software Dynamická geometrie v optice Optika Andreas Ulovec Andreas.Ulovec@univie.ac.at Užití

Více

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components

GRADIENTNÍ OPTICKÉ PRVKY Gradient Index Optical Components Nové metody a postupy v oblasti přístrojové techiky, automatického řízeí a iformatiky Ústav přístrojové a řídicí techiky ČVUT v Praze, odbor přesé mechaiky a optiky Techická 4, 66 7 Praha 6 GRADIENTNÍ

Více

SVĚTLO / ZÁKON. EU OPVK III/2/1/3/17 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace

SVĚTLO / ZÁKON. EU OPVK III/2/1/3/17 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace SVĚTLO / ZÁKON LOMU 1 ZÁKON LOMU Lom nastává na rovinném rozhraní dvou optických prostředí. Lom paprsku ke kolmici nastane, jestliže se paprsek šíří z opticky řidšího do opticky hustšího prostředí. Úhel

Více

Mikrovlny. 1 Úvod. 2 Použité vybavení

Mikrovlny. 1 Úvod. 2 Použité vybavení Mikrovlny * P. Spáčil, ** J. Pavelka, *** F. Jareš, **** V. Šopík Gymnázium Vídeňská Brno; ** Gymnázium tř. Kpt. Jaroše; *** Arcibiskupské gymnázium; **** Gymnázium Jeseník; pavelspacil@tiscali.cz; **

Více

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů

Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia Laboratorní práce č. 1: Určení voltampérových charakteristik spotřebičů G Gymnázium Hranice Přírodní vědy

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU

HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU HODNOCENÍ PŘÍSTROJŮ PRO MĚŘENÍ JAKOSTI ZIMNÍCH KAPALIN DO OSTŘIKOVAČŮ V PROVOZU Ja SKOLIL 1*, Štefa ČORŇÁK 2*, Ja ULMAN 3 1* Velvaa, a.s., 273 24 Velvary, Česká republika 2,3 Uiverzita obray v Brě, Kouicova

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí

2. Měření základních optických vlastností materiálů. index lomu a disperze propustnost, absorpce kvalita optických prostředí . Měřeí základích optických vlastostí materiálů idex lomu a disperze propustost, absorpce kvalita optických prostředí .1. Měřeí idexu lomu a disperze Sellmeierův vztah i ( ) = 1+ i B C i Coruův vzorec

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové ymnázium Přírodní vědy moderně

Více

Metoda datových obalů DEA

Metoda datových obalů DEA Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Sklo. Jednofázová hmota s neuspořádanou strukturou na dlouhé vzdálenosti

Sklo. Jednofázová hmota s neuspořádanou strukturou na dlouhé vzdálenosti Sklo Struktura Jedofázoá hmota s euspořádaou strukturou a dlouhé zdáleosti Dříější teorie: Noé teorie: Sklo je přehlazeá kapalia s ysokou iskozitou, která bráí krystalizai I. Struktura skla se skládá z

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Laboratorní práce č. 2: Ověření činnosti transformátoru

Laboratorní práce č. 2: Ověření činnosti transformátoru Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. : Ověření činnosti transformátoru G Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ

MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ MENDELOVA ZEMĚDĚLSKÁ A LESNICKÁ UNIVERZITA V BRNĚ FYZIKÁLNÍ ZÁKLADY TECHNIKY áody do cičeí rof. Ig. Bořioj Groda, DrSc. Ig. Tomáš Vítěz, Ph.D. 007 I. Staoeí olytroického exoetu... 3 0. Zadáí cičeí... 3

Více

2. Odraz světla. Lom světla. Úplný odraz světla

2. Odraz světla. Lom světla. Úplný odraz světla 2. Odraz světla. Lom světla. Úplný odraz světla Kde všude se s odrazem světla můžeme setkat? Úhel odrazu je roven úhlu dopadu. Odražený paprsek leží v rovině dopadu (ta je určena dopadajícím paprskem a

Více

VY_52_INOVACE_2NOV66. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9.

VY_52_INOVACE_2NOV66. Autor: Mgr. Jakub Novák. Datum: 3. 4. 2013 Ročník: 9. VY_52_INOVACE_2NOV66 Autor: Mgr. Jakub Novák Datum: 3. 4. 2013 Ročník: 9. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Elektromagnetické a světelné děje Téma: Zákon odrazu

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

1. Úkol. 2. Teorie. Fyzikální základy techniky

1. Úkol. 2. Teorie. Fyzikální základy techniky Fyzikálí základy tehiky Protokol č.: Náze: Staoeí olytroikého exoetu a idikátoroého diagramu komresoru yraoáo de: 5..007 yraoali: Roma Stae, Odřej Soboda, Sabia Zoroá, Marti Smažil. Úkol Naším úkolem bylo

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

Interakce světla s prostředím

Interakce světla s prostředím Iterakce světla s prostředím světlo dopadající rozptyl absorpce světlo odražeé světlo prošlé prostředím ODRAZ A LOM The Light Fatastic, kap. 2 Light rays ad Huyges pricip, str. 31 Roviá vla E = E 0 cos

Více

6. Geometrická optika

6. Geometrická optika 6. Geometrická optika 6.1 Měření rychlosti světla Jak už bylo zmíněno v kapitole o elektromagnetickém vlnění, předpokládali přírodovědci z počátku, že rychlost světla je nekonečná. Tento předpoklad zpochybnil

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v

Stanovení závislosti měrné energie čerpadla Y s na objemovém průtoku Q v LS2007 VYSOKÁ ŠKOLA BÁŇSKÁ-TU OSTRAVA MĚŘENÍ Č.1 ČERPACÍ TECHNIKA A POTRUBÍ Stanoení záislosti měrné energie čerpadla Y s na objemoém průtoku Q Skupina G442 Jan Noák Zadání: Stanote měřením záislost měrné

Více

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4

O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 O z n a č e n í m a t e r i á l u : V Y _ 3 2 _ I N O V A C E _ S T E I V _ F Y Z I K A 2 _ 1 4 N á z e v m a t e r i á l u : S v ě t l o j a k o v l n ě n í. T e m a t i c k á o b l a s t : F y z i k

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

Průchod paprsků různými optickými prostředími

Průchod paprsků různými optickými prostředími Průchod paprsků růzými optickými prostředími Materiál je urče pouze jako pomocý materiál pro studety zapsaé v předmětu: A4M38VBM, ČVUT- FEL, katedra měřeí, 05 Před A4M38VBM 05, J. Fischer, kat. měřeí,

Více

Speciální teorie relativity IF relativistická kinematika

Speciální teorie relativity IF relativistická kinematika Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,

Více

Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3]

Obrázek 2: Experimentální zařízení pro E-I. [1] Dřevěná základna [11] Plastové kolíčky [2] Laser s podstavcem a držákem [12] Kulaté černé nálepky [3] Stránka 1 ze 6 Difrakce na šroubovici (Celkový počet bodů: 10) Úvod Rentgenový difrakční obrázek DNA (obr. 1) pořízený v laboratoři Rosalindy Franklinové, známý jako Fotka 51 se stal základem pro objev

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

FYZIKA, OPTIKA, OPTICKÁ ZOBRAZENÍ

FYZIKA, OPTIKA, OPTICKÁ ZOBRAZENÍ Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jarmila Vyškovská MGV_F_SS_1S3_D10_Z _OPT_Opticke_pristroje_- lupa_mikroskop_pl Člověk a příroda Fyzika Optika

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ

VÝMĚNA VZDUCHU A INTERIÉROVÁ POHODA PROSTŘEDÍ ÝMĚNA ZDUCHU A INTERIÉROÁ POHODA PROSTŘEDÍ AERKA J. Fakulta architektury UT v Brě, Poříčí 5, 639 00 Bro Úvod Jedím ze základích požadavků k zabezpečeí hygieicky vyhovujícího stavu vitřího prostředí je

Více

Test hypotézy o parametru π alternativního rozdělení příklad

Test hypotézy o parametru π alternativního rozdělení příklad Test hypotézy o parametru π alterativího rozděleí příklad Podik předpokládá, že o jeho ový výrobek bude mít zájem 7 % osloveých domácostí. Proběhl předběžý průzkum, v ěmž bylo osloveo 4 áhodě vybraých

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita Tomáše Bati ve líně LABORATORNÍ CVIČENÍ YIKY II Název úloh: Měření ohniskové vzdálenosti čočk Jméno: Petr Luzar Skupina: IT II/ Datum měření:.listopadu 007 Obor: Informační technologie Hodnocení:

Více

3. Optika III. 3.1. Přímočaré šíření světla

3. Optika III. 3.1. Přímočaré šíření světla 3. Optika III Popis soupravy: Souprava Haftoptik s níž je prováděn soubor experimentů Optika III je určena k demonstraci optických jevů pomocí segmentů se silnými magnety. Ty umožňují jejich fixaci na

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102 5..3 Lom světla Předpoklady: 50, 50 Pokus s mincí a miskou: Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře ke mně, miska jim nesmí překážet v cestě. Posunu misku

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 8. ročník M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro ZŠ a VG 7/2 (Prometheus) M.Macháček : Fyzika 8/1

Více

7.ročník Optika Lom světla

7.ročník Optika Lom světla LOM SVĚTLA. ZOBRAZENÍ ČOČKAMI 1. LOM SVĚTLA NA ROVINNÉM ROZHRANÍ DVOU OPTICKÝCH PROSTŘEDÍ Sluneční světlo se od vodní hladiny částečně odráží a částečně proniká do vody. V čisté vodě jezera vidíme rostliny,

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

č Ť č Ž ď ž Č ě ě ž ž Ť Ť č ž Č ž č š š ě Ť č Ť ž ěťš š ě č Ť Ť Ť š č ě š Ť ě šť č Ť Č Ť ě ž Ť ž Ť Ť ě ě Ť ě ž Ž ě š Č ž Ž ž Ť ě ě Ž Žš š ě č ě š ěť Ť č č š č ě ž ěž č ž Č š ě ě č č Ť ě Ť ě Č ě č Ť ň ž

Více

pro gymnasia Optika Fysika mikrosvěta

pro gymnasia Optika Fysika mikrosvěta Fysikální měření pro gymnasia V. část Optika Fysika mikrosvěta Gymnasium F. X. Šaldy Honsoft Liberec 2009 ÚVODNÍ POZNÁMKA EDITORA Obsah. Pátá, poslední část publikace Fysikální měření pro gymnasia obsahuje

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy

Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Pohyb tělesa, síly a jejich vlastnosti, mechanické vlastnosti kapalin a plynů, světelné jevy Sekunda 2 hodiny týdně Pomůcky, které poskytuje sbírka

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Laboratorní práce č. 4: Určení hustoty látek

Laboratorní práce č. 4: Určení hustoty látek Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 4: Určení hustoty látek ymnázium Přírodní vědy moderně a interaktivně FYZIKA 3. ročník

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu

Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu Přírodní vědy moderně a interaktivně FYZIKA 1. ročník šestiletého studia Laboratorní práce č. 2: Určení měrného skupenského tepla tání ledu ymnázium Přírodní vědy moderně a interaktivně FYZIKA 1. ročník

Více

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE. Pomůcky: Doplňte všechny části plamene kahanu a uveďte, jakou mají teplotu.

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE. Pomůcky: Doplňte všechny části plamene kahanu a uveďte, jakou mají teplotu. PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE Jméno: Třída: Ch-II-1 Teplota plamene Spolupracovník: Hodnocení: Datum měření: Určení teploty plamene v jeho různých částech Pomůcky: Teorie: Doplňte všechny části

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/3.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

SVĚTLO / ČOČKY. EU OPVK III/2/1/3/18 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace

SVĚTLO / ČOČKY. EU OPVK III/2/1/3/18 autor: Ing. Gabriela Geryková, Základní škola Žižkova 3, Krnov, okres Bruntál, příspěvková organizace SVĚTLO / ČOČKY 1 ČOČKY Čočky jsou tělesa vybroušená z čirého skla. Obě stěny čočky jsou buď dvěma kulovými plochami (obr. a, c) nebo jedna kulovou plochou a druhá rovinnou plochou (obr. b). Spojky jsou

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 17 Název: Měření absorpce světla Pracoval: Matyáš Řehák stud.sk.: 13 dne: 17. 4. 008 Odevzdal dne:...

Více

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A

Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota

Více