MĚŘENÍ RYCHLOSTI SVĚTLA

Rozměr: px
Začít zobrazení ze stránky:

Download "MĚŘENÍ RYCHLOSTI SVĚTLA"

Transkript

1 MĚŘENÍ RYCHLOSTI SVĚTL Měřií potřeby 1) Základní jednotka se zdrojem a detektorem světla 2) Měřií dráha s délkovou stupnií 3) Měřič frekvene (čítač) 4) Dvojité zradlo, dvě spojné čočky 5) Osiloskop, spojovaí kabely 6) Blok syntetiké pryskyřie 7) Trubie s vodou Obená část Uspořádání experimentu Jako zdroj světla Z je použita červená dioda LED modulovaná harmonikou frekvení 50,0 MHz. Spojná čočka L 1 (nastavená tak, aby zdroj byl v jejím předmětovém ohnisku) vytvoří rovnoběžný svazek světla ( paprsek ), pohybujíí se podél základny přístroje ve směru měřií dráhy. Po odrazu na dvojitém zradle M se vraí svazek podél základny zpět a dopadá na detektor D umístěný v ohnisku druhé spojné čočky L 2. Obr. 1 Uspořádání experimentu Přijímaný signál má stejnou frekveni jako signál vysílaný zdrojem, ale jinou fázi, jako důsledek časového zpoždění na proběhnuté dráze. Mezi oběma signály tedy vzniká určitý fázový rozdíl. Pro zobrazení na osiloskopu je jejih frekvene redukována na 50 khz ve směšovačíh S 1 a S 2 (je do nih přiveden kmitočet 50,05 MHz z pomoného generátoru G), přitom však nedohází ke změně fázového rozdílu signálů. Vysílaný a přijímaný signál jsou přivedeny na vodorovné a svislé vyhylovaí destičky osiloskopu (X a Y vstup). Na obrazove vzniká Lissajoussův obraze elipsa. Fázi přijímaného signálu lze ručně upravit fázovaím článkem ϕ a tím ovlivnit počáteční tvar elipsy.

2 Teoretiké základy Rovinné elektromagnetiké vlnění (ve vakuu nebo ve vzduhu), vysílané ze zdroje ve směru osy x lze popsat rovnií (předpokládáme nulovou fázovou konstantu): u =. sin( ω t kx) Pro parametry vlnění úhlovou frekveni ω, úhlový vlnočet k, fázovou ryhlost, frekveni f a vlnovou délku λ platí známé vztahy: ω 2π f 2π ω = 2π f, k = = =, = λ f. λ Po proběhnutí dráhy délky l (ve směru osy x) má přijímaná vlna tvar: u = B sin( ω t k( x + l)) = B sin( ωt kx kl) mplituda přijímaného vlnění může být menší v důsledku jeho absorpe a rozptylu, pro nás je však důležitější vzniklé fázové zpoždění (fázový rozdíl) ϕ mezi vlnou sledovanou v místě x a vlnou sledovanou v místě x + l : 2π f 2π ϕ = k. l = = l λ Fázový rozdíl φ mezi oběma vlněními je tedy způsoben dráhou l, kterou nazýváme také dráhovým rozdílem dvou vlnění. Pokud zavedeme na vstup X vodorovného vyhylování osiloskopu vysílaný signál, bude výhylka stopy: x = sin( ωt) Výhylka ve svislém směru Y bude úměrná naopak signálu z detektoru: y = B sin( ω t +ϕ1) pro polohu zradla x 1 y = B sin( ω t +ϕ2 ) pro polohu zradla x 2 Fázové konstanty ϕ 1, ϕ 2 jsou dány zpožděním signálu ve vysílači, dráhou vlny, zpožděním signálu v detektoru, elektronikýh obvodeh a také nastavením fázovaího článku. Díky přiváděným signálům vznikne na obrazove y osiloskopu, jako výsledek skládání dvou kolmýh kmitů B stejné frekvene, obená elipsa popsaná rovnií (odvození viz např. učební texty základního kurzu fyziky FY1): 2 2 x y xy osϕ = sin ϕ B B Je vidět, že tvar elipsy závisí zejména na fázovém rozdílu kmitů ϕ a že hodnotu této veličiny lze z rovnie vypočítat Obr. 2 Elipsa po dosazení souřadni libovolného bodu a amplitud. Nejpřesněji lze ale stanovit hodnoty fázového rozdílu rovné libovolnému elistvému násobku čísla π, tedy vyhovujíí rovnii: ϕ = K 3 π, 2π, π,0, + π, + 2π, + 3π, K = mπ, kde m je elé číslo. To je případ, kdy signály jsou buď ve fázi, nebo v protifázi a elipsa přehází v úsečku (jak se lze snadno přesvědčit dosazením za ϕ = 0 nebo π). Pro sudé m prohází úsečka kvadranty I. a III. a pro lihé m kvadranty II. a IV. (viz obr. 3). x

3 Obr. 3 Tvar elipsy pro různý fázový posun ϕ Fázovaí článek při měření nastavujeme tak, aby bylo ϕ 1 = 0. Pak je přijímaný signál Y pro zradlo v poloze x 1 ve fázi se signálem na vstupu X osiloskopu a na obrazove máme úsečku proházejíí I. a III. kvadrantem. Při posunutí zradla z polohy x 1 do polohy x 2 se prodlouží dráha vlny o hodnotu 2( x2 x1) = 2 x. Všehny faktory, ovlivňujíí velikost ϕ 1 a ϕ 2 zůstávají s výjimkou dráhy vlny nezměněny. Proto musí být fázový rozdíl ϕ 2 ϕ 1 dán pouze dráhovým rozdílem vlny l = 2 x: ω 2π ϕ = ϕ2 ϕ1 = l = 2 x. λ Mezi dvěma sousedními polohami přímek je vždy fázový rozdíl rovný číslu π. Tomu odpovídá příslušný dráhový rozdíl: λ λ λ 2 x = ϕ = π = 2π 2π 2 Prodloužíme-li tedy dráhu prijímané vlny tak, aby úsečka na obrazove změnila sklon (přešla z jedné dvojie protilehlýh kvadrantů do dvojie sousední), bude tato změna délky dráhy právě rovna polovině vlnové délky. Vlnová délka pak bude dvojnásobkem změny délky dráhy: λ = 2l = 4 x. Změnu elipsy v přímku lze na obrazove osiloskopu velmi dobře optiky detekovat, proto je možno uvedeným způsobem dosti přesně stanovit vlnovou délku elektromagnetikého vlnění (v prinipu jakéhokoliv vlnění). Ideální uspořádání experimentu by mělo umožnit proměření řady například dvaeti po sobě jdouíh výše popsanýh poloh elipsy, abyhom mohli výsledky zpraovat postupnou metodou (vytvořit deset dvoji měření, aritmetiký průměr a směrodatnou hybu). Při použité frekveni 50,0 MHz však vlnová délka činí: λ = = & = 6 m 6 f Potřebovali byhom tedy měřií dráhu délky asi 30 metrů. V našem experimentálním uspořádání s dvaetkrát menší drahou můžeme proto změřit jen dvě takové polohy a pro stanovení přesnosti měření lze provést pouze prosté opakování tohoto měření. Jestliže současně změříme elektronikým čítačem frekveni použitého vlnění, můžeme jednoduše určit fázovou ryhlost světla: = λ. f = 4 x. f (1)

4 Pro stanovení nepřesnosti (hyby) výsledku musíme standardním způsobem zjistit hyby měření obou jednotlivýh veličin (jako vždy jde o součet nepřesnosti vlastního měřidla a hyby vzniklé z metody jeho používání) při měření frekvene by nám měl poradit manuál čítače, při měření vlnové délky si všimneme přesnosti délkové stupnie a pro odhad hyby metody měření posunu x můžeme pouze opakovat víekrát měření. Chybu metody zde výrazně ovlivňuje kvalita a ostrost zobrazení elipsy na osiloskopu. Fázová ryhlost světla (a jakéhokoliv elektromagnetikého vlnění) je vždy menší v hmotném prostředí (voda, sklo, pryskyřie, i vzduh) než ve vakuu. Pro vzduh je tato odhylka zanedbatelná, řádu 0,02 %. Platí ale vždy, že. Protože frekvene vlnění zůstává zahována (je to základní parametr periodikýh změn fyzikálníh veličin, které popisují vlnění), musí se zmenšit vlnová délka (a poklesnout úhlový vlnočet). Všehny rovnie ovšem stále platí, to znamená, že zůstává v platnosti také výše uvedený vztah pro fázovou ryhlost: f = 4 x. f = λ. 1 (indexem označujeme fázovou ryhlost a vlnovou délku v prostředí ). Vidíme jasně lineární vztah mezi vlnovou délkou a fázovou ryhlostí (a fázovým i dráhovým rozdílem), pokles všeh těhto veličin ve hmotném prostředí je proto vždy proporionální. Měření fázové ryhlosti v hmotném prostředí by prinipiálně mohlo probíhat naprosto stejně jako ve vzduhu, je tu ovšem tehniká potíž vyplývajíí z tehnologie měření: odrazná zradla by se musela pohybovat v měřeném prostředí, tj. v kapalině (to by ještě šlo), nebo v pevné láte (neproveditelné). Změníme proto mírně metodu měření: hmotné prostředí omezené délky l pouze přidáme do původní dráhy paprsku ve vzduhu. Úvahou pak dospějeme ke stanovení dvou konkrétníh možnosí, dvou metod: 1. metoda V poloze x 1 zradla (poblíž základní jednotky), když prohází paprsek pouze 1. měření vzduhem, se nastaví fázovaím článkem na obrazove (libovolná) přímka. Fázový rozdíl mezi vysílaným a přijímaným signálem tak bude roven nule: ϕ 1 = 0. Pak posuneme zradlo víe vpravo, 2. měření l do dráhy paprsku vsuneme měřené prostředí, a dále pokračujeme v posunu zradla do konečné polohy x 2, ve které se Obr. 4 První metoda elipsa na obrazove změní na opačně orientovanou přímku, tj. fázové zpoždění přijímaného signálu vzniklé na elkové dráze 2 x bude rovno hodnotě π. Část této dráhy prohází světlo vzduhem, část měřenou látkou. Celkové fázové zpoždění vlny je proto součtem fázového zpoždění ϕ, vzniklého na dráze vlny

5 vzduhem, a zpoždění ϕ, které vzniklo na dráze vlny měřenou látkou. Platí tedy rovnie: 2π π ϕ = ϕ + ϕ = f f elk (2 x l ) + 2 l = π Po úpravě pak dostaneme fázovou ryhlost světla v měřeném prostředí: 2 f l 2 f l = = 2 f (2 x l ) 2 f (2) 1 (2 x l ) Dále stanovíme index lomu světla měřeného prostředí, který udává, kolikrát je ryhlost světla v daném hmotném prostředí menší než ve vakuu (vzduhu): n = (3) Index lomu je bezrozměrná veličiny a je vždy větší než jedna. Vztah (2) také můžeme s pomoí indexu lomu upravit na jednodušší tvar: n 2 f (2 x l ) 4 f x = = = 1+ 2 f l 2 f l (4) Vztah (4) můžeme použít primárně pro zpraování výsledků, ze získaného indexu lomu pak vypočteme ryhlost v daném prostředí. 2. metoda V této metodě neháme nejprve vlnu na části elkové dráhy proházet zkoumaným prostředím délky l a na zbylé dráze vzduhem. Zradlo se tedy nastaví do 1. měření l polohy x 1 tak, aby bylo možno vložit x zkoumané prostředí. Fázovaím článkem dorovnáme fázi vysílaného a přijímaného signálu tak, aby byla 0 nebo π, tj. 2. měření nastavíme (libovolnou) přímku. Celkové fázové zpoždění vlny můžeme zapsat jako: Obr. 5 Druhá metoda ϕ 1 = k. l + k(2x1 l ) + C, kde do konstanty C můžeme zahrnout všehna zpoždění v obvodeh vysílače a přijímače (a také zpoždění na dráze mezi zradly). Pak vyjmeme zkoumané prostředí, čímž jej vlastně nahradíme stejně dlouhým úsekem vzduhu, takže první člen v rovnii se změní na k.l. Celková fáze se změní, přímka na obrazove přejde na obenou elipsu. Nyní posuneme zradlo do polohy x 2, abyhom tuto změnu fáze opět vrátili (vykompenzovali) na původní hodnotu tj. nastavíme původní polohu přímky. Fáze v této nové poloze bude: ϕ k x + C. 2 = 2 2

6 Obě fázová zpoždění jsou si rovna, ϕ 1 = ϕ 2, takže: k. l + k(2x1 l ) + C = k2x2 + C Po úpravě a dosazení za úhlové vlnočty dostaneme: 2 π f 2 f l = π (2 x + l ). Z rovnie pak můžeme získat vztah pro index lomu zkoumaného prostředí: n = l = + 2 x 2 x = 1+ l l Hledanou ryhlost světla ve zkoumaném prostředí určíme z indexu lomu. Na rozdíl od první metody nepotřebujeme ke stanovení indexu lomu znát ani ryhlost světla ve vakuu, ani frekveni. Při měření zjistíme, že x je kladné je potřeba delší dráhy abyhom vykompenzovali změnu fáze po vyjmutí zkoumaného prostředí. Je to důsledek větší fázové ryhlosti světla ve vzduhu. Ze vztahu vidíme přímo, že index lomu je vždy větší než 1 ( x je kladné). Toto měření je příkladem kompenzační metody změnu fáze vlnění neznámé fázové ryhlosti vykompenzujeme stejnou změnou fáze vlnění o známé fázové ryhlosti. Měření Zapněte základní jednotku, osiloskop a měřič frekvene (čítač). Propojte čítač s konektorem T základní jednotky a odečtěte frekveni vlnění (vezměte v úvahu dělič kmitočtu R 1:1000 na shématu přístroje). Spojte vstupy X a Y osiloskopu s příslušnými konektory základní jednotky (zdroj a detektor světla). Dvojité zradlo umístěte poblíž počátku délkové stupnie. Spojné čočky postavte asi 3 až 5 m před zdroj a detektor do jejih osy. Malými změnami polohy čoček (ve všeh směreh) je potřeba nastavit maximální intenzitu přijímaného signálu, tj. výhylku paprsku v ose Y na osiloskopu. To v prinipu znamená, že je potřeba zajistit o nejmenší ztráty světla na jeho dráze od zdroje až po detektor, tj. o nejmenší rozbíhavost vysílaného svazku, jeho dopad do entrálníh částí zradel, symetriký dopad svazku v ose detektoru a jeho zaostření do minimální plošky a přesně do středu detektoru. Jde vlastně o seřízení optiké soustavy složené ze dvou spojnýh čoček a dvou zradel, aby vznikl o nejintenzivnější a nejmenší obraz předmětu zdroje světla a aby tento obraz dopadl přesně na detektor. Zdroj světla má vysokou svítivost, proto lze hod vysílaného světelného svazku dobře sledovat pomoí například listu papíru. Na dvoupaprskovém osiloskopu v normálním časovém režimu můžete přitom zobrazit současně vysílaný i přijímaný signál, porovnávat jejih intenzity, i fázový posuv, případně působení fázovaího článku ϕ. Pro vznik Lissajoussova obraze je pak nutné přepnout osiloskop do režimu XY (na přepínači časové základny).

7 I při nastavení maxima přijímaného signálu se při posunu zradla dál od zdroje bude intenzita signálu výrazně zmenšovat (neboť divergujíí svazek půjde částečně mimo zradel), elipsa se bude zplošťovat ve svislém směru, a proto bude nutno zvýšit itlivost osiloskopu ve vertikálním směru, v nouzi i poopravit dopad světla na detektor. Při měření použijte poznatky získané v kapitole Obená část s přihlédnutím k těmto bodům: - u měření ryhlosti světla ve vzduhu a u 1. metody volte polohu x 1 na počátku délkové stupnie - u druhé metody vložte měřené prostředí do dráhy paprsku tak, aby dvojité zradlo bylo přibližně ve dvou třetináh stupnie (poloha x 1 ) - zradlo posunujte pomalu a nezapomeňte upravovat podle potřeby itlivost osiloskopu ve vertikálním směru - měření opakujte pokaždé desetkrát s mírně odlišnou počáteční polohou zradla, abyste mohli spočítat směrodatnou hybu - nezapomeňte stanovit přesnost čítače - u měření v hmotném prostředí nezapomeňte změřit délku prostředí l a určit její hybu - jestliže hmotné prostředí (blok pryskyřie) vložíte do dráhy obou paprsků, potom délka dráhy v něm je rovna dvojnásobku délky bloku! Praovní úkol 1) Proveďte měření ryhlosti světla ve vzduhu 2) Stanovte směrodatnou hybu veličiny x. Tu dále použijte spolu s hybou měření frekvene ke stanovení výsledné hyby ryhlosti světla (viz. kapitola Chyby měření skript Fyzikální praktikum) a proveďte standardní zápis výsledku měření. 3) Stanovte ryhlost světla v kapalině a pryskyřii. Podle pokynu vyučujíího použijte buď 1. nebo 2. metodu měření. 4) Opět stanovte elkovou směrodatnou hybu měření podobně jako v bodu 2). 5) Standardně zapište výsledky (viz str. 19, kapitola E. Konečný tvar výsledku měření ), porovnejte s tabulkovými hodnotami a zhodnoťte měření.

8

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

Jméno a příjmení. Ročník. Měřeno dne. Marek Teuchner Příprava Opravy Učitel Hodnocení. 1 c p. = (ε r

Jméno a příjmení. Ročník. Měřeno dne. Marek Teuchner Příprava Opravy Učitel Hodnocení. 1 c p. = (ε r FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Petr Švaňa Ročník 1 Předmět IFY Kroužek 38 ID 155793 Lab. skup. Spolupracoval Měřeno dne Odevzdáno dne Marek Teuchner 11. 3. 2013 25. 3.

Více

Laboratorní práce č. 3: Měření vlnové délky světla

Laboratorní práce č. 3: Měření vlnové délky světla Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Laboratorní práce č. 3: Měření vlnové délky světla G Gymnázium Hranice Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY Gymnázium G Hranice Test

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

L a b o r a t o r n í c v i č e n í z f y z i k y

L a b o r a t o r n í c v i č e n í z f y z i k y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K ATEDRA FYZIKY L a b o r a t o r n í c v i č e n í z f y z i k y Jméno TUREČEK Daniel Datum měření 15.11.2006 Stud. rok 2006/2007 Ročník 2. Datum odevzdání 29.11.2006

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Klasické a inovované měření rychlosti zvuku

Klasické a inovované měření rychlosti zvuku Klasické a inovované měření rychlosti zvuku Jiří Tesař katedra fyziky, Pedagogická fakulta JU Klíčová slova: Rychlost zvuku, vlnová délka, frekvence, interference vlnění, stojaté vlnění, kmitny, uzly,

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

5.1 Definice, zákonné měřící jednotky.

5.1 Definice, zákonné měřící jednotky. 5. Měření délek. 5.1 Definice, zákonné měřící jednotky. 5.2 Měření délek pásmem. 5.3 Optické měření délek. 5.3.1 Paralaktické měření délek. 5.3.2 Ryskový dálkoměr. 5.4 Elektrooptické měření délek. 5.4.1

Více

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at PROMOTE MSc POPIS TÉMATU FYZIKA 4 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Software Dynamická geometrie v optice Optika Andreas Ulovec Andreas.Ulovec@univie.ac.at Užití

Více

Fabry Perotův interferometr

Fabry Perotův interferometr Fabry Perotův interferometr Princip Dvě zrcadla jsou sestavena tak aby tvořila tzv. Fabry Perotův interferometr, s jehož pomocí je vyšetřován svazek paprsků vycházejících z laseru. Při experimentu se pohybuje

Více

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH.

MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. MĚŘENÍ NAPĚTÍ A PROUDŮ VE STEJNOSMĚRNÝCH OBVODECH. 1. Měření napětí ručkovým voltmetrem. 1.1 Nastavte pomocí ovládacích prvků na ss zdroji napětí 10 V. 1.2 Přepněte voltmetr na rozsah 120 V a připojte

Více

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ

VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ VÝUKOVÝ SOFTWARE PRO ANALÝZU A VIZUALIZACI INTERFERENČNÍCH JEVŮ P. Novák, J. Novák Katedra fyziky, Fakulta stavební, České vysoké učení technické v Praze Abstrakt V práci je popsán výukový software pro

Více

Měření vlastností optických vláken a WDM přenos

Měření vlastností optických vláken a WDM přenos Obecný úvod Měření vlastností optických vláken a WDM přenos Úloha se věnuje měření optických vláken, jejich vlastností a rušivých jevů souvisejících s vzájemným nedokonalým navázáním v konektorech. Je

Více

MĚŘENÍ PARAMETRŮ DUTÉHO ZRCADLA; URČENÍ INDEXU LOMU KAPALIN POMOCÍ DUTÉHO ZRCADLA

MĚŘENÍ PARAMETRŮ DUTÉHO ZRCADLA; URČENÍ INDEXU LOMU KAPALIN POMOCÍ DUTÉHO ZRCADLA MĚŘENÍ PARAMETRŮ DUTÉHO ZRCADLA; URČENÍ INDEXU LOMU KAPALIN POMOCÍ DUTÉHO ZRCADLA V geometrické optice, a také ve většině experimentálních metod, se k určení ohniskové vzdálenosti dutého zrcadla využívá

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. IV Název: Měření fotometrického diagramu. Fotometrické veličiny a jejich jednotky Pracoval: Jan Polášek stud.

Více

Signál v čase a jeho spektrum

Signál v čase a jeho spektrum Signál v čase a jeho spektrum Signály v časovém průběhu (tak jak je vidíme na osciloskopu) můžeme dělit na periodické a neperiodické. V obou případech je lze popsat spektrálně určit jaké kmitočty v sobě

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu kapalin a skel. obor (kruh) FMUZV (73)

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu kapalin a skel. obor (kruh) FMUZV (73) Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 24 Název: Měření indexu lomu kapalin a skel Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 17.2.2014 Odevzdal

Více

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty

( ) Úloha č. 9. Měření rychlosti zvuku a Poissonovy konstanty Fyzikální praktikum IV. Měření ryhlosti zvuku a Poissonovy konstanty - verze Úloha č. 9 Měření ryhlosti zvuku a Poissonovy konstanty 1) Pomůky: Kundtova trubie, mikrofon se sondou, milivoltmetr, měřítko,

Více

Úloha č. 8 Vlastnosti optických vláken a optické senzory

Úloha č. 8 Vlastnosti optických vláken a optické senzory Úloha č. 8 Vlastnosti optických vláken a optické senzory Optické vlákna patří k nejmodernějším přenosovým médiím. Jejich vysoká přenosová kapacita a nízký útlum jsou hlavní výhody, které je staví před

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2

EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2 EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU A.Mikš, V.Obr Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. úlohač.20 Název: Stavba Michelsonova interferometru a ověření jeho funkce Pracoval: Lukáš Ledvina stud.skup.14 dne:3.3.2010

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU

MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU MAGNETICKÉ POLE PERMANENTNÍHO MAGNETU Pomůcky: čidlo polohy Go!Motion, čidlo magnetického pole MG-BTA, magnet, provázek (gumička, izolepa), vhodný stativ na magnet, LabQuest, program LoggerPro Postup:

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika

ODRAZ A LOM SVĚTLA. Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika ODRAZ A LOM SVĚTLA Mgr. Jan Ptáčník - GJVJ - Septima - Fyzika - Optika Odraz světla Vychází z Huygensova principu Zákon odrazu: Úhel odrazu vlnění je roven úhlu dopadu. Obvykle provádíme konstrukci pomocí

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

Měření charakterizace profilu a tloušťky vrstev optickou metodou

Měření charakterizace profilu a tloušťky vrstev optickou metodou I. Úvod Měření charakterizace profilu a tloušťky vrstev optickou metodou Tloušťku vzorků materiálů lze měřit pomocí mechanických měřidel, jako je posuvné měřidlo nebo mikrometr. Jejich prostorové rozlišení

Více

Úloha D - Signál a šum v RFID

Úloha D - Signál a šum v RFID 1. Zadání: Úloha D - Signál a šum v RFID Změřte úrovně užitečného signálu a šumu v přenosovém řetězci systému RFID v závislosti na čtecí vzdálenosti. Zjistěte maximální čtecí vzdálenost daného RFID transpondéru.

Více

2. Akustika, základní pojmy a veličiny v akustice

2. Akustika, základní pojmy a veličiny v akustice . Akustika, základní pojmy a veličiny v akustie. Předmět akustiky Akustika je definována jako věda zabývajíí se fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho dalším šířením a vnímáním

Více

ZÁKLADNÍ VLASTNOSTI OPTICKÉHO VLÁKNA

ZÁKLADNÍ VLASTNOSTI OPTICKÉHO VLÁKNA ZÁKLADNÍ VLASTNOSTI OPTICKÉHO VLÁKNA Optická vlákna patří k nejmodernějším přenosovým zařízením ve sdělovací technice pro níž byla původně určena. Tato technologie ale proniká i do dalších odvětví. Optická

Více

1 Elektronika pro zpracování optického signálu

1 Elektronika pro zpracování optického signálu 1 Elektronika pro zpracování optického signálu Výběr elektroniky a detektorů pro měření optického signálu je odvislé od toho, jaký signál budeme detekovat. V první řadě je potřeba vědět, jakých intenzit

Více

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla

První jednotky délky. Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla Měření délky První jednotky délky Délka jedna z prvních jednotek, kterou lidstvo potřebovalo měřit První odvozování bylo z rozměrů lidského těla stopa asi 30 cm palec asi 2,5 cm loket (vídeňský) asi 0,75

Více

1. Měření parametrů koaxiálních napáječů

1. Měření parametrů koaxiálních napáječů . Měření parametrů koaxiálních napáječů. Úvod Napáječ je vedení, které spojuje zdroj a zátěž. Vlastnosti napáječe popisujeme charakteristickou impedancí Z [], měrnou fází [rad/m] a měrným útlumem [/m].

Více

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce

Termistor. Teorie: Termistor je polovodičová součástka, jejíž odpor závisí na teplotě přibližně podle vzorce ermistor Pomůcky: Systém ISES, moduly: teploměr, ohmmetr, termistor, 2 spojovací vodiče, stojan s držáky, azbestová síťka, kádinka, voda, kahan, zápalky, soubor: termistor.imc. Úkoly: ) Proměřit závislost

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Rezonance v obvodu RLC

Rezonance v obvodu RLC 99 Pomůcky: Systém ISES, moduly: voltmetr, ampérmetr, dva kondenzátory na destičkách (černý a stříbrný), dvě cívky na uzavřeném jádře s pohyblivým jhem, rezistor 100 Ω, 7 spojovacích vodičů, 2 krokosvorky,

Více

If\=l/fl. Optické levy netradifně netradičně - vyuiltf využití iákovské žákovské soupravy pro pokusy. f=f!..

If\=l/fl. Optické levy netradifně netradičně - vyuiltf využití iákovské žákovské soupravy pro pokusy. f=f!.. Veletrh nápad" nápadd učitelll učiteld fyziky Optické levy netradifně netradičně - vyuiltf využití iákovské žákovské soupravy pro pokusy I z optiky Pavel Kf{ž, František Špulák, Katedra fyziky, PF fu JU

Více

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice

~ II 1. Souprava pro pokusy z :I optiky opliky. Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Veletrh nápadů učitelů fyziky Souprava pro pokusy z : optiky opliky Pavel Kflž, Křfž, František Špulák, Katedra fyziky, PF fu JU České Budějovice Seznam součástí číslo kusů název obr.č. 1 1 kyveta 1 2

Více

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

ρ = měrný odpor, ρ [Ω m] l = délka vodiče 7 Kapitola 2 Měření elektrických odporů 2 Úvod Ohmův zákon definuje ohmický odpor, zkráceně jen odpor, R elektrického vodiče jako konstantu úměrnosti mezi stejnosměrným proudem I, který protéká vodičem

Více

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206

Analogové modulace. Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 EVROPSKÝ SOCIÁLNÍ FOND Analogové modulace PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Podpora kvality výuky informačních a telekomunikačních technologií ITTEL CZ.2.17/3.1.00/36206 Modulace Co je to modulace?

Více

KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC

KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC CNC CAM CNC CNC OBECNĚ (Kk) SOUSTRUŽENÍ SIEMENS (Ry) FRÉZOVÁNÍ SIEMENS (Hu) FRÉZOVÁNÍ HEIDENHEIM (Hk) CAM EdgeCAM (Na) 3D OBJET PRINT (Kn) CNC OBECNĚ

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

13 Fázové posuvy střídavých proudů vzhledem k napětí

13 Fázové posuvy střídavých proudů vzhledem k napětí 13 Fázové posuvy střídavých proudů vzhledem k napětí Proměřovaný obvod je schématicky znázorněn na obrázku 1. Napájecí napětí je do obvodu dodáváno z generátoru harmonického napětí (grafem harmonických

Více

8 b) POLARIMETRIE. nepolarizovaná vlna

8 b) POLARIMETRIE. nepolarizovaná vlna 1. TEORETICKÝ ÚVO Rotační polarizace Světlo má zároveň povahu vlnového i korpuskulárního záření. V optických jevech se světlo chová jako příčné vlnění, přičemž světelné kmity probíhají všemi směry a směr

Více

Vliv komy na přesnost měření optických přístrojů. Antonín Mikš Katedra fyziky, FSv ČVUT, Praha

Vliv komy na přesnost měření optických přístrojů. Antonín Mikš Katedra fyziky, FSv ČVUT, Praha Vliv komy na přesnost měření optických přístrojů Antonín Mikš Katedra fyziky, FSv ČVUT, Praha V práci je vyšetřován vliv meridionální komy na přesnost měření optickými přístroji a to na základě difrakční

Více

Abstrakt. Obr. 1: Experimentální sestava pro měření rychlosti světla Foucaultovou metodou.

Abstrakt. Obr. 1: Experimentální sestava pro měření rychlosti světla Foucaultovou metodou. Měření rychlosti světla Abstrakt Rychlost světla je jednou z nejdůležitějších a zároveň nejzajímavějších přírodních konstant. Nezáleží na tom, jestli světlo přichází ze vzdálené hvězdy nebo z laseru v

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Otázka č. 14 Světlovodné přenosové cesty

Otázka č. 14 Světlovodné přenosové cesty Fresnelův odraz: Otázka č. 4 Světlovodné přenosové cesty Princip šíření světla v optickém vlákně Odraz a lom světla: β α lom ke kolmici n n β α lom od kolmice n n Zákon lomu n sinα = n sin β Definice indexu

Více

Měřicí přístroje a měřicí metody

Měřicí přístroje a měřicí metody Měřicí přístroje a měřicí metody Základní elektrické veličiny určují kvalitativně i kvantitativně stav elektrických obvodů a objektů. Neelektrické fyzikální veličiny lze převést na elektrické veličiny

Více

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. Experiment P-10 OHMŮV ZÁKON CÍL EXPERIMENTU Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 senzor napětí

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012. Číslo DUM: VY_32_INOVACE_20_FY_C Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 1. 10. 2012 Číslo DUM: VY_32_INOVACE_20_FY_C Ročník: II. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Moderní trendy měření Radomil Sikora

Moderní trendy měření Radomil Sikora Moderní trendy měření Radomil Sikora za společnost RMT s. r. o. Členění laserových měřičů Laserové měřiče můžeme členit dle počtu os na 1D, 2D a 3D: 1D jsou tzv. dálkoměry, které měří vzdálenost pouze

Více

Optika. Zápisy do sešitu

Optika. Zápisy do sešitu Optika Zápisy do sešitu Světelné zdroje. Šíření světla. 1/3 Světelné zdroje - bodové - plošné Optická prostředí - průhledné (sklo, vzduch) - průsvitné (matné sklo) - neprůsvitné (nešíří se světlo) - čirá

Více

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE

SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE Experiment P-17 SILOVÉ PŮSOBENÍ MAGNETICKÉHO POLE CÍL EXPERIMENTU Studium základních vlastností magnetu. Sledování změny silového působení magnetického pole magnetu na vzdálenosti. MODULY A SENZORY PC

Více

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu

popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu 9. Čidla napětí a proudu Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat princip činnosti základních zapojení čidel napětí a proudu samostatně změřit zadanou úlohu Výklad

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Stavba Michelsonova interferometru a ověření jeho funkce

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Stavba Michelsonova interferometru a ověření jeho funkce Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 20 Název: Stavba Michelsonova interferometru a ověření jeho funkce Pracoval: Lukáš Vejmelka obor (kruh) FMUZV

Více

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)

magnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2) 1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ. VOŠ a SŠS Vysoké Mýto leden 2008 Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek MĚŘENÍ VZDÁLENOSTÍ VOŠ a SŠS Vysoké Mýto leden 2008 METODY MĚŘENÍ DÉLEK PŘÍMÉ (měřidlo klademe přímo do měřené

Více

Fyzika aplikovaná v geodézii

Fyzika aplikovaná v geodézii Průmyslová střední škola Letohrad Vladimír Stránský Fyzika aplikovaná v geodézii 1 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního rozpočtu

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Měření pevnosti slupky dužnatých plodin

Měření pevnosti slupky dužnatých plodin 35 Kapitola 5 Měření pevnosti slupky dužnatých plodin 5.1 Úvod Měření pevnosti slupky dužnatých plodin se provádí na penetrometrickém přístroji statickou metodou. Princip statického měření spočívá v postupném

Více

Měření modulů pružnosti G a E z periody kmitů pružiny

Měření modulů pružnosti G a E z periody kmitů pružiny Měření modulů pružnosti G a E z periody kmitů pružiny Online: http://www.sclpx.eu/lab2r.php?exp=2 V tomto experimentu vycházíme z pojetí klasického pokusu s pružinovým oscilátorem. Z periody kmitů se obvykle

Více

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera

pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Jak jsou vysocí? Mirek Kubera Výstup RVP: Klíčová slova: pracovní list studenta Kombinatorika, pravděpodobnost, základy statistiky Mirek Kubera žák diskutuje a kriticky zhodnotí statistické informace a daná statistická sdělení, volí

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.XI. Název: Měření stočení polarizační roviny Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.XI Název: Měření stočení polarizační roviny Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 10.3.2006 Odevzdaldne:

Více

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami

Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Název: Měření ohniskové vzdálenosti tenkých čoček různými metodami Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika)

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Světlo v multimódových optických vláknech

Světlo v multimódových optických vláknech Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý

Více

2.9.13 Logaritmická funkce II

2.9.13 Logaritmická funkce II .9. Logaritmiká funke II Předpoklady: 9 Logaritmus se základem nazýváme dekadiký logaritmus a místo log píšeme pouze log pokud v zápisu logaritmu hybí základ, předpokládáme, že základem je číslo (logaritmus

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

E-II. Difrakce způsobená povrchovými vlnami na vodě

E-II. Difrakce způsobená povrchovými vlnami na vodě Strana 1 z 6 Difrakce způsobená povrchovými vlnami na vodě Úvod Vznik a šíření vln na povrchu kapaliny jsou důležité a dobře prozkoumané jevy. U těchto vln je vratná síla působící na kmitající tekutinu

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

Princip činnosti a pracovní režimy světelného mikroskopu

Princip činnosti a pracovní režimy světelného mikroskopu Princip činnosti a pracovní režimy světelného mikroskopu A. ZADÁNÍ 1. Seznamte se důkladně s jednotlivými prvky a s ovládáním světelného mikroskopu (Amplival pol. U).. Prostudujte sestavu osvětlovací soustavy

Více

Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543

Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543 Testování ochrany při nesymetrickém zatížení generátoru terminálu REM 543 Cíle úlohy: Cílem úlohy je seznámit se s parametrizací terminálu REM543, zejména s funkcí ochrany při nesymetrickém zatížení generátoru.

Více

Měření parametrů světelných zdrojů a osvětlení

Měření parametrů světelných zdrojů a osvětlení FP 4 Měření parametrů světelných zdrojů a osvětlení Úkoly : 1. Určete a porovnejte normované prostorové vyzařovací charakteristiky určených světelných zdrojů (žárovky, LD dioda) pomocí fotogoniometru 2.

Více

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU

3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU 3. OHYB A INTERFERENCE SVĚTLA OPTICKOU MŘÍŽKOU Měřicí potřeby 1) spektrometr ) optická mřížka 3) sodíková výbojka 4) Balmerova lampa Teorie Optická mřížka na průchod světla je skleněná destička, na níž

Více

Charakteristiky optoelektronických součástek

Charakteristiky optoelektronických součástek FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Spolupracoval Jan Floryček Jméno a příjmení Jakub Dvořák Ročník 1 Měřeno dne Předn.sk.-Obor BIA 27.2.2007 Stud.skup. 13 Odevzdáno dne Příprava Opravy Učitel

Více

Název: Měření vlnové délky světla pomocí interference a difrakce

Název: Měření vlnové délky světla pomocí interference a difrakce Název: Měření vlnové délky světla pomocí interference a difrakce Autor: Doc. RNDr. Milan Rojko, CSc. Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: fyzika, matematika

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

VY_32_INOVACE_E 15 03

VY_32_INOVACE_E 15 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více