Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Číselné soustavy: Druhy soustav: Počítání ve dvojkové soustavě:"

Transkript

1 Přednášející : Ing. Petr Haberzettl Zápočet : práce na doma hlavně umět vysvětlit Ze 120 lidí udělá maximálně 25 :D Literatura : Frištacký - Logické systémy Číselné soustavy: Nevyužíváme 10 Druhy soustav: Binární (2) Oktanová (8) Desítková (10) Hexadecimální (16) Máme stejný počet čar v každé soustavě vyjádříme jinak 16(10) -> 20(8) -> 100(4) Boolova algebra řídí počítání ve dvojkové soustavě, sestavil George Bool 19. st, zakladatel logiky. Počítání ve dvojkové soustavě: a) sčítání = = =1 0+0=0 b) odčítání = = =0 0-1=1 (1)

2 c) násobení při násobení se postupuje tak, že 1. činitel vynásobím 2. činitelem zprava doleva a výsledky pak sečtu s fázovým posunem Převody z jedné číselné soustavy do soustavy jiné Převod z a do desítkové soustavy (váhové kódy) 5492 = Převod z dvojkové do desítkové soustavy = 89 Provádíme jednotlivé součty součinů a výsledkem je číslo v desítkové soustavě. Převod z dvojkové do osmičkové soustavy 8 = odzadu rozdělíme na trojice, pokud je třeba, dopíšeme na začátek nuly , ( ) 2 = (131) 8 Převod z dvojkové do šestnáctkové soustavy 16 = odzadu rozdělíme na čtveřice, pokud je třeba, dopíšeme na začátek nuly ,

3 5 9 0 E ( ) 2 = (59) 16 Převod z desítkové do osmičkové soustavy 130 : 8 = 16 : 8 = 2 : 8 = Směr čtení je opět pozpátku, začíná se tedy nulou, která stojí na pravé straně rovnice (ta se však podle úmluv na začátek čísla nepíše) a pak se pokračuje s připisováním zbytků po dělení zprava doleva, z čehož plyne: (130) 10 = (202) 8 Převod z osmičkové do desítkové soustavy (202) 8 = = (130) 10 Převod na římská čísla a naopak I když se s Římskými číslicemi v počítači setkáváme minimálně, je dobré se seznámit i s jejich převodem do desítkové soustavy (s převodem na Arabská čísla) a naopak. To ukazuje následující tabulka. římské desítkové I 1 V 5 X 10 L 50 C 100 D 500 M Znaky se skládají psaním od nejvyšší hodnoty k nejnižší. Menší hodnota před větší znamená odečet (Př. IV = 4). Takto se odečítá jen jediná číslice. (1975) 10 = MCMLXXV Převod z desítkové do dvojkové soustavy (postupné dělení) 130 : 2 = 65 : 2 = 32 : 2 = 16 : 2 = 8 : 2 = 4 : 2 = 2 : 2 = 1 : 2 = Směr čtení je pozpátku, začíná se nulou, která stojí na pravé straně rovnice (ta se však podle úmluv na začátek čísla nepíše) a pak se pokračuje s připisováním zbytků po dělení zprava doleva, z čehož plyne: (130) 10 = ( ) 2

4 Převádět lze též i desetinná čísla. Pro tento převod se používá metoda postupného násobení. Ta spočívá v tom, že číslo násobíme dvěmi tak dlouho, dokud není výsledek větší než jedna. Poté jedničku odřízneme a počítáme s číslem opět menším než jedna podle předchozího postupu. To opakujeme do té doby, než se nám začnou násobená čísla opakovat nebo již dále nemáme po odříznutí jedničky co s čím násobit. 0,3 2 = 0,6 2 = 1,2 0,2 2 = 0,4 2 = 0,8 2 = 1,6 0,6 2 = 1, (0,3) 10 = (0,01001) 2... číslo 1001 je periodické Převod ze šestnáctkové do desítkové soustavy (D7) 16 = = = (215) 10 Následující tabulka může sloužit jako jednoduchá pomůcka pro převod z desítkové do šestnáctkové soustavy (i naopak). Např. desítkově číslo 215 je v šestnáctkové soustavě vyjádřeno jako D7 (tam, kde se protnou řádky a sloupce je výsledek) A B C D E F 0_ _ _ _ _ _ _ _ _ _ A_ B_ C_ D_ E_ F_ d) celá záporná čísla Celé kladné číslo je uloženo v RAM jako 16 bitů. Zobrazení záporných čísel: přímé a nepřímé. Přímé Když je 15 bit 0 jde o číslo kladné, když je 1 je záporné.

5 Nepřímé Nepřímé lze provádět pomocí dvou variant: Inverzní kód nevýhodou je, že 0 může mít hodnotu +0 nebo 0, tuto eventualitu řeší kódování za pomoci doplňkového kódu Doplňkový kód Ke kódu inverznímu přičteme jedničku HČ bez přímé inverzní doplňkový kód BČ znaménka A B C D E F Necelá čísla Lze použít dvě metody: Uložení s pevnou řádovou čárkou Číslo se vždy převede na tvar 0,.. 15 bit značí znaménko. 14 bit 2-1 = 0,5 13 bit 2-2 = 0,25 12 bit 2-3 = 0,125...

6 Uložení s pohyblivou řadovou čárkou Jde o častější způsob vyjádření, kde jakékoliv číslo lze ve tvaru x=m*z e. m mantisa, z základ soustavy, e exponent. 123 = 0,23*10 2 0,123*10 3 U dvojkové soustavy je z = 2. Mantisa se bere ve tvaru menší než je, ale větší než 0,1. Tím se nemusí zobrazovat desetinná čárka, ta se zobrazí automaticky před největším řádem mantisy. Obsazení jednotlivých bitů 31 znaménko exponentu exponent 23 znaménko mantisy 22 0 mantisa Příklad 45, ,11 36, ,101 82, ,011 0, = 0,5 2-2 = 0,25 0, = 0,5 2-3 = 0,125 Kombinační obvody Z matematiky znáte logické funkce - negaci, logický součet, logický součin, implikaci a ekvivalenci. Zde je jejich přehled s pravdivostními tabulkami. Negace NOT Negace výroku A je výrok, který je pravdivý právě tehdy, když je výrok A nepravdivý (a opačně). A NOT A

7 Logický součet OR (+, ) Výrok A AND B je pravdivý právě tehdy, když je alespoň jeden z výroků A, B pravdivý. Logický součin AND (., ) A B A OR B (A + B) Výrok A OR B je pravdivý právě tehdy, když jsou oba výroky A, B pravdivé. Implikace => A B A OR B Výrok A=>B je NEPRAVDIVÝ právě tehdy, když A je nepravdivý a B je pravdivý. V ostatních případech je výrok A=>B pravdivý. Ekvivalence <=> A B A => B Výrok A<=>B je pravdivý právě tehdy, když jsou oba výroky A, B pravdivé nebo oba nepravdivé. A B A <=> B Prakticky se používají i další logické funkce: NOR, NAND a EXCLUSIVE-OR.

8 NOR Výrok A NOR B je pravdivý právě tehdy když je výrok A OR B nepravdivý ( NOR je negace logického součtu OR ). NAND A B A NOR B Výrok A NAND B je pravdivý právě tehdy když je výrok A AND B nepravdivý ( NAND je negace logického součinu AND ). EXCLUSIVE-OR (neekvivalence) A B A NOR B Výrok A EXCLUSIVE-OR B je pravdivý právě tehdy když je právě jeden z výroků A, B pravdivý ( EXCLUSIVE-OR je negace ekvivalence ). A B A NOR B Libovolnou logickou funkci je možné vyjádřit pomocí operace negace a kombinací logického součtu nebo logického součinu. Vyjádření implikace: výrok A=>B je totéž jako výrok (NOT A) OR B. Vyjádření ekvivalence: výrok A<=>B je totéž jako {(NOT A) AND (NOT B)} OR {A AND B} Vyjádření NOR: výrok A NOR B je totéž jako NOT(A OR B) Vyjádření NAND: výrok A NAND B je totéž jako NOT(A AND B) Vyjádření neekvivalence: výrok A EXCLUSIVE-OR B je totéž jako {(NOT A) AND B} OR {A AND (NOT B)} Chceme-li tedy sestrojit obvod, který by modeloval nějakou zadanou logickou funkci, musíme mít k dispozici obvody, které generují tyto základní logické funkce (NOT, AND, OR).

9 Elektronické obvody pro generaci uvedených funkcí nazýváme po řadě: invertor, hradlo AND a hradlo OR. Vezměme nejjednodušší možnou realizaci uvedených obvodů tzv. diodovou logiku. Používá se pozitivní logika i negativní logika. Přiřazení logických stavů 0 a 1 napěťovým úrovním je totiž zcela libovolné a záleží na tom kterém přístroji, jakého přiřazení používá. Pakliže stav logické 0 odpovídá nižšímu napětí na výstupu logického členu nežli stav logické 1, hovoříme o tzv. pozitivní logice. Je-li tomu naopak, tj. logické 0 odpovídá vyšší napětí nežli logické 1, pak se jedná o negativní logiku. Přitom je třeba zdůraznit, že nezáleží na velikosti napětí, obě mohou být kladná nebo obě záporná nebo jedno kladné a druhé záporné; pakliže logická 1 odpovídá kladnějšímu napětí, jedná se o pozitivní logiku, jinak je to logika negativní. Stejným způsobem se označuje logika tzv. dynamická (na rozdíl od právě popsané statické, neboli úrovňové logiky), kdy ovšem příslušné úrovně jsou na vstupech logických členů pouze po velmi krátkou dobu, tedy ve formě napěťových impulsů. Vzhledem k tomu, že parametry reálného logického členu se různí kus od kusu (užívají se odpory s určitou tolerancí, tranzistory a diody, které mohou mít různé parametry), není možné stanovit přesnou hodnotu napětí odpovídající logické 0 resp. 1 v té které logické síti. Místo toho se logické členy konstruují tak, aby nebyly citlivé na změnu napětí vstupních parametrů pokud tyto leží v určitém intervalu napětí. Viz obr.1. obr. 1 Například pro hradla TTL (transistor-transistor-logic) jsou příslušné intervaly následující: U vst (0) = max. 0,8 V U vst (1) = min. 2 V neboli pro logickou 0 je povolený interval vstupních napětí 0-0.8V pro logickou V. Hradlo samo má zaručovaná výstupní napětí:

10 U výst (1) = min. 2,4 V U výst (0) = max. 0,4 V tj. hluboce v povolené toleranci napětí vstupních. Napájecí napětí je (5± 0,25) V. Uvedené hodnoty jsou typické pro tzv. tranzistorovou logiku a byly implementovány u celé řady výrobců logických obvodů. Zdaleka to však nejsou jediné napěťové úrovně u logických obvodů používané. Hradla s tranzistory řízenými elektrickým polem mají logické úrovně okolo 0 V a 9 V a existuje i tzv. logika s vysokou šumovou imunitou HLL (high-level-logic), kde napěťová úroveň logické 1 je řádu V. S takovými napěťovými logickými úrovněmi pracují řídicí systémy v provozech, kde je zvýšená úroveň elektromagnetického rušení. Na druhé straně pro speciální přístroje s nízkým napájecím napětím (náramkové hodinky) byly vyvinuty obvody, kde jsou logické úrovně mezi 0 V a 3 V i níže. Nadále se budeme zabývat pouze pozitivní logikou. Logická hradla Hradlo OR Hradlo tohoto typu je vybaveno (na jeho výstupu je úroveň logické 1), je-li alespoň jeden z jeho vstupů vybaven. X Y X+Y obr. 2 Jestliže předpokládáme ideální diody (tj. nekonečný odpor v závěrném směru a nulový v propustném směru), je funkce obvodu následující: Pro vstupní napětí U x > u nebo U y > u je odpovídající dioda otevřena a výstupní napětí kombinace je rovno U x nebo U y (předpokládáme-li, že zdroje napětí U x a U y i zdroj napětí u mají vnitřní odpor nulový). Je-li

11 např. napětí U x na vstupu X, pak dioda D y je uzavřená, pokud napětí na vstupu U y není větší než U x. Pak se naopak zavře dioda D x, vede D y a výstup kopíruje napětí na vstupu Y. Pokud používáme reálné diody a reálné zdroje napětí logických úrovní X a Y, musíme počítat s jejich vnitřním odporem r i, odporem diod v propustném směru a se zbytkovým napětím na diodách U D (u germaniových diod 0,2V, u křemíkových 0,7V). Zbytkové napětí na diodách má tu výhodu, že není třeba používat zdroj napětí, který nám předtím vytvářel oblast napětí pro úroveň logické 0 (logická 0 byla od 0V do u V), neboť diody se neotevřou, pokud vstupní napětí nepřekročí U D. Zahrneme-li odpor diod v propustném směru do vnitřních odporů zdrojů logických úrovní, bude při aplikaci napětí U x = U v napětí na výstupu rovno Jsou-li oba vstupy na úrovni E, bude výstupní napětí Zkuste si tyto vztahy odvodit. Hradlo AND Hradlo tohoto typu je vybaveno (na jeho výstupu je úroveň logické 1), jsou-li všechny jeho vstupy vybaveny. X Y XY obr. 3

12 Hradlo NOT (invertor) obr. 4 Je ho možno vytvořit transistorovým zesilovačem, pracujícím ovšem ne v lineárním, ale ve spínacím režimu. Je zřejmé, že zapojíme-li tranzistor do obvodu podle obr. 4 a budeme-li zvětšovat proud do jeho báze, bude napětí mezi kolektorem a emitorem klesat. Od určitého proudu báze však zjistíme, že napětí U KE se prakticky nesnižuje - transistor je ve stavu nasycení. Je to stav, kdy jak emitorový přechod, tak kolektorový jsou pólovány v propustném směru, a napětí mezi kolektorem s emitorem je v podstatě dáno rozdílem napětí na přechodu báze-emitor a na přechodu báze - kolektor. Prakticky u křemíkového tranzistoru je toto tzv. saturační napětí U sat asi 0,2 V a u germaniového tranzistoru asi 0,1 V. Báze je při tom nasycena minoritními nosiči náboje a veškerý přírůstek proudu báze jde na úkor přírůstku proudu emitoru. Přestaneme-li dodávat proud do báze tranzistoru, uzavřou se obě diody (BE, BK) a přebytek minoritních nosičů v bázi je opět odsáván el. polem v oblasti kolektorového přechodu. Je zřejmé, že čím více minoritních nosičů bylo v bázi před vypnutím, tím déle bude trvat, než kolektor odsaje všechny minoritní nosiče v bázi a kolektorový proud klesne na nulu. Proto je vhodné zabezpečit, aby tranzistor v sepnutém stavu pracoval na okraji oblasti nasycení: toho lze dosáhnout např. použitím tzv. desaturačních diod, zapojených mezi bázi a kolektor. Kondenzátor C B napomáhá urychlení přechodového procesu odstranění minoritních nosičů z báze, když měníme napětí vstupu z 1 na 0. Funkce obvodu na obr. 4 je tedy následující: při aplikaci napětí o logické úrovni 1 na vstup X invertoru zvětšíme proud báze natolik, že tranzistor uvedeme do saturace. Na výstupu NOT X je tedy napětí U, které je obvykle ¼ až 1/3 povoleného rozsahu napětí pro logickou 0. Přivedeme-li na vstup zařízení napětí o logické úrovni 0, je tranzistor vypnut a na jeho

13 kolektoru (tedy na výstupu invertoru) je plné napájecí napětí volené tak, aby odpovídalo úrovni logické 1. Obvod tedy plní logickou funkci negace. De Morganovy zákony: de Morganovy zákony určují vztah mezi sjednocením, průnikem a doplňkem množiny. Mějme množiny A,B a nechť označuje doplněk dané množiny. Potom platí vztahy De Morganovy zákony se uplatňují především v Booleově algebře. Karnaughova mapa umožňuje: zápis disjunkční funkce nebo pravdivostní tabulky. její minimalizaci nebo jiné logické úpravy, příkladem možných úprav je rozvoj funkce až do úrovně UDNT. inverzi funkce. určení duální funkce, vzhledem k zápisu zpravidla v konjunkčním tvaru. Vidíme, že díky mapě můžeme realizovat prakticky všechny operace, jimiž jsme se doposud zabývali na základě Booleovy algebry. Z toho vyplývá, že mezi algebraickým vyjádřením funkce, pravdivostní tabulkou a Karnaughovou mapou musí existovat systém vzájemného přiřazení jednotlivých proměnných a logických operátorů. Je zajištěn na úrovni elementárních konjunkcí UDNT, které jsou v mapě topologicky seřazeny v definovaném pořadí podle principu sousedních mintermu. Jednotlivá políčka mapy, se ve všech směrech (nahoru, dolů, doleva a doprava) mohou a musí odlišovat od druhého pouze inverzí jedné jediné proměnné. Tím je zcela zaručen definovaný souřadnicový systém mapy. Aby byla zajištěna vzájemná kompatibilita, orientace ve všech mapách různého původu a nakonec také přehlednost vlastní práce, dodržuje se zásada umisťování mintermu se všemi proměnnými v inverzním tvary /A /B /C /D do levého horního rohu mapy. Tím je definována jednotná struktura mapy pro libovolný počet proměnných.

14 Pro názornost je v každém políčku vyznačeny tvary (přímý i inverzní) všech proměnných příslušného mintermu. Pro mapu o dvou proměnných platí pouze proměnné A, B. Pro mapu o třech proměnných zase proměnné A, B, C. Ve skutečnosti prostor uvnitř každého políčka slouží k vepsání logické hodnoty jeho mintermu, adresa je určena souřadnicovým systémem proměnných, vyznačených na okraji mapy. Přitom se zapisují jen proměnné v přímém tvaru, za jejich inverze se považují všechna zbylá, neoznačená políčka na stejné vnější straně mapy. Následující obrázky ukazují Karnaughovy mapy pro 2, 3 a 4 proměnné. Mapa dvou proměnných, odpovídá dvourozměrnému plošnému znázornění. Mapa tří proměnných, odpovídá třírozměrnému (kubickému) znázornění. Mapa čtyř proměnných, odpovídá čtyřrozměrnému prostoru. Pokud jde o způsob hodnotového vyjádření políčka, je zvykem, že se zapisuje pouze 1. Nevyplněný minterm se považuje za 0. Minterm neúplně definované tabulky se většinou označuje jako velké písmeno X. Cílem souřadnosti mintermu pochopitelně není zavést souřadný systém mapy. Ten je nutnou podmínkou k tomu, aby pomocí mapy bylo možno realizovat logické operace. U mapy dvou proměnných lze jednou souřadnou definovat všechny mintermy v příslušném sloupci nebo řádku, protože všechny obsahují tutéž proměnnou ve shodném (přímém) nebo inverzním tvaru. U mapy tří proměnných lze obdobným způsobem, jednu proměnnou, definovat všechny (podobné) mintermy jednoho řádku a dvou sloupců. U mapy čtyř proměnných stačí pro obdobný popis jedna proměnná jak pro dva řádky, tak pro dva sloupce. Tato skutečnost umožňuje při minimalizaci funkce v určitých případech chápat a používat taková políčka mapy, která vytvářejí sdružené řetězce mintermu (souvislé plochy sudého

15 počtu mintermu se shodnýma hodnotami 1) jako vyjádření DNT jejich společné funkce. Přitom se podle rozsahu řetězce vylučuje jedna, dvě či tři proměnné a tedy i patřičným způsobem se zjednodušuje celý zápis funkce.

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5

3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače... 3. 4 Problémy s matematickými operacemi 5 Obsah Obsah 1 Číselné soustavy 1 2 Paměť počítače 1 2.1 Měření objemu paměti počítače................... 1 3 Jednoduché datové typy 2 3.1 Interpretace čísel v paměti počítače................. 3 4 Problémy

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Čísla a číselné soustavy.

Čísla a číselné soustavy. Čísla a číselné soustavy. Polyadické soustavy. Převody mezi soustavami. Reprezentace čísel. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK.

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Data a datové typy 1 / 28 Obsah přednášky Základní datové typy Celá čísla Reálná čísla Znaky 2 / 28 Organizace dat Výběr vhodné datvé struktry různá paměťová náročnost různá

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY

ČÍSLICOVÁ TECHNIKA UČEBNÍ TEXTY Číslicová technika- učební texty. (HS určeno pro SPŠ Zlín) Str.: - - ČÍSLIOVÁ TEHNIK UČENÍ TEXTY (Určeno pro vnitřní potřebu SPŠ Zlín) Zpracoval: ing. Kovář Josef, ing. Hanulík Stanislav Číslicová technika-

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární.

ČÍSELNÉ SOUSTAVY. Číselnou soustavu, která pro reprezentaci čísel využívá pouze dvou číslic, nazýváme soustavou dvojkovou nebo binární. Číselné soustavy V běžném životě používáme soustavu desítkovou. Desítková se nazývá proto, že má deset číslic 0 až 9 a v jednom řádu tak dokáže rozlišit deset různých stavů. Mikrokontroléry (a obecně všechny

Více

1. Základní pojmy a číselné soustavy

1. Základní pojmy a číselné soustavy 1. Základní pojmy a číselné soustavy 1.1. Základní pojmy Hardware (technické vybavení počítače) Souhrnný název pro veškerá fyzická zařízení, kterými je počítač vybaven. Software (programové vybavení počítače)

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou

OD NULY K NEKONEâNU Poãítej jako EgypÈan âíslice, které nestárnou OD NULY K NEKONEâNU Poãítej jako EgypÈan Nejstarší známý početní systém založený na čísle 10 zavedli před 5 000 lety v Egyptě. Egypťané používali skupinu čar pro vyjádření čísel do devítky. Vypadala asi

Více

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy MQL4 COURSE By Coders guru www.forex-tsd.com -4 Operace & Výrazy Vítejte ve čtvrté lekci mého kurzu MQL4. Předchozí lekce Datové Typy prezentovaly mnoho nových konceptů ; Doufám, že jste všemu porozuměli,

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu ázev školy Autor ázev Téma hodiny Předmět Ročník /y/ C.1.07/1.5.00/34.0394 VY_3_IOVACE_1_ČT_1.01_ vyjádření čísel v různých číselných soustavách Střední odborná škola a Střední

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

2 Ukládání dat do paměti počítače

2 Ukládání dat do paměti počítače Projekt OP VK Inovace studijních oborů zajišťovaných katedrami PřF UHK Registrační číslo: CZ..7/../8.8 Cíl Studenti budou umět zapisovat čísla ve dvojkové, osmičkové, desítkové a v šestnáctkové soustavě

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

KALKULÁTORY EXP LOCAL SIN

KALKULÁTORY EXP LOCAL SIN + = KALKULÁTORY 2014 201 C π EXP LOCAL SIN MU GT ŠKOLNÍ A VĚDECKÉ KALKULÁTORY 104 103 102 Hmotnost: 100 g 401 279 244 EXPONENT EXPONENT EXPONENT 142 mm 170 mm 1 mm 7 mm 0 mm 4 mm Výpočty zlomků Variace,

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

LOGICKÉ OBVODY J I Ř Í K A L O U S E K

LOGICKÉ OBVODY J I Ř Í K A L O U S E K LOGICKÉ OBVODY J I Ř Í K A L O U S E K Ostrava 2006 Obsah předmětu 1. ČÍSELNÉ SOUSTAVY... 2 1.1. Číselné soustavy - úvod... 2 1.2. Rozdělení číselných soustav... 2 1.3. Polyadcké číselné soustavy... 2

Více

Analogově-číslicové převodníky ( A/D )

Analogově-číslicové převodníky ( A/D ) Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu

Více

Elektronické praktikum EPR1

Elektronické praktikum EPR1 Elektronické praktikum EPR1 Úloha číslo 2 název Vlastnosti polovodičových prvků Vypracoval Pavel Pokorný PINF Datum měření 11. 11. 2008 vypracování protokolu 23. 11. 2008 Zadání 1. Seznamte se s funkcí

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH

ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Projekt: ODBORNÝ VÝCVIK VE 3. TISÍCILETÍ Téma: MEII - 3.2.2 MĚŘENÍ NA AKTIVNÍCH SOUČÁSTKÁCH Obor: Mechanik elektronik Ročník: 2. Zpracoval(a): Bc. Josef Mahdal Střední průmyslová škola Uherský Brod, 2010

Více

OBVODY TTL a CMOS. Úvod

OBVODY TTL a CMOS. Úvod OBVODY TTL a CMOS Úvod Tato úloha si klade za cíl seznámení se strukturou základních logických obvodů technologie TTL a CMOS, seznámení s jejich funkcí, vlastnostmi, základními charakteristikami a parametry.

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Dioda jako usměrňovač

Dioda jako usměrňovač Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně

Více

v aritmetické jednotce počíta

v aritmetické jednotce počíta v aritmetické jednotce počíta tače (Opakování) Dvojková, osmičková a šestnáctková soustava () Osmičková nebo šestnáctková soustava se používá ke snadnému zápisu binárních čísel. 2 A 3 Doplněné nuly B Číslo

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl

VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Čísla v počítači Výpočetní technika I

Čísla v počítači Výpočetní technika I .. Výpočetní technika I Ing. Pavel Haluza ústav informatiky PEF MENDELU v Brně pavel.haluza@mendelu.cz Osnova přednášky ergonomie údržba počítače poziční a nepoziční soustavy převody mezi aritmetické operace

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

Přednáška 2: Čísla v počítači. Práce s počítačem. Číselné soustavy. Převody mezi soustavami. Aritmetické operace. Uložení čísel v paměti počítače

Přednáška 2: Čísla v počítači. Práce s počítačem. Číselné soustavy. Převody mezi soustavami. Aritmetické operace. Uložení čísel v paměti počítače Ergonomie Ergonomie Osnova přednášky Výpočetní technika I Ing Pavel Haluza ústav informatiky PEF MENDELU v Brně pavelhaluza@mendelucz ergonomie údržba počítače poziční a nepoziční soustavy převody mezi

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom.

Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. @213 17. Speciální funkce Funkce, které jsme až dosud probírali, se souhrnně nazývají elementární funkce. Elementární snad proto, že jsou takové hladké, žádný nečekaný zlom. Nyní si řekneme něco o třech

Více

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4

Ahoj mami. Uložení dat v počítači. Příklady kódování dat. IAJCE Přednáška č. 4 Uložení dat v počítači Data = užitečné, zpracovávané informace Kódování (formát) dat = způsob uložení v počítači (nutno vše převést na čísla ve dvojkové soustavě) Příklady kódování dat Text každému znaku

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

PB002 Základy informačních technologií

PB002 Základy informačních technologií Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,

Více

Seminář IVT. MS Excel, opakování funkcí

Seminář IVT. MS Excel, opakování funkcí Seminář IVT MS Excel, opakování funkcí Výuka Opakování z minulé hodiny. Založeno na výsledcích Vašich domácích úkolů, podrobné zopakování věcí, ve kterých děláte nejčastěji chyby. Nejčastější jsou následující

Více

Číslicová elektronika. Ondřej Novák a kolektiv autorů

Číslicová elektronika. Ondřej Novák a kolektiv autorů Číslicová elektronika Ondřej Novák a kolektiv autorů Liberec 24 Bibliografická reference těchto skript: NOVÁK, O. a kol. Číslicová elektronika.. vydání. Liberec: Technická univerzita v Liberci, Fakulta

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Textové, datumové a časové funkce

Textové, datumové a časové funkce Textové, datumové a časové funkce EU peníze středním školám Didaktický učební materiál Anotace Označení DUMU: VY_32_INOVACE_IT4.15 Předmět: IVT Tematická oblast: Microsoft Office 2007 Autor: Ing. Vladimír

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

1.1 Usměrňovací dioda

1.1 Usměrňovací dioda 1.1 Usměrňovací dioda 1.1.1 Úkol: 1. Změřte VA charakteristiku usměrňovací diody a) pomocí osciloskopu b) pomocí soustavy RC 2000 2. Ověřte vlastnosti jednocestného usměrňovače a) bez filtračního kondenzátoru

Více

Přirozená čísla do milionu 1

Přirozená čísla do milionu 1 statisíce desetitisíce tisíce stovky desítky jednotky Klíčová aktivita: Přirozená čísla do milionu 1 č. 1 Matematika 1. Porovnej čísla: , =. 758 258 4 258 4 285 568 470 56 847 203 488 1 584 2 458 896

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu.

Experiment P-10 OHMŮV ZÁKON. Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. Experiment P-10 OHMŮV ZÁKON CÍL EXPERIMENTU Sledování vztahu mezi napětím a proudem procházejícím obvodem s rezistorem známého odporu. MODULY A SENZORY PC + program NeuLog TM USB modul USB 200 senzor napětí

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Algebra blokových schémat Osnova kurzu

Algebra blokových schémat Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Vlastnosti členů regulačních obvodů Automatizace - Ing. J. Šípal, PhD 1 Osnova

Více

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I

2.4.4 Kreslení grafů funkcí metodou dělení definičního oboru I .. Kreslení grafů funkcí metodou dělení definičního oboru I Předpoklady: 01, 08 Opakování: Pokud jsme při řešení nerovnic potřebovali vynásobit nerovnici výrazem, nemohli jsme postupovat pro všechna čísla

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití

Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Stěžejní funkce MS Excel 2007/2010, jejich ovládání a možnosti využití Proč Excel? Práce s Excelem obnáší množství operací s tabulkami a jejich obsahem. Jejich jednotlivé buňky jsou uspořádány do sloupců

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Excel Matematické operátory. Excel předdefinované funkce

Excel Matematické operátory. Excel předdefinované funkce Excel Matematické operátory a) Sčítání + příklad =A1+A2 sečte obsah buněk A1 a A2 b) Odčítání - příklad =A1-A2 odečte hodnotu buňky A2 od hodnoty buňky A1 c) Násobení * příklad =A1*A2 vynásobí obsah buněk

Více

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY technické vybavení počítače uchování dat vstupní a výstupní zařízení, paměti, data v počítači počítačové sítě sociální

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

Obrázek a/struktura atomů čistého polovodičeb/polovodič typu N

Obrázek a/struktura atomů čistého polovodičeb/polovodič typu N POLOVODIČE Vlastnosti polovodičů Polovodiče jsou materiály ze 4. skupiny Mendělejevovy tabulky. Nejznámější jsou germanium (Ge) a křemík (Si). Každý atom má 4 vazby, pomocí kterých se váže na sousední

Více

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Název: Téma: Autor: Číslo: Prosinec 2013. Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Číslo: Inovace a zkvalitnění výuky prostřednictvím ICT Elektrický proud střídavý Elektronický oscilátor

Více

ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr

ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast (předmět) Autor ANOTACE K VÝUKOVÉ SADĚ č. VY_32_INOVACE_01_03_MAT_Pr CZ.1.07/1.5.00/34.0705 III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Obsah OBSAH... 1 1 ZÁKLADNÍ POJMY... 1 2 HISTORIE POČÍTAČŮ... 2 2.1 GENERACE POČÍTAČŮ... 3 2.2 KATEGORIE POČÍTAČŮ... 3 3 KONCEPCE

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-422 se používá pro:

Kategorie M. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-422 se používá pro: Mistrovství České republiky soutěže dětí a mládeže v radioelektronice, Vyškov 2011 Test Kategorie M START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Sběrnice RS-422

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Základní elektronické obvody

Základní elektronické obvody Základní elektronické obvody Soustava jednotek Coulomb (C) = jednotka elektrického náboje q Elektrický proud i = náboj, který proteče průřezem vodiče za jednotku času i [A] = dq [C] / dt [s] Volt (V) =

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVDC0T03 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více