Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:

Rozměr: px
Začít zobrazení ze stránky:

Download "Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:"

Transkript

1 Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav: Binární (2) Oktanová (8) Desítková (10) Hexadecimální (16) Máme stejný počet čar v každé soustavě vyjádříme jinak 16(10) -> 20(8) -> 100(4) Boolova algebra řídí počítání ve dvojkové soustavě, sestavil George Bool 19. st, zakladatel logiky. Počítání ve dvojkové soustavě: a) sčítání = = =1 0+0=0 b) odčítání = = =0 0-1=1 (1)

2 c) násobení při násobení se postupuje tak, že 1. činitel vynásobím 2. činitelem zprava doleva a výsledky pak sečtu s fázovým posunem Převody z jedné číselné soustavy do soustavy jiné Převod z a do desítkové soustavy (váhové kódy) 5492 = Převod z dvojkové do desítkové soustavy = 89 Provádíme jednotlivé součty součinů a výsledkem je číslo v desítkové soustavě. Převod z dvojkové do osmičkové soustavy 8 = odzadu rozdělíme na trojice, pokud je třeba, dopíšeme na začátek nuly , ( ) 2 = (131) 8 Převod z dvojkové do šestnáctkové soustavy 16 = odzadu rozdělíme na čtveřice, pokud je třeba, dopíšeme na začátek nuly ,

3 5 9 0 E ( ) 2 = (59) 16 Převod z desítkové do osmičkové soustavy 130 : 8 = 16 : 8 = 2 : 8 = Směr čtení je opět pozpátku, začíná se tedy nulou, která stojí na pravé straně rovnice (ta se však podle úmluv na začátek čísla nepíše) a pak se pokračuje s připisováním zbytků po dělení zprava doleva, z čehož plyne: (130) 10 = (202) 8 Převod z osmičkové do desítkové soustavy (202) 8 = = (130) 10 Převod na římská čísla a naopak I když se s Římskými číslicemi v počítači setkáváme minimálně, je dobré se seznámit i s jejich převodem do desítkové soustavy (s převodem na Arabská čísla) a naopak. To ukazuje následující tabulka. římské desítkové I 1 V 5 X 10 L 50 C 100 D 500 M Znaky se skládají psaním od nejvyšší hodnoty k nejnižší. Menší hodnota před větší znamená odečet (Př. IV = 4). Takto se odečítá jen jediná číslice. (1975) 10 = MCMLXXV Převod z desítkové do dvojkové soustavy (postupné dělení) 130 : 2 = 65 : 2 = 32 : 2 = 16 : 2 = 8 : 2 = 4 : 2 = 2 : 2 = 1 : 2 = Směr čtení je pozpátku, začíná se nulou, která stojí na pravé straně rovnice (ta se však podle úmluv na začátek čísla nepíše) a pak se pokračuje s připisováním zbytků po dělení zprava doleva, z čehož plyne: (130) 10 = ( ) 2

4 Převádět lze též i desetinná čísla. Pro tento převod se používá metoda postupného násobení. Ta spočívá v tom, že číslo násobíme dvěmi tak dlouho, dokud není výsledek větší než jedna. Poté jedničku odřízneme a počítáme s číslem opět menším než jedna podle předchozího postupu. To opakujeme do té doby, než se nám začnou násobená čísla opakovat nebo již dále nemáme po odříznutí jedničky co s čím násobit. 0,3 2 = 0,6 2 = 1,2 0,2 2 = 0,4 2 = 0,8 2 = 1,6 0,6 2 = 1, (0,3) 10 = (0,01001) 2... číslo 1001 je periodické Převod ze šestnáctkové do desítkové soustavy (D7) 16 = = = (215) 10 Následující tabulka může sloužit jako jednoduchá pomůcka pro převod z desítkové do šestnáctkové soustavy (i naopak). Např. desítkově číslo 215 je v šestnáctkové soustavě vyjádřeno jako D7 (tam, kde se protnou řádky a sloupce je výsledek) A B C D E F 0_ _ _ _ _ _ _ _ _ _ A_ B_ C_ D_ E_ F_ d) celá záporná čísla Celé kladné číslo je uloženo v RAM jako 16 bitů. Zobrazení záporných čísel: přímé a nepřímé. Přímé Když je 15 bit 0 jde o číslo kladné, když je 1 je záporné.

5 Nepřímé Nepřímé lze provádět pomocí dvou variant: Inverzní kód nevýhodou je, že 0 může mít hodnotu +0 nebo 0, tuto eventualitu řeší kódování za pomoci doplňkového kódu Doplňkový kód Ke kódu inverznímu přičteme jedničku HČ bez přímé inverzní doplňkový kód BČ znaménka A B C D E F Necelá čísla Lze použít dvě metody: Uložení s pevnou řádovou čárkou Číslo se vždy převede na tvar 0,.. 15 bit značí znaménko. 14 bit 2-1 = 0,5 13 bit 2-2 = 0,25 12 bit 2-3 = 0,125...

6 Uložení s pohyblivou řadovou čárkou Jde o častější způsob vyjádření, kde jakékoliv číslo lze ve tvaru x=m*z e. m mantisa, z základ soustavy, e exponent. 123 = 0,23*10 2 0,123*10 3 U dvojkové soustavy je z = 2. Mantisa se bere ve tvaru menší než je, ale větší než 0,1. Tím se nemusí zobrazovat desetinná čárka, ta se zobrazí automaticky před největším řádem mantisy. Obsazení jednotlivých bitů 31 znaménko exponentu exponent 23 znaménko mantisy 22 0 mantisa Příklad 45, ,11 36, ,101 82, ,011 0, = 0,5 2-2 = 0,25 0, = 0,5 2-3 = 0,125 Kombinační obvody Z matematiky znáte logické funkce - negaci, logický součet, logický součin, implikaci a ekvivalenci. Zde je jejich přehled s pravdivostními tabulkami. Negace NOT Negace výroku A je výrok, který je pravdivý právě tehdy, když je výrok A nepravdivý (a opačně). A NOT A

7 Logický součet OR (+, ) Výrok A AND B je pravdivý právě tehdy, když je alespoň jeden z výroků A, B pravdivý. Logický součin AND (., ) A B A OR B (A + B) Výrok A OR B je pravdivý právě tehdy, když jsou oba výroky A, B pravdivé. Implikace => A B A OR B Výrok A=>B je NEPRAVDIVÝ právě tehdy, když A je nepravdivý a B je pravdivý. V ostatních případech je výrok A=>B pravdivý. Ekvivalence <=> A B A => B Výrok A<=>B je pravdivý právě tehdy, když jsou oba výroky A, B pravdivé nebo oba nepravdivé. A B A <=> B Prakticky se používají i další logické funkce: NOR, NAND a EXCLUSIVE-OR.

8 NOR Výrok A NOR B je pravdivý právě tehdy když je výrok A OR B nepravdivý ( NOR je negace logického součtu OR ). NAND A B A NOR B Výrok A NAND B je pravdivý právě tehdy když je výrok A AND B nepravdivý ( NAND je negace logického součinu AND ). EXCLUSIVE-OR (neekvivalence) A B A NOR B Výrok A EXCLUSIVE-OR B je pravdivý právě tehdy když je právě jeden z výroků A, B pravdivý ( EXCLUSIVE-OR je negace ekvivalence ). A B A NOR B Libovolnou logickou funkci je možné vyjádřit pomocí operace negace a kombinací logického součtu nebo logického součinu. Vyjádření implikace: výrok A=>B je totéž jako výrok (NOT A) OR B. Vyjádření ekvivalence: výrok A<=>B je totéž jako {(NOT A) AND (NOT B)} OR {A AND B} Vyjádření NOR: výrok A NOR B je totéž jako NOT(A OR B) Vyjádření NAND: výrok A NAND B je totéž jako NOT(A AND B) Vyjádření neekvivalence: výrok A EXCLUSIVE-OR B je totéž jako {(NOT A) AND B} OR {A AND (NOT B)} Chceme-li tedy sestrojit obvod, který by modeloval nějakou zadanou logickou funkci, musíme mít k dispozici obvody, které generují tyto základní logické funkce (NOT, AND, OR).

9 Elektronické obvody pro generaci uvedených funkcí nazýváme po řadě: invertor, hradlo AND a hradlo OR. Vezměme nejjednodušší možnou realizaci uvedených obvodů tzv. diodovou logiku. Používá se pozitivní logika i negativní logika. Přiřazení logických stavů 0 a 1 napěťovým úrovním je totiž zcela libovolné a záleží na tom kterém přístroji, jakého přiřazení používá. Pakliže stav logické 0 odpovídá nižšímu napětí na výstupu logického členu nežli stav logické 1, hovoříme o tzv. pozitivní logice. Je-li tomu naopak, tj. logické 0 odpovídá vyšší napětí nežli logické 1, pak se jedná o negativní logiku. Přitom je třeba zdůraznit, že nezáleží na velikosti napětí, obě mohou být kladná nebo obě záporná nebo jedno kladné a druhé záporné; pakliže logická 1 odpovídá kladnějšímu napětí, jedná se o pozitivní logiku, jinak je to logika negativní. Stejným způsobem se označuje logika tzv. dynamická (na rozdíl od právě popsané statické, neboli úrovňové logiky), kdy ovšem příslušné úrovně jsou na vstupech logických členů pouze po velmi krátkou dobu, tedy ve formě napěťových impulsů. Vzhledem k tomu, že parametry reálného logického členu se různí kus od kusu (užívají se odpory s určitou tolerancí, tranzistory a diody, které mohou mít různé parametry), není možné stanovit přesnou hodnotu napětí odpovídající logické 0 resp. 1 v té které logické síti. Místo toho se logické členy konstruují tak, aby nebyly citlivé na změnu napětí vstupních parametrů pokud tyto leží v určitém intervalu napětí. Viz obr.1. obr. 1 Například pro hradla TTL (transistor-transistor-logic) jsou příslušné intervaly následující: U vst (0) = max. 0,8 V U vst (1) = min. 2 V neboli pro logickou 0 je povolený interval vstupních napětí 0-0.8V pro logickou V. Hradlo samo má zaručovaná výstupní napětí:

10 U výst (1) = min. 2,4 V U výst (0) = max. 0,4 V tj. hluboce v povolené toleranci napětí vstupních. Napájecí napětí je (5± 0,25) V. Uvedené hodnoty jsou typické pro tzv. tranzistorovou logiku a byly implementovány u celé řady výrobců logických obvodů. Zdaleka to však nejsou jediné napěťové úrovně u logických obvodů používané. Hradla s tranzistory řízenými elektrickým polem mají logické úrovně okolo 0 V a 9 V a existuje i tzv. logika s vysokou šumovou imunitou HLL (high-level-logic), kde napěťová úroveň logické 1 je řádu V. S takovými napěťovými logickými úrovněmi pracují řídicí systémy v provozech, kde je zvýšená úroveň elektromagnetického rušení. Na druhé straně pro speciální přístroje s nízkým napájecím napětím (náramkové hodinky) byly vyvinuty obvody, kde jsou logické úrovně mezi 0 V a 3 V i níže. Nadále se budeme zabývat pouze pozitivní logikou. Logická hradla Hradlo OR Hradlo tohoto typu je vybaveno (na jeho výstupu je úroveň logické 1), je-li alespoň jeden z jeho vstupů vybaven. X Y X+Y obr. 2 Jestliže předpokládáme ideální diody (tj. nekonečný odpor v závěrném směru a nulový v propustném směru), je funkce obvodu následující: Pro vstupní napětí U x > u nebo U y > u je odpovídající dioda otevřena a výstupní napětí kombinace je rovno U x nebo U y (předpokládáme-li, že zdroje napětí U x a U y i zdroj napětí u mají vnitřní odpor nulový). Je-li

11 např. napětí U x na vstupu X, pak dioda D y je uzavřená, pokud napětí na vstupu U y není větší než U x. Pak se naopak zavře dioda D x, vede D y a výstup kopíruje napětí na vstupu Y. Pokud používáme reálné diody a reálné zdroje napětí logických úrovní X a Y, musíme počítat s jejich vnitřním odporem r i, odporem diod v propustném směru a se zbytkovým napětím na diodách U D (u germaniových diod 0,2V, u křemíkových 0,7V). Zbytkové napětí na diodách má tu výhodu, že není třeba používat zdroj napětí, který nám předtím vytvářel oblast napětí pro úroveň logické 0 (logická 0 byla od 0V do u V), neboť diody se neotevřou, pokud vstupní napětí nepřekročí U D. Zahrneme-li odpor diod v propustném směru do vnitřních odporů zdrojů logických úrovní, bude při aplikaci napětí U x = U v napětí na výstupu rovno Jsou-li oba vstupy na úrovni E, bude výstupní napětí Zkuste si tyto vztahy odvodit. Hradlo AND Hradlo tohoto typu je vybaveno (na jeho výstupu je úroveň logické 1), jsou-li všechny jeho vstupy vybaveny. X Y XY obr. 3

12 Hradlo NOT (invertor) obr. 4 Je ho možno vytvořit transistorovým zesilovačem, pracujícím ovšem ne v lineárním, ale ve spínacím režimu. Je zřejmé, že zapojíme-li tranzistor do obvodu podle obr. 4 a budeme-li zvětšovat proud do jeho báze, bude napětí mezi kolektorem a emitorem klesat. Od určitého proudu báze však zjistíme, že napětí U KE se prakticky nesnižuje - transistor je ve stavu nasycení. Je to stav, kdy jak emitorový přechod, tak kolektorový jsou pólovány v propustném směru, a napětí mezi kolektorem s emitorem je v podstatě dáno rozdílem napětí na přechodu báze-emitor a na přechodu báze - kolektor. Prakticky u křemíkového tranzistoru je toto tzv. saturační napětí U sat asi 0,2 V a u germaniového tranzistoru asi 0,1 V. Báze je při tom nasycena minoritními nosiči náboje a veškerý přírůstek proudu báze jde na úkor přírůstku proudu emitoru. Přestaneme-li dodávat proud do báze tranzistoru, uzavřou se obě diody (BE, BK) a přebytek minoritních nosičů v bázi je opět odsáván el. polem v oblasti kolektorového přechodu. Je zřejmé, že čím více minoritních nosičů bylo v bázi před vypnutím, tím déle bude trvat, než kolektor odsaje všechny minoritní nosiče v bázi a kolektorový proud klesne na nulu. Proto je vhodné zabezpečit, aby tranzistor v sepnutém stavu pracoval na okraji oblasti nasycení: toho lze dosáhnout např. použitím tzv. desaturačních diod, zapojených mezi bázi a kolektor. Kondenzátor C B napomáhá urychlení přechodového procesu odstranění minoritních nosičů z báze, když měníme napětí vstupu z 1 na 0. Funkce obvodu na obr. 4 je tedy následující: při aplikaci napětí o logické úrovni 1 na vstup X invertoru zvětšíme proud báze natolik, že tranzistor uvedeme do saturace. Na výstupu NOT X je tedy napětí U, které je obvykle ¼ až 1/3 povoleného rozsahu napětí pro logickou 0. Přivedeme-li na vstup zařízení napětí o logické úrovni 0, je tranzistor vypnut a na jeho

13 kolektoru (tedy na výstupu invertoru) je plné napájecí napětí volené tak, aby odpovídalo úrovni logické 1. Obvod tedy plní logickou funkci negace. De Morganovy zákony: de Morganovy zákony určují vztah mezi sjednocením, průnikem a doplňkem množiny. Mějme množiny A,B a nechť označuje doplněk dané množiny. Potom platí vztahy De Morganovy zákony se uplatňují především v Booleově algebře. Karnaughova mapa umožňuje: zápis disjunkční funkce nebo pravdivostní tabulky. její minimalizaci nebo jiné logické úpravy, příkladem možných úprav je rozvoj funkce až do úrovně UDNT. inverzi funkce. určení duální funkce, vzhledem k zápisu zpravidla v konjunkčním tvaru. Vidíme, že díky mapě můžeme realizovat prakticky všechny operace, jimiž jsme se doposud zabývali na základě Booleovy algebry. Z toho vyplývá, že mezi algebraickým vyjádřením funkce, pravdivostní tabulkou a Karnaughovou mapou musí existovat systém vzájemného přiřazení jednotlivých proměnných a logických operátorů. Je zajištěn na úrovni elementárních konjunkcí UDNT, které jsou v mapě topologicky seřazeny v definovaném pořadí podle principu sousedních mintermu. Jednotlivá políčka mapy, se ve všech směrech (nahoru, dolů, doleva a doprava) mohou a musí odlišovat od druhého pouze inverzí jedné jediné proměnné. Tím je zcela zaručen definovaný souřadnicový systém mapy. Aby byla zajištěna vzájemná kompatibilita, orientace ve všech mapách různého původu a nakonec také přehlednost vlastní práce, dodržuje se zásada umisťování mintermu se všemi proměnnými v inverzním tvary /A /B /C /D do levého horního rohu mapy. Tím je definována jednotná struktura mapy pro libovolný počet proměnných.

14 Pro názornost je v každém políčku vyznačeny tvary (přímý i inverzní) všech proměnných příslušného mintermu. Pro mapu o dvou proměnných platí pouze proměnné A, B. Pro mapu o třech proměnných zase proměnné A, B, C. Ve skutečnosti prostor uvnitř každého políčka slouží k vepsání logické hodnoty jeho mintermu, adresa je určena souřadnicovým systémem proměnných, vyznačených na okraji mapy. Přitom se zapisují jen proměnné v přímém tvaru, za jejich inverze se považují všechna zbylá, neoznačená políčka na stejné vnější straně mapy. Následující obrázky ukazují Karnaughovy mapy pro 2, 3 a 4 proměnné. Mapa dvou proměnných, odpovídá dvourozměrnému plošnému znázornění. Mapa tří proměnných, odpovídá třírozměrnému (kubickému) znázornění. Mapa čtyř proměnných, odpovídá čtyřrozměrnému prostoru. Pokud jde o způsob hodnotového vyjádření políčka, je zvykem, že se zapisuje pouze 1. Nevyplněný minterm se považuje za 0. Minterm neúplně definované tabulky se většinou označuje jako velké písmeno X. Cílem souřadnosti mintermu pochopitelně není zavést souřadný systém mapy. Ten je nutnou podmínkou k tomu, aby pomocí mapy bylo možno realizovat logické operace. U mapy dvou proměnných lze jednou souřadnou definovat všechny mintermy v příslušném sloupci nebo řádku, protože všechny obsahují tutéž proměnnou ve shodném (přímém) nebo inverzním tvaru. U mapy tří proměnných lze obdobným způsobem, jednu proměnnou, definovat všechny (podobné) mintermy jednoho řádku a dvou sloupců. U mapy čtyř proměnných stačí pro obdobný popis jedna proměnná jak pro dva řádky, tak pro dva sloupce. Tato skutečnost umožňuje při minimalizaci funkce v určitých případech chápat a používat taková políčka mapy, která vytvářejí sdružené řetězce mintermu (souvislé plochy sudého

15 počtu mintermu se shodnýma hodnotami 1) jako vyjádření DNT jejich společné funkce. Přitom se podle rozsahu řetězce vylučuje jedna, dvě či tři proměnné a tedy i patřičným způsobem se zjednodušuje celý zápis funkce.

Číselné vyjádření hodnoty. Kolik váží hrouda zlata?

Číselné vyjádření hodnoty. Kolik váží hrouda zlata? Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží

Více

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace.

12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. 12. Booleova algebra, logická funkce určitá a neurčitá, realizace logických funkcí, binární kódy pro algebraické operace. Logická proměnná - proměnná nesoucí logickou hodnotu Logická funkce - funkce přiřazující

Více

Binární logika Osnova kurzu

Binární logika Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů 6) Vlastnosti regulátorů 7) Stabilita

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Aritmetické operace a obvody pro jejich realizaci

Aritmetické operace a obvody pro jejich realizaci Kapitola 4 Aritmetické operace a obvody pro jejich realizaci 4.1 Polyadické číselné soustavy a jejich vlastnosti Polyadické soustavy jsou určeny přirozeným číslem z, kterému se říká základ nebo báze dané

Více

DIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY

DIGITÁLN LNÍ OBVODY A MIKROPROCESORY 1. ZÁKLADNÍ POJMY DIGITÁLNÍ TECHNIKY DIGITÁLN LNÍ OBVODY A MIKROPROCESORY BDOM Prof. Ing. Radimír Vrba, CSc. Doc. Ing. Pavel Legát, CSc. Ing. Radek Kuchta Ing. Břetislav Mikel Ústav mikroelektroniky FEKT VUT @feec.vutbr.cz

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY KOMBINAČNÍ LOGICKÉ OBVODY Použité zdroje: http://cs.wikipedia.org/wiki/logická_funkce http://www.ibiblio.org http://martin.feld.cvut.cz/~kuenzel/x13ups/log.jpg http://www.mikroelektro.utb.cz http://www.elearn.vsb.cz/archivcd/fs/zaut/skripta_text.pdf

Více

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Základy číslicové techniky. 2 + 1 z, zk

Základy číslicové techniky. 2 + 1 z, zk Základy číslicové techniky 2 + 1 z, zk Ing. Vít Fábera, K614 e-mail: fabera@fd.cvut.cz K508, 5. patro, laboratoř, 2 2435 9555 Ing. Tomáš Musil, Ph.D., K620 e-mail: musil@asix.cz K508, 5. patro, laboratoř,

Více

Architektura počítačů Logické obvody

Architektura počítačů Logické obvody Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální

Více

Kódováni dat. Kódy používané pro strojové operace

Kódováni dat. Kódy používané pro strojové operace Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro

Více

4. Elektronické logické členy. Elektronické obvody pro logické členy

4. Elektronické logické členy. Elektronické obvody pro logické členy 4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

ČÍSELNÉ SOUSTAVY PŘEVODY

ČÍSELNÉ SOUSTAVY PŘEVODY ČÍSELNÉ SOUSTAVY V každodenním životě je soustava desítková (decimální, dekadická) o základu Z=10. Tato soustava používá číslice 0, 1, 2, 3, 4, 5, 6, 7, 8 a 9, není však vhodná pro počítače nebo číslicové

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD

1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD .. Minimalizace logické funkce a implementace do cílového programovatelného obvodu Zadání. Navrhněte obvod realizující neminimalizovanou funkci (úplný term) pomocí hradel AND, OR a invertorů. Zaznamenejte

Více

2. LOGICKÉ OBVODY. Kombinační logické obvody

2. LOGICKÉ OBVODY. Kombinační logické obvody Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY

Více

Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19

Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19 Algoritmy I Číselné soustavy přečíst!!! Číselné soustavy Každé číslo lze zapsat v poziční číselné soustavě ve tvaru: a n *z n +a n-1 *z n-1 +. +a 1 *z 1 +a 0 *z 0 +a -1 *z n-1 +a -2 *z -2 +.. V dekadické

Více

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.

Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

SČÍTAČKA, LOGICKÉ OBVODY ÚVOD TEORIE

SČÍTAČKA, LOGICKÉ OBVODY ÚVOD TEORIE SČÍTAČKA, LOGICKÉ OBVODY ÚVOD Konzultanti: Peter Žilavý, Jindra Vypracovali: Petr Koupý, Martin Pokorný Datum: 12.7.2006 Naším úkolem bylo sestrojit pomocí logických obvodů (tzv. hradel) jednoduchou 4

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

Struktura a architektura počítačů (BI-SAP) 5

Struktura a architektura počítačů (BI-SAP) 5 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 5 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy

Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Ústav radioelektroniky Vysoké učení technické v Brně Číselné soustavy v mikroprocesorové technice Mikroprocesorová technika a embedded systémy Přednáška 8 doc. Ing. Tomáš Frýza, Ph.D. listopad 2012 Obsah

Více

Základní jednotky používané ve výpočetní technice

Základní jednotky používané ve výpočetní technice Základní jednotky používané ve výpočetní technice Nejmenší jednotkou informace je bit [b], který může nabývat pouze dvou hodnot 1/0 (ano/ne, true/false). Tato jednotka není dostatečná pro praktické použití,

Více

PJC Cvičení #2. Číselné soustavy a binární reprezentace proměnných

PJC Cvičení #2. Číselné soustavy a binární reprezentace proměnných PJC Cvičení #2 Číselné soustavy a binární reprezentace proměnných Číselné soustavy Desítková (decimální) kdo nezná, tak...!!! Dvojková (binární) - nejjednodušší Šestnáctková (hexadecimální) - nejpoužívanější

Více

Fz =a z + a z +...+a z +a z =

Fz =a z + a z +...+a z +a z = Polyadické číselné soustavy - převody M-místná skupina prvků se z-stavovou abecedou umožňuje zobrazit z m čísel. Zjistíme, že stačí vhodně zvolit číslo m, abychom mohli zobrazit libovolné číslo menší než

Více

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.

Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D. Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Základní invertor v technologii CMOS dva tranzistory: T1 vodivostní kanál typ N T2 vodivostní kanál typ P při u VST = H nebo L je klidový proud velmi malý

Více

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí

Booleova algebra. ZákonyBooleovy algebry Vyjádření logických funkcí Booleova algebra ZákonyBooleovy algebry Vyjádření logických funkcí pravdivostní tabulka logický výraz seznam indexů vstupních písmen mapa vícerozměrná krychle 30-1-13 O. Novák 1 Booleova algebra Booleova

Více

Měření základních vlastností logických IO TTL

Měření základních vlastností logických IO TTL Měření základních vlastností logických IO TTL 1. Zadání: A. Kombinační obvody: U jednoho hradla NAND TTL (IO 7400): a) Změřte převodní statickou charakteristiku U výst = f(u vst ) b) Změřte vstupní charakteristiku

Více

Sylabus kurzu Elektronika

Sylabus kurzu Elektronika Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-

Více

Převody mezi číselnými soustavami

Převody mezi číselnými soustavami Převody mezi číselnými soustavami 1. Převod čísla do dekadické soustavy,kde Z je celé číslo, pro které platí a Řešením je převod pomocí Hornerova schématu Příklad: Převeďte číslo F 3 = 2101 do soustavy

Více

Logické řízení. Náplň výuky

Logické řízení. Náplň výuky Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika

Více

Minimalizace logické funkce

Minimalizace logické funkce VYSOKÉ UČENÍ TEHNIKÉ V RNĚ FKULT ELEKTROTEHNIKY KOMUNIKČNÍH TEHNOLOGIÍ Ústav mikroelektroniky LORTORNÍ VIČENÍ Z PŘEDMĚTU Digitální integrované obvody Minimalizace logické funkce Michal Krajíček Martin

Více

KOMBINAČNÍ LOGICKÉ OBVODY

KOMBINAČNÍ LOGICKÉ OBVODY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Logické proměnné a logické funkce

Logické proměnné a logické funkce Booleova algebra Logické proměnné a logické funkce Logická proměnná je veličina, která může nabývat pouze dvou hodnot, označených 0 a I (tedy dvojková proměnná) a nemůže se spojitě měnit Logická funkce

Více

6 Algebra blokových schémat

6 Algebra blokových schémat 6 Algebra blokových schémat Operátorovým přenosem jsme doposud popisovali chování jednotlivých dynamických členů. Nic nám však nebrání, abychom přenosem popsali dynamické vlastnosti složitějších obvodů,

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

Mikroprocesorová technika (BMPT)

Mikroprocesorová technika (BMPT) Mikroprocesorová technika (BMPT) Přednáška č. 10 Číselné soustavy v mikroprocesorové technice Ing. Tomáš Frýza, Ph.D. Obsah přednášky Číselné soustavy v mikroprocesorové technice Dekadická, binární, hexadecimální

Více

Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody.

Y36SAP. Osnova. Číselné soustavy a kódy, převody, aritmetické operace Y36SAP Poziční číselné soustavy a převody. Y36SAP Číselné soustavy a kódy, převody, aritmetické operace Tomáš Brabec, Miroslav Skrbek - X36SKD-cvičení. Úpravy pro SAP Hana Kubátová Osnova Poziční číselné soustavy a převody Dvojková soust., převod

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Data a datové typy 1 / 28 Obsah přednášky Základní datové typy Celá čísla Reálná čísla Znaky 2 / 28 Organizace dat Výběr vhodné datvé struktry různá paměťová náročnost různá

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Výrazy Operátory Výrazy Verze pro akademický rok 2012/2013 1 Operace, operátory Unární jeden operand, operátor se zapisuje ve většině případů před operand, v některých případech

Více

Principy počítačů. Prof. RNDr. Peter Mikulecký, PhD.

Principy počítačů. Prof. RNDr. Peter Mikulecký, PhD. Principy počítačů Prof. RNDr. Peter Mikulecký, PhD. Číselné soustavy Obsah přednášky: Přednáška 3 Číselné soustavy a převody mezi nimi Kódy, přímý, inverzní a doplňkový kód Znakové sady Úvod Člověk se

Více

Obsah DÍL 1. Předmluva 11

Obsah DÍL 1. Předmluva 11 DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26

Více

P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody

P4 LOGICKÉ OBVODY. I. Kombinační Logické obvody P4 LOGICKÉ OBVODY I. Kombinační Logické obvody I. a) Základy logiky Zákony Booleovy algebry 1. Komutativní zákon duální forma a + b = b + a a. b = b. a 2. Asociativní zákon (a + b) + c = a + (b + c) (a.

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.7. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ..07/.5.00/34.0205 Šablona: III/2 Informační technologie

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Binární logika Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií

Více

Jak v Javě primitivní datové typy a jejich reprezentace. BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické

Jak v Javě primitivní datové typy a jejich reprezentace. BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické Jak v Javě primitivní datové typy a jejich reprezentace BD6B36PJV 002 Fakulta elektrotechnická České vysoké učení technické Obsah Celočíselný datový typ Reálný datový typ Logický datový typ, typ Boolean

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

Číselné soustavy. Binární číselná soustava

Číselné soustavy. Binární číselná soustava 12. Číselné soustavy, binární číselná soustava. Kódování informací, binární váhový kód, kódování záporných čísel. Standardní jednoduché datové typy s pevnou a s pohyblivou řádovou tečkou. Základní strukturované

Více

Měření na unipolárním tranzistoru

Měření na unipolárním tranzistoru Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární

Více

Sada 1 - Základy programování

Sada 1 - Základy programování S třední škola stavební Jihlava Sada 1 - Základy programování 04. Datové typy, operace, logické operátory Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284

Více

Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly

Základní principy zobrazení čísla Celá čísla s pevnou řádovou čárkou Zobrazení reálných čísel Aritmetika s binárními čísly Počítačové systémy Zobrazení čísel v počítači Miroslav Flídr Počítačové systémy LS 2007-1/21- Západočeská univerzita v Plzni Vážený poziční kód Obecný předpis čísla vyjádřeného v pozičním systému: C =

Více

Neuronové sítě Minimalizace disjunktivní normální formy

Neuronové sítě Minimalizace disjunktivní normální formy Neuronové sítě Minimalizace disjunktivní normální formy Zápis logické funkce Logická funkce f : {0, 1} n {0, 1} Zápis základní součtový tvar disjunktivní normální forma (DNF) základní součinový tvar konjunktivní

Více

MATA Př 3. Číselné soustavy. Desítková soustava (dekadická) základ 10, číslice 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

MATA Př 3. Číselné soustavy. Desítková soustava (dekadická) základ 10, číslice 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. MATA Př 3 Číselné soustavy Poziční číselná soustava je dnes převládající způsob písemné reprezentace čísel dokonce pokud se dnes mluví o číselných soustavách, jsou tím obvykle myšleny soustavy poziční.

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII KOMBINAČNÍ LOGICKÉ OBVODY

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII KOMBINAČNÍ LOGICKÉ OBVODY Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 5.4.1 KOMBINAČNÍ LOGICKÉ OBVODY Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Jiří Kolář Střední průmyslová škola Uherský Brod, 2010 Projekt je

Více

Číselné soustavy. Ve světě počítačů se využívají tři základní soustavy:

Číselné soustavy. Ve světě počítačů se využívají tři základní soustavy: Číselné soustavy Ve světě počítačů se využívají tři základní soustavy: dekadická binární hexadecimální patří mezi soustavy poziční, tj. desítková hodnota každé číslice (znaku) závisí na její pozici vzhledem

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

2. ÚVOD DO OVLÁDACÍ TECHNIKY

2. ÚVOD DO OVLÁDACÍ TECHNIKY Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2. ÚVOD DO OVLÁDACÍ TECHNIKY OVLÁDACÍ TECHNIKA A LOGICKÉ ŘÍZENÍ 2.1.5 LOGICKÉ FUNKCE Cíle: Po prostudování

Více

Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2.

Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2. Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R 00 kω, φ 5mW/cm 2. Fotovoltaický režim: fotodioda pracuje jako zdroj (s paralelně zapojeným odporem-zátěží). Obvod je popsán

Více

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace

LOGICKÉ OBVODY 2 kombinační obvody, minimalizace LOGICKÉ OBVODY 2 kombinační obvody, minimalizace logické obvody kombinační logické funkce a jejich reprezentace formy popisu tabulka, n-rozměrné krychle algebraický zápis mapy 9..28 Logické obvody - 2

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Analogově-číslicové převodníky ( A/D )

Analogově-číslicové převodníky ( A/D ) Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu

Více

PŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah

PŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah PŘEDNÁŠKA 1 - OBSAH Přednáška 1 - Obsah i 1 Analogová integrovaná technika (AIT) 1 1.1 Základní tranzistorová rovnice... 1 1.1.1 Transkonduktance... 2 1.1.2 Výstupní dynamická impedance tranzistoru...

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.

Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1. Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Matematika pro informatiky KMA/MATA

Matematika pro informatiky KMA/MATA Matematika pro informatiky KMA/MATA Informace k předmětu Mgr. Přemysl Rosa rosapr00@pf.jcu.cz, J349 Konzultační hodiny v ZS: úterý 10-11, čtvrtek 15-16 nebo individuálně po předchozí domluvě aktivní účast

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme:

1. lekce. do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: 1. lekce 1. Minimální program do souboru main.c uložíme následující kód a pomocí F9 ho zkompilujeme a spustíme: #include #include int main() { printf("hello world!\n"); return 0; 2.

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

Bipolární tranzistory

Bipolární tranzistory Bipolární tranzistory h-parametry, základní zapojení, vysokofrekvenční vlastnosti, šumy, tranzistorový zesilovač, tranzistorový spínač Bipolární tranzistory (bipolar transistor) tranzistor trojpól, zapojení

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ

3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ 3. REALIZACE KOMBINAČNÍCH LOGICKÝCH FUNKCÍ Realizace kombinační logické funkce = sestavení zapojení obvodu, který ze vstupních proměnných vytvoří výstupní proměnné v souhlasu se zadanou logickou funkcí.

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

ASYNCHRONNÍ ČÍTAČE Použité zdroje:

ASYNCHRONNÍ ČÍTAČE Použité zdroje: ASYNCHRONNÍ ČÍTAČE Použité zdroje: Antošová, A., Davídek, V.: Číslicová technika, KOPP, České Budějovice 2007 http://www.edunet.souepl.cz www.sse-lipniknb.cz http://www.dmaster.wz.cz www.spszl.cz http://mikroelektro.utb.cz

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing.

VY_32_INOVACE_CTE_2.MA_04_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště, Dubno Ing. Číslo projektu Číslo materiálu Náev škol Autor Tematická oblast Ročník CZ..7/.5./34.58 VY_32_INOVACE_CTE_2.MA_4_Aritmetické operace v binární soustavě Střední odborná škola a Střední odborné učiliště,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY

ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY Číslicová technika- učební texty. (HS určeno pro SPŠ Zlín) Str.: - - ČÍSLIOVÁ TEHNIK UČENÍ TEXTY (Určeno pro vnitřní potřebu SPŠ Zlín) Zpracoval: ing. Kovář Josef, ing. Hanulík Stanislav Číslicová technika-

Více

OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ

OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ Odlišnosti silových a ovládacích obvodů Logické funkce ovládacích obvodů Přístrojová realizace logických funkcí Programátory pro řízení procesů Akční členy ovládacích

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky.

Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky. Booleovská algebra. Pravdivostní tabulka. Karnaughova mapa. Booleovské n-krychle. Základní zákony. Unární a binární funkce. Podmínky. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více