Nikl a jeho slitiny Titan a jeho slitiny

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Nikl a jeho slitiny Titan a jeho slitiny"

Transkript

1 Nikl a jeho slitiny Titan a jeho slitiny oddělení povrchového inženýrství pro předmět SMA Ing. Milan Vnouček,Ph.D.

2 Nikl jako čistý kov Chemická značka Ni (lat. Niccolum) Relativní atomová hmotnost: 58,69 Atomové číslo: 28 Mřížka Kubická plošně centrovaná (za zvláštních okolností krystalizuje v hexagonální soustavě - do 300 C nemagnetická pak feromagnetická kubická, Curieho bod = 357 C) Hustota: 8,908 g/cm3 Tvrdost: 4 (Mohsova stupnice tvrdosti) Teplota tání: C, tj K

3 Nikl jako čistý kov - Typický kovový ferromagnetický prvek bílé barvy. Byl objeven roku 1751 německým chemikem baronem Axelem Frederikem Cronstedtem při pokusech o izolaci mědi z rudy. - Ve sloučeninách se vyskytuje především v mocenství Ni+2, existují i sloučeniny Ni+1, zatímco látky obsahující Ni+3 jsou nestálé a působí silně oxidačně. - Vůči působení vzduchu i vody je nikl poměrně stálý a používá se proto často k povrchové ochraně jiných kovů, především železa. Je také značně stálý vůči působení alkálií a používá se proto k výrobě zařízení pro práci s alkalickými hydroxidy neboli louhy. - Jako relativně lehký prvek je nikl v přírodě poměrně hojně zastoupen. V zemské kůře činí jeho průměrný obsah činí kolem 100 mg/kg. V mořské vodě se jeho koncentrace pohybuje na úrovni 5,4 mikrogramu v jednom litru. Předpokládá se, že ve vesmíru připadá na jeden atom niklu přibližně atomů vodíku.

4 Zdravotní rizika niklu Nikl patří mezi několik málo prvků, jejichž vliv na zdravotní stav lidského organismu je jednoznačně negativní- nikl je podezřelý karcinogen (rakovina plic, nosní přepážky a vzácněji hltanu) při kontaktu způsobuje vznik kožní dermatitidy, nazývané niklový svrab (2% mužů, 10% žen) 6 10% obyvatelstva trpí alergií na nikl zarudnutí kůže a později až vznik kožních ekzémů při trvalém styku s předměty z niklu zvláště nebezpečné jsou náušnice, protože oblast ucha patří mezi velice senzitivní části lidského těla a alergické působení zde může nabývat dramatičtějších rozměrů otoky hlavy, astmatické záchvaty Ohroženou skupinou jsou kuřáci, protože v cigaretovém kouři se vyskytuje velmi toxický tetrakarbonyl niklu. Nejvíce niklu se vstřebá inhalací a pokožkou. Příjem potravou není rizikové pouze 2% je niklu absorbováno.

5 Nikl garnierit (Ni, Mg)3Si2O5(OH) V čisté podobě se nikl v přírodě nevyskytuje, výskyt ve směsi se železem ve formě oxidů (laterit, garnierit), garnierit nebo jako sulfid-nikelnato-železitý (pentlandit) pentlandit Garnieritu se ve středověku říkalo falešná měděná ruda laterit (Fe, Ni)O(OH)

6 Získávání niklu Nikl je deficitní prvek Výroba niklu je značně složitá a závisí na použité rudě. V konečné fází se ale většinou získává oxid nikelnatý (NiO), který se dále redukuje koksem za vzniku elementárního niklu: 2 Ni3S2 + 7 O2 6 NiO + 4 SO2 NiO + C -> Ni + CO Výsledný kov však není čistý, a proto se ještě přečisťuje elektrolýzou.na anodě je znečistěný neboli surový nikl a na katodě se vylučuje již čistý neboli rafinovaný. Ni0-2e- -> Ni2+ Ni2+ + 2e- -> Ni0 Velmi čistý nikl se vyrábí tzv. Mondovým procesem, kde jako meziprodukt vzniká komplexní sloučenina tetrakarbonyl nikl ([Ni(CO)4]). Čistota niklu vyráběného tímto způsobem přesahuje 99,99%

7 Nikl jako čistý kov Nikl (a některé jeho slitiny) je magnetostrikční využití v ultrazvukových přístrojích Mechanické vlastnosti litý nikl Rm MPa tvářený a žíhaný nikl Rm MPa Mechanické vlastnosti niklu rostou s klesající teplotou - cca 1,5 x vyšší pevnost při -250 C Youngův modul pružnosti v tahu je podobný jako u oceli (ENi 210*103 N/mm-2)

8 Mechanické vlastnosti NikluTváření Rekrystalizace zastudena tvářeného Niklu nastává přibližně při 600 C Pevnostní vlastnosti se do 400 C nemění Nad 400 C: pevnost niklu silně klesá Mez σ 0,2 klesá pomaleji než pevnost nutnost vysokých tlaků při tváření

9 Výskyt niklu - Geologové předpokládají, že velká část niklu přítomného na Zemi je soustředěna v oblasti jejího středu - v zemském jádře a kůře NiFe. Nikl je také poměrně hojně zastoupeným prvkem v meteoritech, dopadajících na Zemi z kosmického prostoru. - Největším současně těženým nalezištěm niklových rud je kanadský Sudbury v provincii Ontario. Předpokládá se, že původem těchto rud je obrovský meteorický zásah Země v dávných geologických dobách. Další oblasti s bohatým výskytem niklových rud jsou např. Rusko, Nová Kaledonie, Austrálie, Kuba a Indonésie.

10 Vliv příměsí Síra velmi malá rozpustnost s Ni. Tvorba eutektika při 645 C křehkost za tepla i za studena. Síra napadá povrch exponovaných součástí již při malém atmosferickém množství vytváří povrchové eutektické síťoví. Ni3S2-křehká fáze na hranicích zrn. Vliv síry se eliminuje pomocí manganu (vytváří Mns). Podobně působí Mg,Be,Zr. Křemík působí podobně jako mangan tj. váže kyslík a uvolňuje tak mangan pro síru. Rovněž váže výborně síru. V niklu se částečně rozpouští. Uhlík v tuhém stavu omezeně rozpustný. Nikl je grafitotvorný změna v rozpustnosti vede k segregaci grafitu na hranicích zrn pevnosti, mez tečení. Karbid Ni3C je stabilní jen v tav.za vysokých teplot.

11 Slitiny niklu - obecně pevnější, tvrdší a houževnatější než většina slitin neželezných kovů - rychle se zpevňují při tváření ==> častější mezioperační ohřevy - dobře reaguje s kovy skupiny T (z technických kovů se nerozpouští jen s Hg a Pb) Dle použití a) slitiny konstrukční b) slitiny se zvláštními fyzikálními vlastnostmi c) slitiny žáruvzdorné a žárupevné

12 Konstrukční slitiny Ni Mn přísada Mn zlepšuje korozní odolnost za vyšších teplot v prostředí se sírou kontakty zapalovacích svíček. Ni - Co 4,5 %Co zvyšuje magnetické vlastnosti např. permeabilitu použití v elektronice a ultrazvukových zařízeních Ni - Be do 1% Be lze slitinu precipitačně vytvrzovat až na 1800 MPa. Výroba pružin, forem pro vstřikování plastů a membrán pro teploty až 500 C. Odlitky se používají v letecké výrobě na palivová čerpadla. Ni Al možnost precip. vytvrzení až na 1350 MPa s 4,5 % Al pružinový materiál. Tažené a vytvrzované dráty. Slitina výroba pump, oběžných kol, hřídelí. Ni Si a Ni Mo (cca 10% Si nebo až 35% Mo) slévárenské slitiny. Odolné vůči horké i studené kys. sírové. Vytvoření silné pasivační vrstvy na povrchu. Použití v chemickém průmyslu Ni - Cu Monel nebo Nicorros (67%Ni + 30%Cu) + malé přísady Si, Al, Fe, Mn výborná odolnost proti korozi, dobrá pevnost i houževnatost a tepelná vodivost. Použití v energetice, potravinářství, ve farmaceutickém a chemickém průmyslu, námořní aplikace. (tepelné výměníky s moř. v.)

13 Lékařské aplikace Filtr Angioguard se rozevře v tepně a zachytává z krve různé krevní sraženiny, které by jinak mohli způsobit ucpání cév v srdci nebo mozku Stenty - mají široké využití při různých operacích a mají mnohonásobně lepší vlastnosti než stenty ocelové, lépe se přizpůsobují lidským tkáním než klasické ocelové stenty Rovnátka ze superelastického drátu, jsou mnohem účinnější než rovnátka z klasických materiálů.

14 Slitiny niklu se zvláštními fyzikálními vlastnostmi a) slitiny termočlánkové Ni + 10% Cr chromel Ni-Al-Mn-Si alumel Ni-Cu-Mn ( %) konstantan Ni-Cu-Mn (43-56,5-0,5) kopel b) slitiny odporové základní slitinou je Ni+20%Cr, homogenní, tvárná, vhodná k výrobě drátů tyčí a pásů. Čím je vyšší obsah chromu, tím vyšší je žárupevnost a žáruvzdornost. Binární slitiny chromnikl, nichrom, pyrochrom, chronit Přísada železa zvyšuje odolnost vůči síře c) magneticky měkké slitiny niklu binární slitiny - 50%Ni + 50%Fe, 30%Ni + 70%Fe ternární slitiny 80%Ni+ 5% Mo + Fe - 80%Ni + 4% (Cr+Cu) + Fe Vysoká a stálá permeabilita

15 Kovy s tvarovou pamětí SMA (Shape memory alloy) u kovů, plastů i keramiky 1932 fyzik Arne Olander (Swe) 1951 Au Cd Brusel drát z této slitiny vykonal mechanickou práci opakovaným zvedáním závaží 1963 Ni Ti (slitina NiTinol) umělé srdce poháněné akčními členy SMA paměťový efekt objeven u: Cu3Al, Cu3Zn, Cu-Al-Ni, Cu-Al-Mn, Ni-Ti-Cu, NiTi-Hf apod. (i mosaz avšak při velmi nízkých teplotách) SMA intermediální fáze Podstata: přechod z jedné krystalické struktury do jiné, snaha slitiny dostat se do krystalické struktury, která je pro ni při dané teplotě nejvýhodnější (tj.energeticky nejvýhodnější) Podmínka: schopnost martenzitické transformace bezdifuzní fázová transformace U běžných kovů elastická deformace = 1%, u SMA = až 15%!!!

16 Podstata: Tlakem nebo tahem se může mřížka martenzitu orientovat až do 24 různých variant Při zpětné transformaci martenzitu na austenit může vzniknout pouze jedna varianta austenitu Ochlazení pod teplotu Ms, vzniká martenzit současně více variant martenzitu, nepozorujeme žádnou změnu tvaru. Zatížení martenzitu při nízké teplotě vzorek mění tvar postupně se vytvoří pro dané zatížení nejvýhodnější varianta martenzitu dochází k jevu superplasticity. Odtížení vzorku jedná se jen o elastické odtížení podle Hookova zákona, zůstává zachováno fázové složení, tedy jedna varianta martenzitu daná předchozí deformací. Ohřev vzorku nad teplotu As vzorek transformuje do austenitu tvar vzorku se mění na původní. Při tomto kroku dochází k vlastnímu jevu tvarové paměti.

17 Využití materiálu SMA Spojky potrubí spojky pro F-16, spojka je roztažena v martenzitickém stavu, po vložení spojovaných trubek se zahřeje na Af, čímž dojde ke smrštění spojky a k utěsnění spoje, nevýhoda vysoká cena, výhoda vysoká spolehlivost, není nutnost svaru Superelastické aplikace velká elastická deformace+ nelineární průběh deformační křivky => v určité části deformační křivky může narůstat významně deformace přičemž působící napětí se téměř nemění Nejen při tlaku, tahu, ale i při ohybu a krutu

18 Superelasticita u SMA U materiálu v austenitické fázi dochází k martenzitické transformaci z austenitu na nejvhodněji uspořádané martenzitické uspořádání pouze vlivem mech.zatížení napětí (nikoliv změnou teploty). U běžných kovů elastická defor.do 0,7%, u SMA i nad 10% => superelasticita Na rozdíl od elasticity je superelastická deformační křivka SMA silně nelineární a je vždy doprovázená hysterezí.

19 SMA v aplikacích silového působení Tvarová paměť se skládá ze 4 cyklů. Nejdříve se součástka ochladí pod teplotu MS, poté se zdeformuje, odtíží a zahřeje. Zahřáním se vrátí do původního tvaru a celý cyklus se může opakovat. Ovšem pokud se součástka při zahřátí neodtíží, tak začne působit silou závislou na tom, kolik se jí dodá energie (zahřáním nebo magnetickým polem). Když se součástce dodává energie, tak samozřejmě může i konat práci a toho využívá množství aktuátorů a jiných aplikací. Účinnost takovýchto aplikací je sice malá (pohybuje se okolo 5%), ale i tak je spousty aplikací, kde lze tento efekt použít. Největší výhoda SMA aktuátorů je zachování výkonů i při miniaturizace ba dokonce jejich zlepšení. V praxi to znamená, že čím je aplikace menší, tím je užití SMA výhodnější. Schopnosti SMA materiálu se při zahřátí proudem smrštit využívá toto kolo, které je schopno pomocí zkracování a roztahování drátů měnit svůj tvar a tím se rozpohybovat. Další aplikací využívající schopnosti SMA slitin působit silou jsou například SMA-polymery. Jsou to polymerové desky, ve kterých jsou zabudovány SMA dráty v částečně v předepnutém stavu. Průchodem proudu tak lze měnit sílu jakou SMA drátky působí na okolí a tím měnit vlastnosti kompozitů. Toho se dá využít například při tlumení vibrací v letadlech.

20 Technické aplikace Marsovské vozítko(mars Pathfinder) - pohyb byl zajištěn elektricky zahřívaným SMA drátkem Košile s tvarovou pamětí, která se sama vlivem lidského tepla "vyžehlí". Vodovodní baterie - Využívá se dvou tlakových pružin, jedné běžné ocelové a druhé z SMA slitiny NiTi, které přes pohyb šoupátka ovládají přívod teplé a studené vody. Nastavením předpětí pomocí regulátoru lze nastavit požadovanou teplotu (polohu šoupátka) podle diagramu napětí-teplota. Stlačená SMA pružina reaguje na teplotu smíšené vody při zvýšení teploty se roztahuje a uzavírá přívod teplé vody pohybem šoupátka a naopak otevírá při snížení teploty pod hodnotu zvolenou nastavením regulátoru

21 Slitiny žáruvzdorné a žárupevné - Výrazně žáruvzdornější a žárupevnější než železné slitiny Slitiny na bázi Ni-Cr-Co + přísady Al, Ti popřípadě Mo, W, Nb. Vysoké meze tečení se dosahuje precipitačním vytvrzením fáze Ni3Al v níž je rozpuštěn titan. Dalšími vyztužujícími fázemi jsou karbidy a karbonitridy. V některých aplikacích se k náhradě velkého množství niklu používá určité procento Fe. Ke zvýšení korozní odolnosti postačuje Mo. Požívané slitiny: HASTELLOY je registrovaná obchodní známka Haynes Intl. INCOLOY, INCONEL, MONEL a NIMONIC jsou registrované obchodní známky společností rodiny INCO INVAR je registrovaná obchodní známka Imphy S.A. MU-METAL je registrovaná obchodní známka Telcon Metals Ltd NICORROS a NICROFER jsou registrované obchodní známky UM GmbH

22 Waspaloy Prvek C Mn Si Cr Ni B Fe Co Ti Al Mo Zr Cu S Min Max zbytek Mechanické vlastnosti Rm (21 C) = 1070 MPa, HRC = 42 Rm (538 C) = 980 MPa E (25 C) = 211 GPa

23 Inconel 718 Prvek C Mn Nb + Ta Cr Ni B Fe Co Ti Al Mo Zr Cu S Min zbytek Max Mechanické vlastnosti Rm (RT) = 1240 MPa, HRC = Mezikrystalická koroze ve struktuře Inconelu

24 Použití žáruvzdorných a žárupevných niklových slitin Součásti proudových a raketových motorů lopatky turbín, hřídele apod. Součásti extrémně namáhaných spalovacích motorů.

25 Využití niklu v jaderném průmyslu využití niklu kopíruje podmínky pro běžné využívání dvouvrstvý návar tlakové nádoby jaderného reaktoru VVER 440 a 1000 z materiálů Sv07Kh25N13 a Sv08Kh18N10G2B

26

27 Využití niklu v jaderném průmyslu využití pro množivé reaktory typu FBR Fast-Breeder Reactor a reaktory MSR Molten Salt Reactor BN-600/800, fenix, superfenix, Monju - SPHINX,AMSTER použití za vysokých teplot ( více než 545ºC) v prostředí roztaveného sodíku hastelloy-n

28 Titan a jeho slitiny (85% struktury raketoplánu) tvoří Ti slitiny

29 Titan Horniny odebrané Apollo 17 obsahovaly 12% TiO2 Obecně ve vesmíru připadá na 1 atom Ti 1mil.atomů vodíku 10.nejrozšířenější prvek na Zemi v zemské kůře 5,7 6,3 g/kg, zastoupení v celkové hm.země 0,071% (Si = 17,2%) v mořské vodě 0,001mg/l (Si = 3mg/l)

30 v období studené války, byla výroba kovového titanu soustředěna téměř výhradně v SSSR titan byl strategická surovina jeho výroba byla přísně tajná díky špionáži byl zjištěn výrobní postup, který byl následně předán do USA a západní Evropy

31 Výskyt a výroba Ilmenit se vyskytuje v přeměněných a Ilmenit FeTiO3 vyvřelých horninách. Je to krystalický titanát (titaničitan) železnatý (je přípustné nazývat jej také oxidem železnatotitaničitým) chemického vzorce FeTiO3. Ilmenit je klencový minerál. Názván byl podle místa nálezu Ilmenské hory, Jižní Ural, (Čeljabinská oblast), Rusko. Ilmenitu se také říká Izerín, je to podle Jizerky sklářské osady v Jizerských horách, kde se před několika staletími těžil v Safírovém potoce a říčce Jizerce společně s dalšími nerosty Rutil (Werner, 1800), chemický vzorec TiO2 (oxid titaničitý), je čtverečný minerál. Je to jedna ze tří v přírodě se vyskytujících modifikací oxidu titaničitého. Další dvě jsou: anatas a brookit.akcesorický minerál v magmatických (granity, pegmatity, syenity, diority) a silně metamorfovaných horninách (ruly, svory). Protože je odolný proti zvětrávání, nachází se také v rozsypech. Rutil TiO2

32 Průmyslová výroba titanu - Běžné hutní metody, které se využívají k výrobě jiných kovů, jsou v případě titanu neúčinné. Příčina spočívá ve značné ochotě titanu reagovat za zvýšené teploty s kyslíkem, vodíkem, uhlíkem a dusíkem. Nejčastěji se tedy titan vyrábí redukcí par chloridu titaničitého hořčíkem v inertní argonové atmosféře. (Krollův proces) FeTiO3 + H2SO4 Fe2(SO4)3 + TiOSO4 TiOSO4 TiO2 + SO4 TiO2 + Cl2 TiCl4 +O2 TiCl4 + Mg Ti + MgCl4 - Titan vzniklý touto reakcí je tuhá a pórovitá látka, která se po odstranění chloridu hořečnatého a nezreagovaného hořčíku dále čistí. - Slitiny titanu se přetavují ve vakuových indukčních pecích a stejně tak se ve vakuu odlévají

33 Titan jako prvek V malém množství je obsažen ve většině minerálů a mezi jeho nejvýznamnější rudy patří ilmenit - (FeTiO3 oxid železnato-titaničitý) a rutil (TiO2 - oxid titaničitý). Titan byl objeven roku 1791 Williamem Gregorem a poprvé pojmenován Martinem H. Klaprothem ( ) roku Jeho izolace se podařila až po sto letech. Titan je velmi tvrdý a lehký kov ocelového vzhledu, který je dobře odolný vůči korozi. Podobně jako u většiny d-prvků, závisí jeho reaktivita na úpravě povrchu. Dokonale vyleštěn odolává za laboratorní teploty i kyselinám. značka protonové číslo relativní atomová hmotnost teplota tání teplota varu hustota barva Ti 22 47, K, 1668 C 3560 K, 3287 C 4,5 kg/dm3 ( Fe = 7,8 kg/dm3, Al = 2,7 kg/dm3 ) bílá

34 Titan jako čistý kov 2 krystalové modifikace mřížky α hexagonální nejsměstnanější s parametry a = 2,9 A; c = 4,7 A β kubická plošně středěná s parametrem 3,3 A Teplota alotropické přeměny je 882 C

35 Titan jako čistý kov - vlastnosti - titan má špatné třecí vlastnosti zadírá se - obrobitelnost je horší než u ostatních kovů povrch obrobku bývá křehký vlivem kyslíku a dusíku. Nízká tepelná vodivost způsobuje nalepování na břit obráběcího nástroje a tím jeho rychlejší otupení. - možnost vznícení titanového prachu a třísek -tvářením titanu (hexagonální mod.) vzniká výrazná textura anizotropie vlastností (pevnost v jednom směru může až 2x převyšovat pevnost v druhém směru tlakové nádoby), plechy nad 2 mm nutno ohřát nad 300 C (tvorba nových skluzových rovin) - tvářený titan rekrystalyzuje při teplotě C

36 Unikátní vlastnosti titanu + nejvyšší poměr mezi pevností a hustotou ze všech kovových materiálů + extrémní mechanické vlastnosti a schopnost tepelné zátěže + vysoká pevnost v tahu větší než u oceli při 42% úspory hmoty + vysoká korozní odolnost + vysoká biokompatibilita - oproti oceli nižší Youngův modul pruž. v tahu (ETi 110*103 N/mm-2, EFe 220*103 N/mm-2)

37 Vliv jiných prvků na vlastnosti titanových slitin Kyslík a dusík se dobře rozpouštějí v obou krystalových modifikacích. Stabilizují výrazně fázi Alfa. Již při malých množstvích (desetiny %) výrazně zvyšují pevnost a snižují plasticitu. Uhlík se rozpouští v titanu alfa i beta omezeně. Za normální teploty pod 0,25%. Do tohoto obsahu zvyšuje mech. vlastnosti. Nad 0,25% vzniká karbid TiC. Jeho množství se ve slitinách udržuje pod hodnotu 0,1%. Vodík způsobuje precipitaci hydridu titanu pokles houževnatosti. Obsah pod 0,01%. Železo - Je obvyklou nečistotou v titanových slitinách. Přichází do titanu při jeho výrobě redukcí. Při obsahu pod 0,1% je jeho vliv zanedbatelný Křemík - Působí negativně na houževnatost. Obsah pod 0,1 %.

38 Vliv jiných prvků na vlastnosti titanových slitin

39 Teplota Vliv jiných prvků na vlastnosti titanových slitin Legující prvky

40 Slitiny titanu 1) přísadový prvek se více rozpouští v alfa než v beta fázi. Teplota fázové přeměny se zvyšuje v závislosti na koncentraci přísady. Tak působí Al, N, O, C Teplota Slitiny se rozdělují podle rozpustnosti přísady ve fázi alfa a ve fázi beta a jejich stabilizačního vlivu na tyto fáze viz předchozí strana Teplota 3) Přísadový prvek se rozpouští více v beta fázi a tuto fázi stabilizuje. Za nižších teplot dochází k eutektoidní reakci, kde eutektoidní směs je tvořena tuhým roztokem alfa a intermediální fází bohatou na přísadový prvek. Rozpustnost přísadového prvku je největší za eutektoidni teploty a s klesající se teplotou se snižuje. Mn, Fe, Cr, Si, Ag, H Teplota 2) Přísadový prvek se rozpouští více v beta než v alfa fázi. Teplota přeměny se snižuje a beta je tak stabilní i za normální teploty. Mo, Nb, Ta, V

41 Tepelné zpracování slitiny titanu 1) žíhání na odstranění pnutí, stabilizační, homogenizační, rekrystalizační 2) zušlechťování polymorfní přeměna je využitelná při tep. zprac. jen zčásti. Základem tepelného zpracování je eutektoidní rozpad tuhého roztoku. Alotropická přeměna beta na alfa probíhá za podmínek nerovnovážného ochlazování způsobem podobným martenzitické přeměně. Kubická mřížka se mění v hexagonální bezdifuzně, má jehlicovitou strukturu a orientace jehlice k matrici svědčí o koherentním vztahu. I zde je možno stanovit Ms a Mf. Transformace beta na přesycený tuhý roztok alfa však u většiny slitin nezvýší tvrdost. Zvláštnosti tepelného zpracování těchto slitin jsou dány hlavně složitostí přeměny beta na alfa. Při určité rychlosti ochlazování se vedle fází beta a alfa objevuje ještě fáze sigma (tvrdá a křehká). Lze se jí vyhnout při izotermické přeměně. Tepelným zpracováním slitin s vyšším obsahem přísad se snažíme získat větší podíl nestabilní fáze beta, kterou dalším zpracováním (žíháním) řízenou reakcí převedeme na stabilní fázi alfa. Je třeba dát pozor na zhrubnutí zrna. Nelze jej zjemnit normalizací jako u ocelí, ale jen tvářením a rekrystalizačním žíháním.

42 Slitina titanu Ti6Al4V 70% všech titanových slitin Nejběžnější slitina titanu alfa-beta struktura složení C <0.08%; Fe <0.25%; N2 <0.05%; O2 <0.2%; Al %; V %; Ti zbytek Vlastnosti Hustota 4,42 kg/dm3 Teplota tavení C Teplota změny beta alfa 999 C Rm = 1000 MPa Rp0,2= 910 MPa E = 114 GPa Použitelné do 400 C Používá se pro součásti v leteckém a kosmickém průmyslu. Nachází také uplatnění v loďařském průmyslu a v medicíně. Ostatní slitiny: Ti-6Al-2Sn-4Zr-2Mo a Ti-6Al-2Sn-4Zr-6Mo pro vyšší teploty

43 Použití titanu a jeho slitin Jedinečná odolnost vůči: Korozi Erozi tvrdými částicemi (abraze) + poměr mezi pevností a hustotou + vysoká mez kluzu (až 1,4 GPa!!!) Části leteckých motorů lopatky leteckých turbín a kompresorů

44 Použití titanu a jeho slitin - Nákladná výroba ==> 1. použití ve zbrojním průmyslu, letectví a raketové technice, kosmonautice léta vyvinuto firmou Lockheed Corporation letadlo SR-71 Blackbird prakticky celotitanová konstrukce (poprvé vzlétlo 1962). Světová produkce titanu 40. léta 2,5 tuny/10 let 2002 cca tun/rok

45 Použití titanu a jeho slitin Airbus A380 9% váhy letadla je titan a jeho slitiny

46 Použití titanu a jeho slitin Rozšíření použití titanových slitin do civilní oblasti - hodinky - šperky duhové efekty tenkých oxidických filmů na povrchu - protetika - rámy a ochranné kryty přístrojů fotoaparáty, mobilní zařízení, notebooky - sportovní potřeby vyžadující nízkou hmotnost a vysokou pevnost

47 Použití titanu a jeho slitin Litespeed Niota Titanium XTR Váha: g Cena: Kč už při svařování musí mít rám osovou rovnost (tvarová paměť) případné srovnání se provádí předimenzováním stěn obrobitelných ploch ( hlavová trubka, středové pouzdro) vysoká schopnost absorbce nárazu!!!

48 Otázky z dnešní přednášky 1) Jakou mřížku má nikl a jaký je jeho vliv na strukturu oceli (kterou oblast v diagramu Fe-Fe3C otevírá) 2) Jak si geologové vysvětlují obrovská naleziště niklové rudy v kanadském Sudbury? 3) Co to znamená, že je nikl deficitní prvek a jak probíhá výroba čistého niklu? 4) Jaký vliv mají na slitiny niklu síra, křemík a uhlík? 5) Do jakých skupin dělíme slitiny niklu? 6) Co je to paměťový efekt? 7) Jaké znáte konstrukční slitiny niklu. Popište jejich vlastnosti. 8) Jaké znáte slitiny niklu se zvláštními fyzikálními vlastnostmi? 9) Jak je dosaženo vysokých mech. vlastností niklových žárupevných slitin? 10) Kde nachází své využití niklové slitiny?

49 11) Z jakých dvou základních rud získáváme titan a jakým způsobem? 12) Jaké dvě základní krystalové modifikace má čistý titan? (Umět nakreslit) 13) Co je příčinou špatné obrobitelnosti titanových slitin? 14) Jaké má titan unikátní vlastnosti? 15) Popište vliv jiných prvků (O, N, C, H, Fe, Si, Al, V) na vlastnosti titanu a jeho slitin. 16) Jaký je základní princip tepelného zpracování Ti slitin? 17) Popište vlastnosti slitiny Ti6Al4V. 18) Kde nachází své využití slitiny titanu?

Konstrukční, nástrojové

Konstrukční, nástrojové Rozdělení ocelí podle použití Konstrukční, nástrojové Rozdělení ocelí podle použití Podle použití oceli: konstrukční (uhlíkové, legované), nástrojové (uhlíkové, legované). Konstrukční oceli uplatnění pro

Více

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových

Více

Uhlík a jeho alotropy

Uhlík a jeho alotropy Uhlík Uhlík a jeho alotropy V přírodě se uhlík nachází zejména v karbonátových usazeninách, naftě, uhlí, a to jako směs grafitu a amorfní formy C. Rozeznáváme dvě základní krystalické formy uhlíku: a)

Více

Metody studia mechanických vlastností kovů

Metody studia mechanických vlastností kovů Metody studia mechanických vlastností kovů 1. Zkouška tahem Zkouška tahem při pomalém zatěžování a za tzv. okolní teploty (10 C 35 C) je zcela základní a nejběžněji prováděnou zkouškou mechanických vlastností

Více

Technické informace - korozivzdorné oceli

Technické informace - korozivzdorné oceli Technické informace korozivzdorné oceli Vlastnosti korozivzdorných ocelí Tento článek se zabývá často se vyskytujícími typy korozivzdorných ocelí (běžně nerezová ocel) a duplexních korozivzdorných ocelí

Více

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi 17.12.2011 FeCoNi Prvky 8. B skupiny FeCoNi Valenční vrstva: x [vzácný plyn] ns 2 (n-1)d 6 x [vzácný plyn] ns 2 (n-1)d 7 x [vzácný plyn] ns 2 (n-1)d 8 Tomáš Kekrt 17.12.2011 SRG Přírodní škola o. p. s. 2 FeCoNi Fe

Více

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.

2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. 2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné

Více

Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max. 2.14 %.

Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max. 2.14 %. OCEL Ocel je slitina Fe + C + doprovodných prvků (Si, Mn, S, P) + legujících prvků (Ni, Cr, Mo, W, Zi ), kde % obsah uhlíku ve slitině je max. 2.14 %. VÝROBA OCELI Ocel se vyrábí zkujňováním bílého surového

Více

Krystalizace ocelí a litin

Krystalizace ocelí a litin Moderní technologie ve studiu aplikované fyziky reg. č.: CZ.1.07/2.2.00/07.0018. Krystalizace ocelí a litin Hana Šebestová,, Petr Schovánek Společná laboratoř optiky Univerzity Palackého a Fyzikáln lního

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Chemie 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat

Více

5/2.7.10.3 Austenitické vysokolegované žáruvzdorné oceli

5/2.7.10.3 Austenitické vysokolegované žáruvzdorné oceli SVAŘOVÁNÍ KOVŮ V PRAXI část 5, díl 2, kap. 7.10.3, str. 1 5/2.7.10.3 Austenitické vysokolegované žáruvzdorné oceli Austenitické vysokolegované chrómniklové oceli obsahují min. 16,5 hm. % Cr s dostatečným

Více

t-tloušťka materiálu te [mm] C Ce 25 < 0,2 < 0,45 37 < 0,2 < 0,41

t-tloušťka materiálu te [mm] C Ce 25 < 0,2 < 0,45 37 < 0,2 < 0,41 NÍZKOUHLÍKOVÉ OCELI Nízkouhlíkové oceli: svařitelné oceli (požadována především vysoká pevnost) oceli hlubokotažné (smíšené pevnostní vlastnosti ve prospěch plastických) Rozdělení svař. ocelí: uhlíkové

Více

Tvrdé pájení s tavidlem,v ochranném plynu nebo ve vakuu, se podobá pájení na měkko. Pracovní teplota je nad 500 C. Pájí se tvrdou pájkou, roztavenou

Tvrdé pájení s tavidlem,v ochranném plynu nebo ve vakuu, se podobá pájení na měkko. Pracovní teplota je nad 500 C. Pájí se tvrdou pájkou, roztavenou Pájení na tvrdo Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Iveta Konvičná Dostupné z Metodického portálu www.rvp.cz; ISSN 1802-4785, financovaného z ESF a státního rozpočtu ČR.

Více

5. Materiály pro MAGNETICKÉ OBVODY

5. Materiály pro MAGNETICKÉ OBVODY 5. Materiály pro MAGNETICKÉ OBVODY Požadavky: získání vysokých magnetických kvalit, úspora drahých kovů a náhrada běžnými materiály. Podle magnetických vlastností dělíme na: 1. Diamagnetické látky 2. Paramagnetické

Více

Nikl a jeho sloučeniny (jako Ni)

Nikl a jeho sloučeniny (jako Ni) Nikl a jeho sloučeniny (jako Ni) další názvy slitiny niklu Monelův kov, Alnico, bílé zlato číslo CAS 7440-02-0 chemický vzorec Ni ohlašovací práh pro emise a přenosy do ovzduší (kg/rok) 50 do vody (kg/rok)

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Nejjednodušší prvek. Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější. Vodík tvoří dvouatomové molekuly, je lehčí než

Více

1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ

1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1.1 SVAŘOVACÍ DRÁTY Jako přídavný materiál se při plamenovém svařování používá drát. Svařovací drát podstatně ovlivňuje jakost svaru. Drát se volí vždy podobného

Více

Výroba surového železa, oceli, litiny

Výroba surového železa, oceli, litiny Výroba surového železa, oceli, litiny Výroba surového železa Surové želeo se vyrábí ve vysoké peci. Obr. vysoké pece etapy výroby surového železa K výrobě surového železa potřebujeme tyto suroviny : 1.

Více

Korozivzdorné oceli jako konstrukční materiály (1. díl) Využití korozivzdorných ocelí jako konstrukčního materiálu představuje zejména v chemickém

Korozivzdorné oceli jako konstrukční materiály (1. díl) Využití korozivzdorných ocelí jako konstrukčního materiálu představuje zejména v chemickém Korozivzdorné oceli jako konstrukční materiály (1. díl) Využití korozivzdorných ocelí jako konstrukčního materiálu představuje zejména v chemickém průmyslu často jediné možné řešení z hlediska provozu

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.19 Strojní opracování dřeva Kapitola 4 Nástroj

Více

ϑ 0 čas [ s, min, h ]

ϑ 0 čas [ s, min, h ] TEPELNÉ ZPRACOVÁNÍ 1 KOVOVÝCH MATERIÁLŮ Obsah: 1. Účel a základní rozdělení způsobů tepelného zpracování 2. Teorie tepelného zpracování 2.1 Ohřev 2.2 Ochlazování 2.2.1 Vliv rychlosti ochlazování na segregaci

Více

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16

Úpravy povrchu. Pozinkovaný materiál. Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Úpravy povrchu Pozinkovaný materiál Zinkový povlak - záruka elektrochemického ochranného působení 1 / 16 Aplikace žárově zinkovaných předmětů Běžnou metodou ochrany oceli proti korozi jsou ochranné povlaky,

Více

Trvanlivost,obrobitelnost,opotřebení břitu

Trvanlivost,obrobitelnost,opotřebení břitu Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Obrábění Trvanlivost,obrobitelnost,opotřebení břitu

Více

PLANŽETY PŘESNÉ KALENÉ OCELOVÉ A MOSAZNÉ, PODKLADOVÉ FÓLIE A PÁSY

PLANŽETY PŘESNÉ KALENÉ OCELOVÉ A MOSAZNÉ, PODKLADOVÉ FÓLIE A PÁSY PLANŽETY PŘESNÉ KALENÉ OCELOVÉ A MOSAZNÉ, PODKLADOVÉ FÓLIE A PÁSY Váš partner pro přesné podkladové oceli Nabízíme širokou škálu podkladových podložek, pásů z oceli, která pokrývají většinu poptávky na

Více

durostat 400/450 Za tepla válcované tabule plechu Datový list srpen 2013 Odolné proti opotřebení díky přímému kalení

durostat 400/450 Za tepla válcované tabule plechu Datový list srpen 2013 Odolné proti opotřebení díky přímému kalení Za tepla válcované tabule plechu durostat 400/450 Datový list srpen 2013 Tabule plechu Odolné proti opotřebení díky přímému kalení durostat 400 a durostat 450 dosahují typických povrchových tvrdostí přibližně

Více

Mineralogický systém skupina I - prvky

Mineralogický systém skupina I - prvky Mineralogický systém skupina I - prvky Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 11. 10. 2012 Ročník: devátý Vzdělávací oblast: přírodopis Anotace: Žáci se seznámí s vybranými nerosty, které

Více

Cín s kosočtverečnou strukturou: vzniká zahřátím cínu s krychlovou strukturou nad 161 C. Velmi křehký, snadno práškovatelný.

Cín s kosočtverečnou strukturou: vzniká zahřátím cínu s krychlovou strukturou nad 161 C. Velmi křehký, snadno práškovatelný. ZBYLÉ PRVKY Cín Cín s krychlovou strukturou: je stříbrobílý, lesklý kov, nepříliš tvrdý, ale znatelně tažný, dobrý vodič tepla a elektrického proudu. Cín je na vzduchu za běžných podmínek stály, za vyšší

Více

Kovy budoucnosti zlato, platina, titan Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost:

Kovy budoucnosti zlato, platina, titan Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_03_20

Více

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2 HOŘČÍK KOVY ALKALICKÝCH ZEMIN Pozn. Elektronová konfigurace valenční vrstvy ns 2 Hořčík Vlastnosti: - stříbrolesklý, měkký, kujný kov s nízkou hustotou (1,74 g.cm -3 ) - diagonální podobnost s lithiem

Více

Střední škola obchodu, řemesel a služeb Žamberk

Střední škola obchodu, řemesel a služeb Žamberk Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 11.2.2013

Více

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby

Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Předmět: CHEMIE Ročník: 8. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy a vazby Konkretizované tematické okruhy realizovaného průřezového tématu září orientuje se

Více

Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech:

Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech: Chromované tyče Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech: ocel 20MnV6 (podle ČSN podobná oceli 13 220) Vanadiová ocel, normalizovaná, s vyšší

Více

SHAPE MEMORY ALLOYS (SMA) TVAROVÁ PAMĚŤ KOVŮ. Hurbánek R., Filípek J. ABSTRACT ABSTRAKT ÚVOD MATERIÁL A METODIKA

SHAPE MEMORY ALLOYS (SMA) TVAROVÁ PAMĚŤ KOVŮ. Hurbánek R., Filípek J. ABSTRACT ABSTRAKT ÚVOD MATERIÁL A METODIKA SHAPE MEMORY ALLOYS (SMA) TVAROVÁ PAMĚŤ KOVŮ Hurbánek R., Filípek J. Ústav environmentální techniky, Agronomická fakulta, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská 1, 613 00 Brno, Česká

Více

Technologie I. Anodická oxidace hliníku. Referát č. 1. Povrchové úpravy

Technologie I. Anodická oxidace hliníku. Referát č. 1. Povrchové úpravy České vysoké učení technické v Praze Fakulta strojní Ústav strojírenské technologie Technologie I. Referát č. 1. Povrchové úpravy Anodická oxidace hliníku Vypracoval: Jan Kolístka Dne: 28. 9. 2009 Ročník:

Více

6. Viskoelasticita materiálů

6. Viskoelasticita materiálů 6. Viskoelasticita materiálů Viskoelasticita materiálů souvisí se schopností materiálů tlumit mechanické vibrace. Uvažujme harmonické dynamické namáhání (tzn. střídavě v tahu a tlaku) materiálu v oblasti

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: Anorganická chemie Chemie Mgr. Soňa Krampolová 01 - Vlastnosti přechodných prvků -

Více

Přírodopis 9. Přehled minerálů PRVKY

Přírodopis 9. Přehled minerálů PRVKY Přírodopis 9 10. hodina Přehled minerálů PRVKY Mgr. Jan Souček Základní škola Meziměstí I. Prvky V přírodě existuje přes 20 minerálů tvořených samostatnými prvky. Dělí se na kovy: měď (Cu), stříbro (Ag),

Více

Projekt EU - Implementace nových technických vzdělávacích programů do praxe, r.č. CZ.1.07/1.1.10/03.0073.

Projekt EU - Implementace nových technických vzdělávacích programů do praxe, r.č. CZ.1.07/1.1.10/03.0073. Projekt EU - Implementace nových technických vzdělávacích programů do praxe, r.č. CZ.1.07/1.1.10/03.0073. BADAL Miloš. Popis účasti. V tomto grantovém projektu jsem tvořil příručku pro základní pochopení

Více

NEŽELEZNÉ KOVY A JEJICH SLITINY

NEŽELEZNÉ KOVY A JEJICH SLITINY 1 NEŽELEZNÉ KOVY A JEJICH SLITINY Technické neželezné kovy jsou všechny kovy mimo železa. Neželezné kovy jsou nejen důležitými konstrukčními materiály, ale i surovinami pro výrobu slitinových ocelí a pro

Více

Výrobce plochých produktu z nerezové oceli

Výrobce plochých produktu z nerezové oceli Stainless Service Poland Výrobce plochých produktu z nerezové oceli Budova Servisního střediska ArcelorMittal v Siemianowicích Śląských. 01 Stainless Service Poland Naše firma je předním dodavatelem plochých

Více

20 litrové a 200 litrové kontejnery. 20 litrové a 200 litrové kontejnery

20 litrové a 200 litrové kontejnery. 20 litrové a 200 litrové kontejnery Promoclean TP 112 Detergentní kapalina určená pro odstraňování veškerých brusných a leštících past a chladících obráběcích olejů Viskózní kapalina kaštanové barvy, která se snadno rozpouští a omývá vodou

Více

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný Fe 3+ Fe 3+ Fe 3+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ Fe 2+ Fe 6+ 2) Vyber správné o rtuti:

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

Rozdělení a označení ocelí. Co je lehčí porozumět hieroglyfům, japonskému písmu, nebo značení ocelí? Ocel ČSN 12 050 1/31

Rozdělení a označení ocelí. Co je lehčí porozumět hieroglyfům, japonskému písmu, nebo značení ocelí? Ocel ČSN 12 050 1/31 Rozdělení a označení ocelí Co je lehčí porozumět hieroglyfům, japonskému písmu, nebo značení ocelí? Ocel ČSN 12 050 1/31 2/31 3/31 4/31 Význam zbývajících tří číslic v základní značce ocelí je u různých

Více

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1

Vyšší odborná škola, Obchodní akademie a Střední odborná škola EKONOM, o. p. s. Litoměřice, Palackého 730/1 DUM Základy přírodních věd DUM III/2-T3-2-20 Téma: Test obecná chemie Střední škola Rok: 2012 2013 Varianta: A Test obecná chemie Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Otázka 1 OsO 4 je

Více

Přednáška č.11 Spoje nerozebíratelné

Přednáška č.11 Spoje nerozebíratelné Fakulta strojní VŠB-TUO Přednáška č.11 Spoje nerozebíratelné SVAŘOVÁNÍ je proces, který slouží k vytvoření trvalého, nerozebíratelného spoje dvou a více materiálů. Při svařování je nutné působit buď tlakem,

Více

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide

KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide KRITÉRIA VOLBY METODY A TRENDY TEPELNÉHO DĚLENÍ MATERIÁLŮ Ing. Martin Roubíček, Ph.D. - Air Liquide Metody tepelného dělení, problematika základních materiálů Tepelné dělení materiálů je lze v rámci strojírenské

Více

Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Ročník Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie anorganická výskyt a zpracování kovů 2. ročník Datum tvorby 22.4.2014

Více

Korespondenční seminář Chemie, 1.kolo

Korespondenční seminář Chemie, 1.kolo Korespondenční seminář Chemie, 1.kolo Milí žáci, připravili jsme pro vás korespondenční seminář, ve kterém můžete změřit své síly v oboru chemie se svými vrstevníky z jiných škol. Zadání bude vyhlašováno

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

NÁSTROJOVÉ OCELI CPM 10 V

NÁSTROJOVÉ OCELI CPM 10 V NÁSTROJOVÁ OCEL CPM 10 V CERTIFIKACE DLE ISO 9001 Chem. složení C 2,45 % Cr 5,25 % V 9,75 % Mo 1,30 % Mn 0,50 % Si 0,90 % CPM 10 V Je jedinečná vysokovýkonná ocel, vyráběná společností Crucible (USA) metodou

Více

KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC

KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC KOMPLEXNÍ VZDĚLÁVÁNÍ KATEDRA STROJNÍ SPŠSE a VOŠ LIBEREC CNC CAM CNC CNC OBECNĚ (Kk) SOUSTRUŽENÍ SIEMENS (Ry) FRÉZOVÁNÍ SIEMENS (Hu) FRÉZOVÁNÍ HEIDENHEIM (Hk) CAM EdgeCAM (Na) 3D OBJET PRINT (Kn) CNC OBECNĚ

Více

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Tažení. Téma: Ing. Kubíček Miroslav. Autor:

Inovace a zkvalitnění výuky prostřednictvím ICT. Tváření. Název: Tažení. Téma: Ing. Kubíček Miroslav. Autor: Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Tváření Tažení Ing. Kubíček Miroslav Číslo: Kubíček

Více

tloušťka min 6 mm; kusový ocelový odpad; starý odpad lan svázaný do kruhu o průměru max 700 mm; odpad trubek 13 starý těžký odpad upravený;

tloušťka min 6 mm; kusový ocelový odpad; starý odpad lan svázaný do kruhu o průměru max 700 mm; odpad trubek 13 starý těžký odpad upravený; Druh Název odpadu Poznámka 10 nový těžký odpad neupravený; rozměr alespoň v jednom směru větší než 1500x500x500 mm tloušťka min 3 mm; krátké zmetkové ingoty; odpad z válcoven;odpad trubek; nový kusový

Více

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák:

Chemie - 1. ročník. očekávané výstupy ŠVP. Žák: očekávané výstupy RVP témata / učivo Chemie - 1. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 7.3. 1. Chemie a její význam charakteristika

Více

materiál č. šablony/č. sady/č. materiálu: Autor:

materiál č. šablony/č. sady/č. materiálu: Autor: Masarykova základní škola Klatovy, tř. Národních mučedníků 185, 339 01 Klatovy; 376312154, fax 376326089 E-mail: skola@maszskt.investtel.cz; internet: www.maszskt.investtel.cz Kód přílohy vzdělávací VY_32_INOVACE_CH8SA_01_03_06

Více

DOUČOVÁNÍ KVINTA CHEMIE

DOUČOVÁNÍ KVINTA CHEMIE 1. ÚVOD DO STUDIA CHEMIE 1) Co studuje chemie? 2) Rozděl chemii na tři důležité obory. DOUČOVÁNÍ KVINTA CHEMIE 2. NÁZVOSLOVÍ ANORGANICKÝCH SLOUČENIN 1) Pojmenuj: BaO, N 2 0, P 4 O 10, H 2 SO 4, HMnO 4,

Více

Ocelové konstrukce. Jakub Stejskal, 3.S

Ocelové konstrukce. Jakub Stejskal, 3.S Ocelové konstrukce { Jakub Stejskal, 3.S Výhody a nevýhody ocelových konstrukcí Výhody Vysoká pevnost vzhledem ke hmotnosti Průmyslová výroba (přesnost, produktivita, automatizace, odstranění sezónnosti,

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D.

U BR < 4E G /q -saturační proud ovlivňuje nárazovou ionizaci. Šířka přechodu: w Ge 0,7 w Si (pro N D,A,Ge N D,A,Si ); vliv U D. Napěťový průraz polovodičových přechodů Zvyšování napětí na přechodu -přechod se rozšiřuje, ale pouze s U (!!) - intenzita elektrického pole roste -překročení kritické hodnoty U (BR) -vzrůstu závěrného

Více

Potok Besének které kovy jsou v minerálech říčního písku?

Potok Besének které kovy jsou v minerálech říčního písku? Potok Besének které kovy jsou v minerálech říčního písku? Karel Stránský, Drahomíra Janová, Lubomír Stránský Úvod Květnice hora, Besének voda dražší než celá Morava, tak zní dnes již prastaré motto, které

Více

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.

Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34. Datum: 14. 2. 2013 Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07/1.5.00/34.1013 Číslo DUM: VY_32_INOVACE_467A Škola: Akademie - VOŠ, Gymn. a SOŠUP Světlá nad

Více

Kovy I. A skupiny alkalické kovy

Kovy I. A skupiny alkalické kovy Střední průmyslová škola Hranice - 1 - Kovy I. A skupiny alkalické kovy Lithium Sodík Draslík Rubidium Cesium Francium Jsou to kovy s jedním valenčním elektronem, který je slabě poután, proto jejich sloučeniny

Více

Charakteristika vyučovacího předmětu Chemie

Charakteristika vyučovacího předmětu Chemie Charakteristika vyučovacího předmětu Chemie Obsahové, časové a organizační vymezení předmětu Chemie Obsah předmětu Chemie je zaměřen na praktické využití poznatků o chemických látkách, na znalost a dodržování

Více

MATERIÁLY NA TVÁŘENÍ KOVŮ

MATERIÁLY NA TVÁŘENÍ KOVŮ MATERIÁLY NA TVÁŘENÍ KOVŮ Nejrozšířenější technické materiály železné kovy - OCELI V současné době nahrazení NEŽELEZNÉ KOVY Al, Mg, Ti PLASTY KOMPOZITNÍ MATERIÁLY Vysokopevnostní oceli Hlubokotažné oceli

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Obecná

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 27.9.2012

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne: 27.9.2012 Označení materiálu: VY_32_INOVACE_ZMAJA_VODARENSTVI_14 Název materiálu: Materiály pro obor instalatér, rozdělení materiálů Tematická oblast: Vodárenství 1. ročník instalatér Anotace: Prezentace popisuje

Více

ARGENPAL IV A NÁVOD NA POUŽITÍ

ARGENPAL IV A NÁVOD NA POUŽITÍ NÁVOD NA POUŽITÍ ARGENPAL IV A SP.42100.529.001 ARGENPAL IV A je stříbropaládiová dentální slitina s velmi vysokou pevností, typu 4. Je určena pro značně namáhané odlitky zubních náhrad (inlaye, kořenové

Více

Odborná způsobilost a dostupnost

Odborná způsobilost a dostupnost CZ Dodavatel odolných dílů a kompletních řešení z otěruvzdorných a vysokopevnostních ocelí 1 Kombinace produktu a know-how pro poskytnutí řešení připravených k použití Abraservice je přední evropská společnost

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

4.5.7 Magnetické vlastnosti látek

4.5.7 Magnetické vlastnosti látek 4.5.7 Magnetické vlastnosti látek Předpoklady: 4501 Předminulá hodina magnetická indukce závisí i na prostředí, ve kterém ji měříme permeabilita prostředí = 0 r, r - relativní permeabilita prostředí (zda

Více

Řezná keramika. Moderní a produktivní způsob obrábění žárovzdorných slitin

Řezná keramika. Moderní a produktivní způsob obrábění žárovzdorných slitin Řezná keramika Moderní a produktivní způsob obrábění žárovzdorných slitin Obrábění pomocí řezné keramiky Použití Keramické třídy je možné použít pro široký okruh aplikací a materiálů, přičemž nejčastěji

Více

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná

VESMÍR. za počátek vesmíru považujeme velký třesk před 13,7 miliardami let. dochází k obrovskému uvolnění energie, která se rozpíná VESMÍR za počátek vesmíru považujeme velký třesk před 13,7 miliardami let dochází k obrovskému uvolnění energie, která se rozpíná vznikají první atomy, jako první se tvoří atomy vodíku HVĚZDY první hvězdy

Více

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují

Více

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH Teplárenské dny 2015 Hradec Králové J. Hyžík STEO, Praha, E.I.C. spol. s r.o., Praha, EIC AG, Baden (CH), TU v Liberci,

Více

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B)

Hmotnost. Výpočty z chemie. m(x) Ar(X) = Atomová relativní hmotnost: m(y) Mr(Y) = Molekulová relativní hmotnost: Mr(AB)= Ar(A)+Ar(B) Hmotnostní jednotka: Atomová relativní hmotnost: Molekulová relativní hmotnost: Molární hmotnost: Hmotnost u = 1,66057.10-27 kg X) Ar(X) = m u Y) Mr(Y) = m u Mr(AB)= Ar(A)+Ar(B) m M(Y) = ; [g/mol] n M(Y)

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

KOVY ŽELEZNÉ KOVY. Obr.1. Schéma výroby surového železa a oceli KOKSOVNA ŠROT AGLOMERACE ÚPRAVNA ŠROTU VYSOKÁ PEC

KOVY ŽELEZNÉ KOVY. Obr.1. Schéma výroby surového železa a oceli KOKSOVNA ŠROT AGLOMERACE ÚPRAVNA ŠROTU VYSOKÁ PEC KOVY Technické kovy (tj. kovy využívané v technické praxi) jsou krystalické látky, a to převážně slitiny základního kovu s dalšími kovovými nebo nekovovými prvky. Získávají se metalurgickými pochody z

Více

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS PRVKY ŠESTÉ SKUPINY - CHALKOGENY Mezi chalkogeny (nepřechodné prvky 6.skupiny) zařazujeme kyslík, síru, selen, tellur a radioaktivní polonium. Společnou vlastností těchto prvků je šest valenčních elektronů

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte:

DUSÍK NITROGENIUM 14,0067 3,1. Doplňte: Doplňte: Protonové číslo: Relativní atomová hmotnost: Elektronegativita: Značka prvku: Latinský název prvku: Český název prvku: Nukleonové číslo: Prvek je chemická látka tvořena z atomů o stejném... čísle.

Více

Nerezová ocel a zajištění rovnováhy klíčových faktorů při jejím obrábění

Nerezová ocel a zajištění rovnováhy klíčových faktorů při jejím obrábění Pro přímé vydání Kontakt: Seco Tools CZ, s.r.o. Londýnské nám. 2 639 00 Brno Alena TEJKALOVÁ Telefon: +420-530-500-827 E-mail: alena.tejkalova@secotools.com www.secotools.com/cz Nerezová ocel a zajištění

Více

MIKROPORÉZNÍ TECHNOLOGIE

MIKROPORÉZNÍ TECHNOLOGIE MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno

Více

Trubky pro hydraulické válce

Trubky pro hydraulické válce Trubky pro hydraulické válce Trubky pro hydraulické válce Přesná ocelová trubka tvoří základní nepohyblivou část přímočarého hydromotoru. Slouží k vedení pístu osazeného těsnícími manžetami a z toho vyplývají

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

BiM (BI-METAL) ruční pilové listy nepravidelné rozteče zubů. BiM (BI-METAL) ruční pilové listy. Chemické složení ocelí:

BiM (BI-METAL) ruční pilové listy nepravidelné rozteče zubů. BiM (BI-METAL) ruční pilové listy. Chemické složení ocelí: BiM (BI-METAL) ruční pilové listy BiM (BI-METAL) ruční pilové listy nepravidelné rozteče zubů Bi-metalové ruční pilové listy jsou vyráběny z oceli jakostí M2 a D6A. Kombinace těchto dvou materiálů zaručuje

Více

ARCAL TM Prime. Čisté řešení. Primární řešení při široké škále použití:

ARCAL TM Prime. Čisté řešení. Primární řešení při široké škále použití: ARCAL TM Prime Čisté řešení Primární řešení při široké škále použití: TIG a plazmové svařování všech materiálů MIG svařování slitin hliníku a mědi Ochrana kořene svaru u všech materiálů ARCAL TM Prime

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice KAPITOLA 2: PRVEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

VYBRANÉ ZKUŠENOSTI S PŘÍPRAVOU SLITIN Mg-Li JAKO MATRIČNÍHO KOVU PRO VLÁKNOVÁ KOMPOZITA

VYBRANÉ ZKUŠENOSTI S PŘÍPRAVOU SLITIN Mg-Li JAKO MATRIČNÍHO KOVU PRO VLÁKNOVÁ KOMPOZITA VYBRANÉ ZKUŠENOSTI S PŘÍPRAVOU SLITIN Mg-Li JAKO MATRIČNÍHO KOVU PRO VLÁKNOVÁ KOMPOZITA Luděk Ptáček Ladislav Zemčík Ústav materiálového inženýrství F. Píška, FSI VUT v Brně Technická 2, 616 69 Brno Abstract

Více

Tvrdost pitné vody. Potřebujete-li rychle zjistit, jak tvrdá voda je ve vaší obci, klikněte ZDE.

Tvrdost pitné vody. Potřebujete-li rychle zjistit, jak tvrdá voda je ve vaší obci, klikněte ZDE. Tvrdost pitné vody Potřebujete-li rychle zjistit, jak tvrdá voda je ve vaší obci, klikněte ZDE. Tvrdostí vody se rozumí suma koncentrace vápníku a hořčíku ve vodě. Pro hodnocení vody z technického hlediska

Více

VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU 135 - MAG

VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU 135 - MAG VLIV OCHRANNÝCH PLYNŮ NA VLASTNOSTI SVAROVÉHO SPOJE PŘI SVAŘOVÁNÍ NELEGOVANÝCH KONSTRUKČNÍCH OCELÍ METODOU 135 - MAG Ing. Martin Roubíček, Ph.D., AIR LIQUIDE CZ, s.r.o. Prof. Ing. Václav Pilous, DrSc.,

Více

HRA Mícháme si Najdi Sumární Otázky Bezpečnost Příroda směsi

HRA Mícháme si Najdi Sumární Otázky Bezpečnost Příroda směsi RISKUJ HRA Mícháme si Najdi Sumární Otázky Bezpečnost Příroda směsi mě vzorce praxe 1000 1000 1000 1000 1000 1000 2000 2000 2000 2000 2000 2000 3000 3000 3000 3000 3000 3000 4000 4000 4000 4000 4000 4000

Více

Vodík CH_103_Vodík Autor: PhDr. Jana Langerová

Vodík CH_103_Vodík Autor: PhDr. Jana Langerová Registrační číslo projektu: CZ.1.07/1.1.38/02.0025 Název projektu: Modernizace výuky na ZŠ Slušovice, Fryšták, Kašava a Velehrad Tento projekt je spolufinancován z Evropského sociálního fondu a státního

Více

1.08 Tvrdost vody. Projekt Trojlístek

1.08 Tvrdost vody. Projekt Trojlístek 1. Chemie a společnost 1.08. Projekt úroveň 1 2 3 1. Předmět výuky Metodika je určena pro vzdělávací obsah vzdělávacího předmětu Chemie. Chemie 2. Cílová skupina Metodika je určena pro žáky 2. stupně ZŠ

Více

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

Sklo chemické složení, vlastnosti, druhy skel a jejich použití Sklo chemické složení, vlastnosti, druhy skel a jejich použití Jak je definováno sklo? ztuhlá tavenina průhledných křemičitanů (pevný roztok) homogenní amorfní látka (bez pravidelné vnitřní struktury,

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více