Ing. Vítězslav Doleží, Ing. Dušan Galis

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Ing. Vítězslav Doleží, Ing. Dušan Galis"

Transkript

1 Projekt OP VK CZ..7/..7/. Podpora odborného vzdělávání na tředních školách SK Střední škola průmylová a umělecká, Opava, přípěvková organizace Prakova 8/99 76, Opava tel.: echanika II Výukový manuál Ing. Vítězlav Doleží, Ing. Dušan Gali Tento projekt je polufinancován Evropkým ociálním fondem a tátním rozpočtem Čeké republiky

2 Prakova 8, 76 Opava, tel.: , fa: Ing. Vítězlav Doleží, Ing. Dušan Gali Opava 9

3 Prakova 8, 76 Opava, tel.: , fa: Střední škola průmylová a umělecká, Opava, přípěvková organizace Ing. Vítězlav Doleží, Ing. Dušan Gali Tato práce louží pro výuku předmětu echaniky II na Střední škole průmylové a umělecké, Opava, přípěvkové organizaci. Opava 9

4 Prakova 8, 76 Opava, tel.: , fa: Obah Úvod Plán učiva Pomůcky Poznámky... 6 Opakování prvního ročníku Skládání il graficky a početně Rozložení íly do dvou kolmých měrů Podmínky rovnováhy Řešení reakcí noníků na dvou podporách Smykové tření Těžiště Diagram tahové zkoušky Dovolené napětí a bezpečnot Tah, tlak Smyk.... Příklady... Kvadratické momenty průřezových ploch omenty Statický moment íly Statický moment plochy Kvadratický moment plochy Steinerova věta Kvadratické momenty geometrických ploch Kvadratické momenty ložených ploch.... Poloměr kvadratického momentu (kvadratický poloměr)..... Obdélník..... Kruh..... Poloměr kvadratického momentu i k mimotěžišťové oe....5 Průřezové moduly v ohybu a krutu....6 Průřezový modul v ohybu... 5 Krut Základní rovnice pro krut Pevnotní podmínka pro krut Hookeův zákon pro myk Deformační podmínka pro krut: Závilot krouticího momentu K na výkonu P....6 Kroucené pružiny Torzní tyč: Šroubová válcová pružina....7 Krut nekruhových průřezů... 5 Ohyb Pevnotní podmínka pro ohyb Uložení noníků Způoby uložení: Vnitřní íly a momenty Průběh poouvajících il a ohybových momentů Vetknutý noník Určování poouvajících il a ohybových momentů Analytická metoda:...

5 Prakova 8, 76 Opava, tel.: , fa: etoda uperpozice: Schwedlerova věta Noníky e pojitým zatížením Noník na dvou podporách Noníky tálé pevnoti Vetknutý noník Noník na dvou podporách Deformace v ohybu Poloměr křivoti ρ Úhel natočení α Průhyb y etoda uperpozice Deformační podmínka pro ohyb Staticky neurčité noníky Ohýbané pružiny Výpočet litových pružin: Složená namáhání Kombinace normálných napětí Šikmý ohyb: Tah nebo tlak + ohyb Ecentrický tah (tlak): Kombinace normálných il a tečných napětí Teorie pevnoti Teorie maimálních normálných napětí a Teorie maimálních poměrných deformací e a Teorie maimálních mykových napětí t a Teorie energetická podle celkové měrné deformační energie Teorie energetická podle měrné deformační energie pro změnu tvaru Redukovaný moment Vzpěr Výpočet podle Eulera (pružný vzpěr) Výpočet podle Tetmajera (nepružný vzpěr) Součinitel vzpěrnoti Shrnutí vzpěru: Cyklické namáhání únava Wöhlerova křivka (tudium prakání kolejnic) Smithův diagram Tvarová pevnot Vliv tvaru oučáti: Vliv velikoti: Vliv povrchu oučáti: Výpočet hřídele na únavu Kinematika Přímočaré pohyby Přímočarý rovnoměrný pohyb příklady Rovnoměrně zrychlený a zpožděný přímočarý pohyb Volný pád Svilý vrh Křivočaré pohyby...

6 Prakova 8, 76 Opava, tel.: , fa: Obecný rovnoměrný křivočarý pohyb Rovnoměrný pohyb bodu po kružnici Rovnoměrný rotační pohyb těle kolem tálé oy Rovnoměrně zrychlený rotační pohyb Skládání pohybů Pohyb ve dvou rovnoběžných přímkách Pohyb v různoběžných přímkách Vodorovný vrh Šikmý vrh Svilý vrh Rozkládání pohybů Valení válce po rovině Oba dílčí pohyby otáčivé Unášivý pohyb rotační, relativní pouvný Harmonický pohyb Rotační pohyb Kinematika outavy těle Stupně volnoti: Převody Řemenový nebo řetězový převod Převody ozubenými koly Složený řemenový převod Složený převod ozubenými koly...

7 Prakova 8, 76 Opava, tel.: , fa: Úvod. Plán učiva. Úvod.. Opakování látky z. ročníku.. Kvadratické momenty a průřezové moduly.. Krut. 5. Ohyb. 6. Složené namáhání. 7. Stabilita vzpěr. 8. Cyklické namáhání únava. 9. Kinematika.. Na konci roku před uzavřením známek kontrola všech ešitů, ešity muí být v abolutním pořádku, e všemi nakrelenými obrázky, e vším dopaným učivem, okraji tuší.. Opakování učiva.. Pomůcky. Kniha ECHANIKA Pružnot a pevnot pro SPŠ trojnické, L. rňák, A. Drdla, SNTL.. Kniha ECHANIKA II Kinematika pro SPŠ trojnické,. ulina,. Kovář, V. Venclík, SNTL.. Kniha ECHANIKA Sbírka úloh, I. Turek, O. Skala, Haluška, SNTL.. Kniha Strojnické tabulky, an Leinveber a Pavel Vávra, ALBRA. 5. Čtverečkovaný ešit A tlutý, okraje tuší cm od vnější trany. 6. Pero a pentelka,5 mm. 7. Guma na gumování. 8. Trojúhelníkové pravítko. 9. Kalkulačka. 5/5

8 Prakova 8, 76 Opava, tel.: , fa: Poznámky odul pružnoti V tahu Ve myku Ocel E, 5 Pa G 8 Pa Litina E, 5 Pa G Pa Opakování prvního ročníku. Skládání il graficky a početně. Rozložení íly do dvou kolmých měrů coα y inα + y 6/5

9 Prakova 8, 76 Opava, tel.: , fa: Podmínky rovnováhy n i i n i i. Řešení reakcí noníků na dvou podporách coα y inα n i n y i ; n A i ; n B i RA RBy y a ; a + b RAy b y a + b.5 Smykové tření f t n n m g (Poznámka: platí v případě vodorovné podložky) f oučinitel mykového tření, ocel/ocel,5,; f o oučinitel mykového tření v klidu; f oučinitel mykového tření v pohybu; g 9,8 m 7/5

10 Prakova 8, 76 Opava, tel.: , fa: Těžiště.7 Diagram tahové zkoušky ε e pružná, elatická deformace; ε p platická deformace; U, U mez úměrnoti; E, E mez pružnoti, elatičnoti; K, K, R e mez kluzu, vzniká již trvalá deformace, dá e přeně zjitit u houževnatých materiálů, je výchozí hodnotou pro výpočty; P, P, R m mez pevnoti, materiál praká, je důležitá u křehkých materiálů; C dochází k přetržení zkušební tyčinky. t S Hookeův zákon: ε E l ε poměrné prodloužení, deformace ε ; E modul pružnoti v tahu. Obdobně platí pro myk (trojnické tabulky tr. 5): τ S γ G γ zko G modul pružnoti ve myku. ez kluzu ve myku τ KS, 6 R e Pro ocel i litinu platí: (pevnot v tahu e rovná pevnoti v tlaku). pt pd l o 8/5

11 Prakova 8, 76 Opava, tel.: , fa: Dovolené napětí a bezpečnot Počítáme:, bezpečnot, rozměr, ílu. Dovolené napětí v tahu: Re Dovt (mez kluzu / bezpečnoti). k R m a R e najdeme ve trojnických tabulkách tr. 8 R e,6 R m ( p Dov (,7,9) Dovt.9 Tah, tlak K, 6 ) Tah počítáme v nejužším průřezu: P S t Dovt ěrný tlak počítáme na průmět plochy kolmý k půobící íle: p S p Dov p Dov (,7,9) Dovt D S π ( D d S π ) 9/5

12 Prakova 8, 76 Opava, tel.: , fa: Smyk τ S S τ DovS τ PS,6 Pt τ KS,6 τ PS,6. (,6 Pt ),6 Pt τ τ DovS k KS. Příklady Př.: ak velkou vilou ilou muíme půobit v mítě A, aby e outava nepohybovala. aká bude reakce v bodě B? 5 N, N. n B i + A A 5 N n y i RB + A RB 75 N /5

13 Prakova 8, 76 Opava, tel.: , fa: Př.: Určete reakce noníku. 5N n A i RB RB 875N n y i RA RB + RA N Př.: aké je napětí v jednotlivých prutech konzoly? Pruty mají průměr d mm? 5 tg α α 6, 5 tgα N tgα tg6,5 inα inα in 6,5 6N S π d 5, 6Pa S π d 8, 5Pa /5

14 Prakova 8, 76 Opava, tel.: , fa: Př.: akým momentem A muíme půobit, aby byla outava v rovnováze? N n i i RA + N n i + i 6N 6Nm 6 - Nmm A A + Př.: Určete těžiště obrazce, rozměry jou dány v mm. Určíme T a T : Vypočteme plochy S a S : S mm S 6 mm /5

15 Souřadnice těžiště: mm, y mm, 8 mm, y mm Výpočet výlednice: S S + S 6 mm je přímo úměrná ploše, zavedeme: 6 N 8 N 6 N T + y T y + y T, 5mm y T 5mm 6 Prakova 8, 76 Opava, tel.: , fa: Př.: Určete těžiště obrazce, rozměry jou dány v mm: S 6 8 mm 8 N π d S π mm, 5 mm 8 N T mm N 8 5 T, mm 86 Těžiště leží na oe ouměrnoti y T (bod zvolen na oe). /5

16 Prakova 8, 76 Opava, tel.: , fa: Př.: akou ilou muíme tlačit bednu o hmotnoti kg, aby e začala pohybovat? Součinitel mykového tření f,. T N f m g f 9,8, 96, N Př.: Který jeřábník zvolil z pevnotního hledika vhodnější délku řetězu? Situaci prověřte graficky. První varianta je dle grafického rozkladu výhodnější. Př.: akou ilou tlačí levá podní tyč na bočnici a na dno palety. Tíha jedné roury je N, průměr roury je 5 mm. /5

17 Rovnotranný trojúhelník 6 α G G co co co Síla půobící na dno pod levou tyčí: DNA + G + N Síla půobící na bočnici: 5,7N in in 5.7in Prakova 8, 76 Opava, tel.: , fa: ,5N Př.: aká velká íla je potřebná k vytřižení pětikoruny z plechu. τ PS 5 Pa. Průměr d mm, t mm. τ S τ PS τ S τ π d t PS 5 π 68 N 6,8 kn,6 t PS S Př.: Táhlo otvory je namáháno na tah ilou kn. ateriál táhla 5 má R e 5 Pa. Určete tloušťku táhla při bezpečnoti k mezi kluzu k,5. R k 5,5 e Dovt, Pa t Dovt S S Dovt 7,78mm, S 7, S ( ) t t 78,9 mm 5/5

18 Prakova 8, 76 Opava, tel.: , fa: Př.: Oazený konec tyče je namáhán ilou kn, vypočtěte napětí v patřičných mítech. D 7 mm, d 5 mm, t mm. t 5, Pa S π d π 5 τ, Pa S S π d t π 5 p 5, Pa S π ( D d ) π (7 5 ) Př.: akou velkou ilou je třeba táhnout ocelovou tyč, aby e prodloužila o mm? Tyč má průměr mm a délku m (Hookeův zákon). l ε l, t ε E,, 5 Pa t S 6,5kN t π d S t π Kvadratické momenty průřezových ploch Při namáhání v tahu, tlaku a myku jme poznali, že charakteritickými veličinami, na kterých záviela únonot oučáti a její deformace, byly velikot íly a plocha průřezu. Nezáleželo na poloze a tvaru. inak tomu bude u krutu a ohybu. Například pravítko na ležato a na tojato. U ohybu i dalších namáhání tedy únonot a deformace závií nejen na íle a průřezu, ale i na poloze, tvaru a rozložení podél průřezové oy. Charakteritickou veličinou tedy není průřez, ale kvadratický moment průřezu. 6/5

19 Prakova 8, 76 Opava, tel.: , fa: /5. omenty.. Statický moment íly [ ] m N a.. Statický moment plochy [ ] m S S.. Kvadratický moment plochy... Oový: [ ] m S y ] [ ) ( m S i n i i i n i i i n i y S i ) (!!! n i T i T i y S y S!!! Kvadratický oový moment plošky S vzhledem k nějaké oe e rovná oučinu obahu této plošky a čtverce vzdálenoti těžiště y této plošky od oy.

20 Prakova 8, 76 Opava, tel.: , fa: Kvadratický oový moment celé plochy S ložené z plošek S e rovná oučtu dílčích kvadratických momentů všech plošek S. Pozor! Na rozdíl od lineárního momentu, kde jme mohli oučet dílčích momentů nahradit výlednou plochou náobenou vzdálenotí těžiště, u kvadratického momentu by jme dotali jiný výledek!... Polární p S r odtud pak: p S ( + y ) S + S y y + n n n p y i + i i + i i i y Kvadratický polární moment plošky S vzhledem k libovolnému bodu (pólu) e rovná oučinu obahu této plošky a čtverce vzdálenoti této plošky od pólu (r ). Polární moment celé plochy S e rovná oučtu dílčích polárních momentů Polární moment p. p plochy S e rovná oučtu oových kvadratických momentů téže plochy S ke dvěma oám, které jou kolmé a procházejí pólem. 8/5

21 Prakova 8, 76 Opava, tel.: , fa: Steinerova věta Udává vztah mezi oovými momenty ke dvěma rovnoběžným oám, z nichž jedna prochází těžištěm. T + S a [mm ] Kvadratický moment k mimotěžišťové oe e rovná kvadratickému momentu k těžišťové oe T rovnoběžnému oou, zvětšenému o oučin S a, kde S je obah plochy a a je vzdálenot o. Důledek: K těžišťové oe je kvadratický moment minimální.. Kvadratické momenty geometrických ploch Kvadratické momenty geometrických ploch Kvadratický Velikot průřezu moment průřezu k oe těžiště Obdélník Polární moment průřezu S b h T b h Čtverec S a a T 9/5

22 Prakova 8, 76 Opava, tel.: , fa: Trojúhelník S b h S T b h 6 Kruh S π d T π d 6 p π d ezikruží S π (D d ) T π (D 6 d ) p π (D d ) Dutý obdélník S B H b h T B H b h Elipa S π π a a b b T 6 /5

23 . Kvadratické momenty ložených ploch Prakova 8, 76 Opava, tel.: , fa: Kvadratické momenty mohu čítat a odčítat pouze, půobí li ke tejné oe. Obvykle počítáme kvadratický moment k těžišťové oe celého průřezu. Např.: ezikruží. πd πd π - (D - d ) P πd πd π - (D - d ) Př.: Určete kvadratický moment k oe. T bh + + S a bh bh + bh + bh h bh bh bh Př.: Určete kvadratický moment k oe. - bh 5 T 66666, 7 mm T + S a , 7mm 66666, 7 + bh 8 T 76666, 7 T + S a 76666, mm , 7mm , , 7 98mm /5

24 Prakova 8, 76 Opava, tel.: , fa: Př.: Určete kvadratický moment k oe. de o dva profily U ČSN 557, Strojnické tabulky tr. 95. Z tabulek určíme: U 6cm S u 5mm ( U + S U ( 6 + a U ) 5 5 ) 87 mm Př.: Určete kvadratický moment k oe. de o dva profily L556 ČSN 55, Strojnické tabulky tr. 89, 9 + profil. Z tabulek určíme: T, 88cm S 5, 69cm e y, cm T + S a T + S y, , 69,, 68cm bh h + S a + bh + 5, T +, 68,, 68 8, cm cm /5

25 Prakova 8, 76 Opava, tel.: , fa: Poloměr kvadratického momentu (kvadratický poloměr) Protože neplatí vztah S y T, nahrazujeme jej pro nutné případy vztahem: S i n i S y T S i S y T i poloměr kvadratického momentu, kvadratický poloměr S y T.. Obdélník i S h i bh bh.. Kruh S π d 6 πd i d i d 6.. Poloměr kvadratického momentu i k mimotěžišťové oe i S T + S a S /5

26 Prakova 8, 76 Opava, tel.: , fa: Průřezové moduly v ohybu a krutu Pevnotní podmínky: S p pdov S τ τ DovS S o o W t,d Dovt, d τ k W k k o τ DovO DovK Průřezový modul W O, W K nám reprezentuje v pevnotní podmínce pro krut a ohyb rozměry oučátí, tejně jako plocha průřezu reprezentuje rozměry oučátí v tahu nebo myku. Průřezový modul v krutu W K e p p polární moment průřezu k neutrální oe. kvadratický moment průřezu k neutrální oe. e vzdálenot krajního vlákna od neutrální oy. W K modul průřezu v krutu. Neutrální oa je oa, ve které nepůobí žádné napětí. U kružnice je to uprotřed. W W e πd d p K K e p πd 6 W K π d [mm ] 6 π (D d ) π (D d ) tedy WKcelk WK W D 6 D Průřezové moduly nelze nikdy čítat ani odečítat! Poznámka: obvykle u krutu neuvažujeme jiné průřezy. K /5

27 Prakova 8, 76 Opava, tel.: , fa: Př.: π d π W K 96 mm Průřezový modul v ohybu o W W min e W e kvadratický moment k neutrální oe. Neutrální oa je oa, kde není žádné napětí, při ohybu prochází těžištěm průřezu. e, e vzdálenot krajních vláken průřezu. W o, W o moduly průřezu v ohybu, do pevnotní rovnice uvažuji minimálním modulem. Potup výpočtu modulu průřezu v ohybu:. Určím těžiště průřezu a tím i neutrální ou.. Vypočtu kvadratický moment průřezu ohledem k těžištní oe.. Vypočtu moduly průřezu W a W e U průřezů ymetrických podle oy platí e e W W W W + W celk čáti čáti + (ke tejné oe) celk čáti čáti e 5/5

28 Prakova 8, 76 Opava, tel.: , fa: Strojnické tabulky, tr. 9 Průřezové moduly v ohybu základních geometrických obrazců K oe Obdélník K oe y bh 6 W W y b h 6 Čtverec W a 6 W y a 6 Kruh πd W πd W y ezikruží π D d π D d D W y D W 6/5

29 Prakova 8, 76 Opava, tel.: , fa: Krut e namáhání kroutícím momentem, který půobí v rovině na podélnou ou oučáti. Deformace λ r ϕ r λ' ρ ϕ ρ r ϕ Pro malé úhly platí: γ l ϕ r γ l γ zko. ϑ [théta] zkrut (úhel zkroucení hřídele jednotkové délky). ϕ úhel zkroucení. Rovinné řezy zůtávají rovinné, pouze e proti obě natočí. Při natočení e řezy po obě naží poouvat, tedy vzniká tečné napětí τk. e zřejmé, že deformace λ uvnitř tyče je menší než deformace po obvodě tyče. Protože platí Hookeův zákon, je deformace přímo úměrná napětí, tedy i napětí rote přímo úměrně e vzdálenotí od neutrální oy. Tedy při krutu je napětí rozloženo rovnoměrně a má maimální hodnotu na povrchu průřezu. 7/5

30 Prakova 8, 76 Opava, tel.: , fa: Základní rovnice pro krut τ K ma W K K kde W K r p d pro kruh: W Ko π 6. Pevnotní podmínka pro krut τ K W K K τ KDov Ocel τ DovK, 6 Dovt Litina τdovk Dovt W K modul průřezu v krutu. Výhodnější jou duté hřídele, kde při tejné hmotnoti přeneou podtatně větší K (materiál u neutrální oy není využitý).. Hookeův zákon pro myk τ ma γ G G modul pružnoti ve myku. Ocel G 8 Pa. Litina G Pa. γ zko, r ϕ γ l τ ma K r r ϕ γ G G ϕ l p W K r K r l K l r G G p p P Úhel kroucení: K l G ϕ [ rad ] [ ] p 8 π ϑ [théta] zkrut (měrný úhel zkroucení) úhel zkroucení tyče délky m. ϕ l G K ϑ [ ] p 8 π rad [ ] 8/5

31 Prakova 8, 76 Opava, tel.: , fa: Deformační podmínka pro krut: U dlouhých tenkých hřídelů máme obvykle požadavek i na dotatečnou tuhot hřídele. Poddajný hřídel, který e hodně deformuje, může způobit torzní kmity (pružina), které způobují nežádoucí vibrace troje. Proto v těchto případech kontrolujeme hřídel i z deformační podmínky. Úhel zkroucení: ϕ 8 l K ϕdov π G p Zkrut ϑ 8 π G p ϑ K Dov Př.: Vypočítejte napětí v krutu τ K a úhel zkroucení pro tyče průměru 5 mm a délky m, K 5 N.m, G 8. Pa. π d π 5 WK 68mm 6 6 K 5 τ K 6,8Pa W 68 K π d P K l ϕ G p π 5 85mm 8 5 8, 9 π 8 8 π ( pro trubku by platily vzorce : W K π 6 (D d D ), p π (D d ) ) Př.: Určete výledný úhel zkroucení φ. ) ϕ celk ) ) ) ϕ + ϕ + ϕ G K l p l + p l + p P π d P P π d π d 9/5

32 .5 Závilot krouticího momentu K na výkonu P Obvykle u hřídele známe přenášený výkon P a jeho otáčky n: Výkon: P A t odtud: t K v r ω ω P ω Úhlová rychlot: ω π n K Prakova 8, 76 Opava, tel.: , fa: Tedy při tejném výkonu čím větší máme otáčky, tím menší je kroutící moment. P P P n > n K < K d < d.6 Kroucené pružiny.6. Torzní tyč: e to pružina ve tvaru přímé tyče, používá e u automobilů (odpružení). Torzní pružina má mnohem lepší využití materiálu, než pružina ohýbaná. Využívají e tedy hlavně tam, kde záleží na lehkoti kontrukce. /5

33 Prakova 8, 76 Opava, tel.: , fa: Pevnotní rovnice: τ K W K K πd 6 K τ DovK Deformační podmínka: ) K l ϕ G p ) ϕ ma π d, ( p ) Obvykle víme.6. Šroubová válcová pružina K, ϕ ma, materiál a muíme vypočítat průměr d, délku l. Tato pružina e používá nejčatěji, může být tažná (má oka) a tlačná (rovné zakončení závitů). e vinuta z drátu. d normalizovaný průměr drátu pružiny. R poloměr vinutí pružiny R ( 5) d Pevnotní rovnice: τ K W K K R πd 6 π τ ma τ 6 DovK d k DovK Deformační podmínka: y tlačení pružiny [mm]. n počet činných závitů. A deformační práce. ) ϕ natočení drátu pružiny. A y ) K l ϕ ϕ ma G p K ϕ ) /5

34 Prakova 8, 76 Opava, tel.: , fa: K R πd po l π R n y K G l p R l G p R l π R n R 6 R n y G G π d G d yma d G n 6 R p ma y 6 R n G d y y k Tuhot pružiny k: k G d 6 R n Výpočet volné délky tlačné pružiny l o : Při maimálním provozním tlačení pružiny y ma má být mezi závity ještě minimální vůle v min,5 mm. Závity tedy nemí doednout na ebe. Celkový počet závitů: n C n + n Z n C celkový počet závitů n počet činných závitů n Z počet závěrných závitů (n Z,5 ) l n C d + (n C ) v min + y ma /5

35 Prakova 8, 76 Opava, tel.: , fa: Př.: Navrhněte tlačnou pružinu pro: ma N, R 5 mm, maimální provozní zatížení pružiny yma mm. ateriál je patentovaný ocelový drát τ DovK Pa, 5 G, 8 Pa. průměr drátu: τ K W K K R π d 6 τ ma DovK d 6 π τ DovK R 6 5 π ma, 6mm Podle normy volím drát průměru,55 mm (taré ST tr. 6, nové ST tr. 67). Počet činných závitů: 5 yma d G, 55, 8 n 5, 88 závitů 6 R 6 5 ma n z nc 8 závitů.7 Krut nekruhových průřezů Nekruhové průřezy e při kroucení bortí, proto e jejich použití vyhýbáme. Pro průřezy přibližně kruhové (šetihran, hřídel perem, drážkovaný hřídel) počítáme přibližně průměrem vepané kružnice. U obecných průřezů (čtverec, obdélník) lze najít přílušné vzorečky v literatuře a jou pouze přibližné. Př.: Zjitěte úhel zkroucení f a zkrut u [théta] tyče v obloukové míře a ve tupních, jetliže délka tyče je L m, průměr d 6 mm a modul pružnoti ve myku je 5 G, 8 Pa, a mm, N. /5

36 K a, Nm ) K l ϕ, 886rad G p 5 π 6, 8 8 ) 8 ϕ ϕ, 886, 6 5 π π ) ) ϕ, 886 rad ϑ, 886 l m ϕ 5 ϑ 5 na metr délky l Prakova 8, 76 Opava, tel.: , fa: Nmm Př.: Vyvrtávajícím trojem je obráběn válec dvěmi noži dle obrázku. Řezná íla N půobí kolmo na poloměr R mm. Vypočtěte vřetena, které otáčí vyvrtávacím nožem, a to tak, aby celkový úhel zkroucení na délce l, m nepřekročil hodnotu Dov,5, je li 5 G,77 Pa. Určete zkrut u. ) K l ϕ G p 8 K l ϕ, 5 π G p p d π K R 6 Nmm 8 K l ϕ, 5 π πd G 6 8 K l 8 d 9, 6mm 5 π G π, 5 π, 77, 5 ϕ,5 ϑ, l, na metr délky /5

37 Prakova 8, 76 Opava, tel.: , fa: Př.: Porovnejte úporu materiálu u plného a dutého hřídele tejné délky, přenášejícího tejný krouticí moment při tejném dovoleném napětí. Dané hodnoty: K 5 6 Nmm, poměr α d/d,7; τ DovK 6 Pa. a) Plný hřídel: τ W W ma K K W τ K DovK πd 6 K K τ DovK 5 6 d b) Dutý hřídel: W K D π 6 6W π D d D 6 8, 6W π K π 6 K ( α ) π (, 7 ) D mm 6 8, 6 8, π 75mm ( α D) π D π ( α ) D ( α ) D & 8mm d D α 8,7 57, mm Poměr hmotnotí obou hřídelů e při tejné délce a materiálu rovná poměru průřezů. m m S S m m V ρ S l ρ V ρ S πd π l ρ π 75 mm π ( D d ) 8 (, 7 ) 69mm 67 6, S l ρ S l ρ S S 6 % 9 % dutý hřídel tejných parametrů má o 9 % menší hmotnot. 6 D 6 5/5

38 Prakova 8, 76 Opava, tel.: , fa: Ohyb Ohyb vzniká u oučátí zatěžovaných ohybovým momentem, tj. momentem půobícím v rovině oy oučáti. U ohýbaných oučáti je napětí rozloženo po průřezu nerovnoměrně. Největší tahové napětí je na vnější traně ohybu (krajní vlákno ) a největší tlakové napětí na vnitřní traně ohybu (krajní vlákno ). ezi krajními vlákny je míto, kde je nulové napětí. Tomuto mítu pak říkáme neutrální oa. Neutrální oa je průečnice neutrální vrtvy rovinou řezu oučáti. Neutrální oa prochází těžištěm průřezu a je v ní nulové ohybové napětí (od ohybového momentu). 5. Pevnotní podmínka pro ohyb Podmínka rovnováhy momentů: O OV O ohybový moment; OV moment vnitřních il. 6/5

39 Prakova 8, 76 Opava, tel.: , fa: n n n n O OV i yi t Si yi yi yi yi i i i e e i e O W O O W O S i y i e O n S i yi i e W O O O ma DovO WO ma DovO Dovt W o průřezový modul, W O d π, W O b h 6 Pozn.: U litiny e někdy počítá napětí v obou krajních vláken, tedy tahové i tlakové napětí, protože litina má mez kluzu v tahu ai trojnáobnou meze kluzu v tlaku Dovt DovD 5. Uložení noníků 5.. Způoby uložení: Volná podpora (pouvná): Umožňuje natáčení a vodorovný poun, přenáší vilé íly. Pevná podpora (kloub): 7/5

40 Prakova 8, 76 Opava, tel.: , fa: Umožňuje pouze natáčení. Přenáší obecné šikmé íly, které e rozkládají do měrů, y,b, R, R A Ay Vetknutí: Neumožňuje žádný pohyb. Přenáší šikmé íly a moment (po rozložení, ). Vazební íly jou reakční íly půobící v mítě uchycení ohýbaných oučátí (noníků). U vetknutí vzniká navíc i vazební moment. Použití podpor nebo vetknutí závií na kontrukčním upořádání noníků. RA RAy 8/5

41 Prakova 8, 76 Opava, tel.: , fa: Vnitřní íly a momenty Vnější íly: zatížení + reakce v uložení. Vnitřní íly: jou uvnitř v materiálu (metoda uvolňování).. Normálná íla N : Normálná íla je íla půobící v rovině řezu, která udržuje v rovnováze íly půobící ve měru oy noníku. Normálná íla v určitém mítě noníku je oučet všech normálných vnějších il po jedné traně noníku. 9/5

42 Prakova 8, 76 Opava, tel.: , fa: Poouvající íly T : Poouvající íla půobí v mítě řezu ve měru kolmém na ou noníku a naží e tedy pounout obě čáti řezu proti obě. Kladná je ta poouvající íla, která e naží pounout levou čát nahoru proti pravé čáti. Poouvající íla v určitém mítě noníku je oučet všech příčných vnějších il po jedné traně noníku.. Ohybový moment: Ohybový moment půobí v mítě řezu a je kolmý na ou noníku. Ohybový moment v určitém mítě noníku je oučet všech ohybových momentů po jedné traně řezu. e to vnitřní moment, který je v rovnováze vnějšími momenty. /5

43 Prakova 8, 76 Opava, tel.: , fa: A B l OA OB RB (l ) l RB l + 5. Průběh poouvajících il a ohybových momentů 5.. Vetknutý noník /5

44 Prakova 8, 76 Opava, tel.: , fa: Rovnováha il: RA Rovnováha momentů k B: X 5.5 Určování poouvajících il a ohybových momentů 5.5. Analytická metoda: a) Poouvající íla v libovolném průřezu e rovná algebraickému oučtu všech vnějších příčných il půobících po jedné traně noníku od míta řezu. b) Ohybový moment v libovolném průřezu noníku e rovná algebraickému oučtu momentů všech vnějších il půobících po jedné traně noníku od míta řezu. Př.: Určete průběhy poouvajících il a ohybových momentů analytickou metodou. /5

45 Prakova 8, 76 Opava, tel.: , fa: n i RA + RA RA l l o ma O O 5.5. etoda uperpozice: Používá e u noníku zatíženého větším počtem il. Analyticky určíme momentové plochy od každé íly zvlášť. Výledná momentová plocha vznikne ložením dílčích ploch (ohybové momenty od jednotlivých il e ve tejném mítě čítají). /5

46 Prakova 8, 76 Opava, tel.: , fa: Př.: reakce: n ia i a + RB (a + b) a RB a + b b RA a + b X pro b RB b OX OB Oa RB RA a /5

47 Prakova 8, 76 Opava, tel.: , fa: Př.: 5/5

48 Prakova 8, 76 Opava, tel.: , fa: RA RB Řešení od íly : n i i RA RB oment od íly v mítě íly l l 9 o, RA oment od íly v mítě íly l l l 9 o, RB Řešení od íly : l n i i RA RB oment od íly v mítě íly l l 9 o, RA l l 9 o, RB Superpozice ( ) o, o, l l l l l o ma ( ) o, o, l 9 o ma 6/5

49 Prakova 8, 76 Opava, tel.: , fa: Schwedlerova věta Udává vztah mezi plochou poouvajících il a ohybovým momentem: oment v libovolném mítě noníku e rovná obahu plochy poouvajících il po jedné traně noníku od uvažovaného míta. Z toho plyne Schwedlerova věta: Oa je v mítě, kde poouvající íla mění vé znaménko, nebo tam, kde je rovna. Pokud noník nemá pojité zatížení, je Oa vždy pod nějakou vnější ilou (včetně reakcí). Než krelení průběhů momentových ploch a provádění uperpozice, bývá rychlejší vypočítat O pod všemi ilami. 7/5

50 Prakova 8, 76 Opava, tel.: , fa: Př.: 8kN, kn, l,m, l m, l, 7m,, 6m. Určete oa a ox ( l + l ) + l 8 5, 7 +, 7 RA, 5kN l + l + l 8 ( l + l ) l + 8, + 5, RB, 55kN l + l + l 8 oa RB l 55, Nm ( ) ( l + l ) 985 ( 55) ( 5,, 6) Nm o oa RB 8 nebo ( l ) ( l ) 5, + (5 8) (,6,) Nm o RA l + RA 8 nebo ( l ) 5, 6 8 (,6,) Nm o RA 8 8/5

51 Prakova 8, 76 Opava, tel.: , fa: Noníky e pojitým zatížením Zatížení noníku je určeno buď celkovou velikotí zatížení, kterou značíme Q nebo měrným zatížením q vztaženým na jednotku délky. Q q l N m Celou tíhu můžu nahradit myšlenou výlednicí v těžišti. n iy i A Q A Q n i i l A Q A Q V mítě : T Q q l přímka o Q q q parabola l l oa Q q l q l 9/5

52 Prakova 8, 76 Opava, tel.: , fa: Noník na dvou podporách Q RA RB Q q T RB Kontrola: Q q l l pro T o pro q l q q l q l q RB Q q parabola l q l q l q l Q l o ma /5

53 Prakova 8, 76 Opava, tel.: , fa: Př.: a A b A a b ( a b) B b + ( a b) + B b Oa a b A Př.: 5/5

54 Prakova 8, 76 Opava, tel.: , fa: n ia i b Q B b + ( a + b) b ( a + b) + Q B b n ib i A b Q A b b Q a b X Q q X + a A q Q A B a Výpočet ouřadnice :. Součet il po jedné traně noníku: A Q A q q. tgα A A B b 5/5

55 Prakova 8, 76 Opava, tel.: , fa: A ( b ) ( ) b A A A b B + A B B A ( ) b + n i i B B b + A A A b Q A A Q + B q A Př.: Q q b n ib i A b + + ( a b + c) Q c 5/5

56 Prakova 8, 76 Opava, tel.: , fa: /5 ( ) c b a b c Q A n i i B A Q n i ix ( ) ( ) q a Q a A A + + q Q A A ( ) ( ) q a q q q q a q a A A A A A A A Př.: Vpočtěte rozměry b a h dle obrázku. b : h :, b/h / b h DovO O O O W DovO O O W DovO l h b 6 DovO l h 6 DovO l h

57 Prakova 8, 76 Opava, tel.: , fa: Noníky tálé pevnoti Tyto noníky mají proměnný průřez v záviloti na ohybovém momentu. Průřez je takový, aby napětí bylo ve všech bodech přibližně kontantní Vetknutý noník Kontantní šířka O kont. W ma a W W ma pak: W W ma ma kont. b h 6 b h 6 ma l h h ma l 55/5

58 Prakova 8, 76 Opava, tel.: , fa: Kontantní tloušťka W W ma ma b 6 b 6 ma h h l b b ma l 56/5

59 Prakova 8, 76 Opava, tel.: , fa: Teoretický tvar noníku nepoužíváme proto, že je výrobně nákladný a v mítě oamělých il nemůžeme zanedbat myk. Proto e na volném konci používá výška profilu h in h a Úpora materiálu je u teoretického noníku ai %, u praktického ai 5 %. Použití: ušetřím materiál (např. konzoly). 57/5

60 Prakova 8, 76 Opava, tel.: , fa: Noník na dvou podporách Řešíme jako dva vetknuté noníky, zatížené reakcemi. Teoretický tvar celého noníku je daný pojením teoretického tvaru obou vetknutých noníků. Praktický tvar muí ležet vždy vně teoretického tvaru, aby napětí bylo vždy menší než a U noníků kruhovým průřezem hřídelů, e obvykle používá praktický tvar noníku jako odtupňovaný. 58/5

61 Prakova 8, 76 Opava, tel.: , fa: Deformace v ohybu Po deformaci bude neutrální oa noníku zakřivená, říkáme jí pak průhybová čára (ohybová čára). K zakřivení dochází vlivem ohybového momentu. Deformační veličiny: ρ poloměr křivoti; α úhel natočení; y průhyb. 5.. Poloměr křivoti ρ ρ in Ε a kvadratický moment; E modul pružnoti v tahu. 5.. Úhel natočení α α S Ε S plocha momentového obrazce. 59/5

62 Prakova 8, 76 Opava, tel.: , fa: /5 5.. Průhyb y S y Ε S je tatický moment plochy momentového obrazce k mítu íly. T S S T S S y Ε Ε Př.: l oa Plocha momentového obrazce: l l S oa

63 Prakova 8, 76 Opava, tel.: , fa: /5 Statický moment: l l l S T S l Ε Ε ma ρ min l S Ε Ε α ma S l y Ε Ε ma Př.: ma l q l l q l Q Plocha momentového obrazce: l q l l q l Q l S oa

64 Prakova 8, 76 Opava, tel.: , fa: /5 Statický moment: l q l Q l l Q S T S min l q E l Q E E a ρ l q l Q S Ε Ε Ε 6 6 α ma S l q l Q y Ε Ε Ε 8 8 ma Př.: Noník na dvou podporách.

65 Prakova 8, 76 Opava, tel.: , fa: A B a l l S l l l 6 S ρ min S l l 8 Ε ma Ε l α ma S E l 6 Ε y ma S E l 8Ε Př.: y a y Od pojitého zatížení y Od reakce Při výpočtu průhybu noníku obvykle vzorce neodvozujeme, ale najdeme je v tabulkách. Pokud je noník zatížen více ilami nebo pojitým zatížením, používáme metodu uperpozice. 6/5

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Shrnutí kinematiky. STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: Předmět, ročník, obor: Číslo a název sady: Téma: Jméno a příjmení autora: Datum vytvoření:

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 3 PŘEVODY

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

VY_32_INOVACE_C 08 01

VY_32_INOVACE_C 08 01 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

STATIKA TUHÝCH TĚLES

STATIKA TUHÝCH TĚLES VOŠ a SOŠ Roudnice nad Labem STATIKA TUHÝCH TĚLES Studijní obor: Dopravní prostředky Ing. Jan JINDRA 1.9.2011 Pro vnitřní potřebu školy 1 Tělesa volná: Určení síly: působiště, velikost, směr a smysl Přeložení

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Technické informace. Statika. Co je důležité vědět před začátkem návrhu. Ztužující věnce. Dimenzování zdiva

Technické informace. Statika. Co je důležité vědět před začátkem návrhu. Ztužující věnce. Dimenzování zdiva Co je důležité vědět před začátkem návrhu Nonou kontrukci zděných taveb tvoří zdi a tropy vytvářející protorově tabilní celek, chopný přenét do základů veškerá vilá a vodorovná zatížení a vyrovnávat edání

Více

Asynchronní stroje. Úvod. Konstrukční uspořádání

Asynchronní stroje. Úvod. Konstrukční uspořádání Aynchronní troje Úvod Aynchronní troje jou nejjednodušší, nejlevnější a nejrozšířenější točivé elektrické troje. Používají e především jako motory od výkonů řádově deítek wattů do výkonů tovek kilowattů.

Více

Tvorba technické dokumentace

Tvorba technické dokumentace Tvorba technické dokumentace Požadavky na ozubená kola Rovnoměrný přenos otáček, požadavek stálosti převodového poměru. Minimalizace ztrát. Volba profilu boku zubu. Materiály ozubených kol Šedá a tvárná

Více

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze

3. SPLAVENINY VE VODNÍCH TOCÍCH. VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proces vodní eroze 3. SPLAVENINY VE VODNÍCH TOCÍCH VZNIK SPLAVENIN (z povodí, z koryt v. t.) Proce vodní eroze DRUHY A VLASTNOSTI SPLAVENIN Rozdělení plavenin: Plaveniny: do 7mm (překryv v 0,1 7,0 mm dle unášecí íly τ 0

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

VY_32_INOVACE_C 08 14

VY_32_INOVACE_C 08 14 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NOSNÁ OCELOVÁ KONSTRUKCE ADMINISTRATIVNÍ BUDOVY STEEL STRUCTURE OF THE OFFICE BUILDING

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY NOSNÁ OCELOVÁ KONSTRUKCE ADMINISTRATIVNÍ BUDOVY STEEL STRUCTURE OF THE OFFICE BUILDING BRNO UNIVERSITY OF TECHNOLOGY FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES NOSNÁ OCELOVÁ KONSTRUKCE ADMINISTRATIVNÍ BUDOVY STEEL STRUCTURE OF THE OFFICE BUILDING DIPLOMA THESIS

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

K obrábění součástí malých a středních rozměrů.

K obrábění součástí malých a středních rozměrů. FRÉZKY Podle polohy vřetena rozeznáváme frézky : vodorovné, svislé. Podle účelu a konstrukce rozeznáváme frézky : konzolové, stolové, rovinné, speciální (frézky na ozubeni, kopírovací frézky atd.). Poznámka

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb.

Doporučené aplikace stanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. Doporučené aplikace tanovení modulu C pro jednotlivé typy technologií výroby elektřiny v KVET Zákon č. 165/2012 Sb., vyhl. č. 453/2012 Sb. 1 Metodické pokyny pro určení množtví elektřiny z vyokoúčinné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Podstata frézování Zhotoveno ve školním roce: 2011/2012. Princip a podstata frézování. Geometrie břitu frézy

Podstata frézování Zhotoveno ve školním roce: 2011/2012. Princip a podstata frézování. Geometrie břitu frézy Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU

VÝPOČET HLAVNÍCH ROZMĚRŮ ČTYŘTAKTNÍHO SPALOVACÍHO MOTORU Pítový alovací troj je teelný otor, kde e čát energie vzniklá álení aliva řeění v tlakovou energii. Tato energie oocí vhodného echaniu e ění v echanickou energii. Jako nejoužívanější echaniu k řeěně tlakové

Více

OBRÁBĚNÍ I. Zpětný zdvih při těchto metodách snižuje produktivitu obrábění. Proto je zpětná rychlost 1,5x - 4x větší než pracovní rychlost.

OBRÁBĚNÍ I. Zpětný zdvih při těchto metodách snižuje produktivitu obrábění. Proto je zpětná rychlost 1,5x - 4x větší než pracovní rychlost. OBRÁBĚNÍ I OBRÁŽENÍ - je založeno na stejném principu jako hoblování ( hoblování je obráběním jednobřitým nástrojem ) ale hlavní pohyb vykonává nástroj upevněný ve smýkadle stroje. Posuv koná obrobek na

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Cvičebnice stavební mechaniky

Cvičebnice stavební mechaniky Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Obsah Síly působící v jednom paprsku 7. Dvě síly

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE

VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE VY_32_INOVACE_FY.03 JEDNODUCHÉ STROJE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jednoduchý stroj je jeden z druhů mechanických

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

14.16 Zvláštní typy převodů a převodovek

14.16 Zvláštní typy převodů a převodovek Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech:

Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech: Chromované tyče Chromované pístní tyče tvoří základní pohyblivou část přímočarého hydromotoru. Nabízíme je v jakostech: ocel 20MnV6 (podle ČSN podobná oceli 13 220) Vanadiová ocel, normalizovaná, s vyšší

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA IV STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA IV DYNAMIKA PRACOVNÍ SEŠIT Vytvořeno v rámci Operačního programu Vzdělávání pro

Více

MITCALC for Pro/ENGINEER

MITCALC for Pro/ENGINEER MITCALC for Pro/ENGINEER MITCalc je sada strojírenských, průmyslových a technických výpočtů pro každodenní praxi. Spolehlivě, přesně a hlavně rychle vás provede návrhem součásti, řešením technického problému

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 17. 4. 2009 Číslo: Kontroloval: Datum: 5 Pořadové číslo žáka: 24

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

DOPRAVNÍ A ZDVIHACÍ STROJE

DOPRAVNÍ A ZDVIHACÍ STROJE OBSAH 1 DOPRAVNÍ A ZDVIHACÍ STROJE (V. Kemka).............. 9 1.1 Zdvihadla a jeřáby....................................... 11 1.1.1 Rozdělení a charakteristika zdvihadel......................... 11 1.1.2

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA I STATIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

Frézování. Hlavní řezný pohyb nástroj - rotační pohyb Přísuv obrobek - v podélném, příčném a svislém směru. Nástroje - frézy.

Frézování. Hlavní řezný pohyb nástroj - rotační pohyb Přísuv obrobek - v podélném, příčném a svislém směru. Nástroje - frézy. Tento materiál vznikl jako součást projektu, který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR. Základní konvenční technologie obrábění FRÉZOVÁNÍ Technická univerzita v Liberci

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 25. 8. 2012 Číslo DUM: VY_32_INOVACE_04_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Úvod

Více

Název zpracovaného celku: RÁMY AUTOMOBILŮ

Název zpracovaného celku: RÁMY AUTOMOBILŮ Předmět: Ročník: Vytvořil: Datum: SILNIČNÍ VOZIDLA DRUHÝ NĚMEC V. 25.6.2012 Název zpracovaného celku: RÁMY AUTOMOBILŮ Rámy automobilů Rám je základní nosnou částí vozidla. S podvěsy, řízením a příslušenstvím

Více

Gymnázium, Ostrava-Poruba, Čs. exilu 669

Gymnázium, Ostrava-Poruba, Čs. exilu 669 Gynáziu, Otrava-Poruba, Č. exilu 669 STUDIJNÍ OPORA DISTANČNÍHO VZDĚLÁVÁNÍ ŘEŠENÍ FYZIKÁLNÍCH ÚLOH ANTONÍN BALNAR Otrava 005 Recenze: prof. RNDr. Erika Mechlová, CSc. Publikace byla vytvořena v ráci projektu

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

Matematika - 6. ročník Vzdělávací obsah

Matematika - 6. ročník Vzdělávací obsah Matematika - 6. ročník Září Opakování učiva Obor přirozených čísel do 1000, početní operace v daném oboru Čte, píše, porovnává čísla v oboru do 1000, orientuje se na číselné ose Rozlišuje sudá a lichá

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

3 Nosníky, konzoly Nosníky

3 Nosníky, konzoly Nosníky Nosníky 3.1 Nosníky Používají se pro uložení vodorovné trubky v sestavách dvoutáhlových závěsů jako např. RH2, RH4 6, SH4 7, sestavách pružinových podpěr VS2 a kloubových vzpěr RS2. Základní rozdělení

Více

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka

pracovní list BIOMECHANIKA 1 Běhy do schodů Potřebné vybavení: stopky (na mobilu), kalkulačka BIOMECHANIKA 1 Běhy do schodů pracovní list Potřebné vybavení: stopky (na mobilu), kalkulačka 1. Vyberte ze skupiny nejtěžšího a nejlehčího žáka a zapište si jejich hmotnost. 2. Stopněte oběma čas, za

Více

MSC 30-45 MSD 55-75 Pohon přes klínové řemeny. RMC 30-45 RMD 55-75 RME 75-90 Pohon pomocí spojky

MSC 30-45 MSD 55-75 Pohon přes klínové řemeny. RMC 30-45 RMD 55-75 RME 75-90 Pohon pomocí spojky MSC MSD Pohon pře klínové řemeny RMC RMD RME Pohon pomocí pojky Olejem mazané šroubové kompreory pevnou nebo proměnnou í Solidní, jednoduché, chytré Zvýšená polehlivot dodávky tlačeného u MSC/MSD Pohon

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více