Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na."

Transkript

1 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího Fialy Zpracovali: Ja Zaatar Štětia, Odřej Keddie Profat Obsah Determiaty2 Geometricý výzam determiatu4 Polyomy4 Vlastí čísla a vlastí vetory6 Charateristicý mohočle6 Prostory se salárím součiem Ortogoalita Ortogoálí doplě2 Pozitivě defiití matice3 Bilieárí a vadraticé formy4

2 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Determiaty Opaováí: Permutace a prvcích je zobrazeí p:{,, } {,, }, teré je prosté a a S začí možiu všech permitací a prvcích S, tvoří grupu (existují eutrálí prve, idetita a všechy iverzí permutace) Iverze v permutaci je dvojice i,j taová, že i j a pi p j Zaméo permutace p je sg p= # iverzí v p Sudé permutace tvoří ormálí podgrupu S ; Fatorgrupa je izomorfí grupě {, }, Nechť A je čtvercová matice řádu ad tělesem K, potom determiat matice A je dá výrazem det A:= sg p a i, p i p S Formálě jde o zobrazeí K m K Determiaty matic se začí místo det : det A T =det A Důaz: det A T = sg p A T i, p i = sg p A T p i,i = p S p S j= * (*) víme, že j= p i; i= p j a sg p= sg p QED sg p p S j= a j, p j =det A Důsl: Poud řádová úprava eměí determiat, pa ai stejá sloupcová úprava jej ezměí : Přerováí sloupců matice A podle permutace q (a) ezměí determiat, poud sgq= (b) změí zaméo determiatu, poud sgq= Důaz: Budiž A původí matice, B přerovaá matice Důsl: det B = sg p b i, p i = sg p a, protože i,q p i b =a ; b =a, a dále se rová i,q j i, j i, j i,q j p S p S sgq sgq sg p a, de vždy i,q pi sg q sgq = a sg q sg p= sg q p, taže p S sg q sgq p a i,q pi = sgq det A QED p S (a) záměa dvou řádů změí zaméo, (b) jsou-li dva řády matice A shodé, potom det A= Tvrz: Determiat matice je lieárě závislý a aždém řádu matice Důaz: Na i-tém řádu provedeme (a) salárí ásobe řádu (b) součet dvou řádů (a) Liearita vůči ásobu Budiž A původí matice, A' pozměěá matice (i-tý řáde vyásobeý t K ) Důsl: Pa det A' = p S sg p a ', p a' i, p i a ', p = sg p a, p t a i, p i a, p =t det A p S (b) Liearita vůči sčítáí Budiž A původí matice Zostruujeme B,C předpisem j i:a, j =b, j =c, j, Pa j :a i, j =b i, j c i, j det A= sg p a, p a i, p i a, p = sg p a, p b i, p i c i, p i a, p = p S p S = p S sg p a, p b i, p i a, p sg p a, p c i, p i a, p =det B det C QED p S Přičteí t-ásobu j-tého řádu i-tému (pro i j ) eměí determiat matice Důaz: obrázem Postup: Výpočet determiatu Převedeím a odstupňovaý tvar přičteím ásobů ostatích řádů, ale esmíme prohazovat řády ai ásobit t K, zato můžeme provádět úpravy i a sloupcích (předáša 239) 2

3 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Nechť A a B jsou čtvercové matice stejého řádu ad K, potom platí det A B=det A det B Důaz: Je-li A ebo B sigulárí, pa A B je sigulárí Něterý řáde sigulárí matice lze složit lieárí ombiací ostatích, odečteím této ombiace zísáme matici s ulovým řádem a stejým determiatem = Je-li A regulárí, lze ji rozložit a souči elemetárích matic A=E E Potom platí det A B =det E E B=det E E 2 E B = * = * det E det E 2 E B Ad *, máme dvě možosti Důsl: (a) Čtvercová matice A je regulárí, právě dyž det A (b) det A =det a, respetive det A det A = (a) E odpovídá vyásobeí i-tého řádu t determiat součiu t-rát vzroste: det E = t =t (b) E odpovídá přičteí j-tého řádu i-tému Začeí: A i, j začí matici, terá vzie z matice A vypuštěím i-tého řádu a j-tého sloupce determiat součiu se ezměí: det E = = Tedy det E det E det B =det E E det B=det A det B QED Tvrz: Poz, Rozvoj determiatu podle i-tého řádu Pro libovolou matici A řádu 2 a libovolé i {,, } platí det A= a i, j i j det A i, j j = toto je efetiví pro řády s ulami Důaz: (a) Vytýáí prvů a i, j z předpisu pro determiat ebudeme doazovat (b) Využití liearity: zapíšeme i-tý řáde jao vhodou lieárí ombiaci: e T det a i, a =a i, i, det a i, det a i,,,a i, =a i,,,,a i,2,,,a i,,,, Zbývá určit: det je a [i,j] permutace řádů = i det je a[,j] = i j det x = x i j det A ij, QED permutace sloupců x - idy evyužijeme Pro čtvercovo matici A defiujeme adjugovaou matici adj A předpisem adj Ai, j = i j det změa pořadí idexů! A j, i Pro aždou regulárí matici A platí A = adj A det A Důaz: z rozvoje podle i-tého řádu: A i adj A i =det A a pro j i : i-tý řáde A j adj A i = rozvoj podle i-tého řádu v matici, terá vzie z A ahrazeím i-tého řádu j-tým řádem = A =det A A adj A=I det, QED det A A A adj A Cramerovo pravidlo Nechť A je regulárí matice, potom řešeí aždé soustavy A x=b lze spočítat po složách výrazem x i = det A i b, det A de A i b zameá matici, terá vzie z A ahrazeím i-tého sloupce vetorem pravých stra b Důaz (): X = A b= adj A b det A X i = det A adj A b i= adj A det A i, j b j = j= Provedeme rozvoj podle i-tého sloupce v A i b = det A det A i b, QED Důaz (2): Ozačme I i x matici, terá vzie z I ahrazeím i-tého sloupce vetorem x =b A I i x = A e, A e 2,, A x,= A i b Víme det I i x =x i a tedy det A x i =det A ib, QED 3

4 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Postup: Výpočet determiatu (ze cvičeí) a I) V odstupňovaém tvaru stačí souči diagoály: = a i a II) Vytýáí z řádu: III) =2 a b c = 6 6= d =a d b c IV) =3 Sarrusovo pravidlo: V) Rozvoj dle i-tého řádu det A= j= { } = = = a i, j i j det A i, j ; př: = Geometricý výzam determiatu Poz, Záme růzé druhy obalů X R, X ={x,, x } () L X Lieárí obal ejmeší vetorový prostor obsahující X L X ={ a i x i ; x i X, a i R} (2) A X Afií obal ejmeší afií prostor obsahující X A X ={ a i x i ; x i X, a i R, a i =} (3) K X Kovexí obal ejmeší ovexí možia obsahující X K X ={ (4) R X Rovoběžostě vymezeý X a i x i ; x i X, a i R, a, i :a i [,]} R X ={ a i x i ; x i X, a i R, i :a i [,]} Pro vetory x,, x udává det A, de A sestává z x,, x (po řádcích aebo po sloupcích), objem rovoběžostěu určeého x,, x Důaz (idea): Protože přičítáí jiých řádů eměí ai determiat, ale ai objem Důsl: Je-li f lieárí zobrazeí R R a A=[ f ] KK je matice tohoto zobrazeí, vol f v= det A vol v ta platí, že objem objem obrazu těleso Polyomy Polyom (též mohočle) stupě v proměé x ad tělesem K je výraz p x=a x a x a xa, de a a K, a Začeí p K x Operace s polyomy p, q K x : p x= a i x i i= Sčítáí a odčítáí p±q x= i = Násobeí salárem t K, pa t px= t a i x i Násobeí mezi sebou m p q x= i= m a q x= b i x i, BÚNO m i= c i x i, de c i= a i±b i pro i {,, m} a i jia i= c i x i, de c i = mii, j=max,i m a j b i j 7 9 = = 6 2 = 2 4

5 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Děleí se zbytem r,t K X : deg tdegq p=r qt stupeň t Kostruce řešeí: p x a x m q x b má stupeň ižší ež p x prví čle r Poz, Typicy za x volíme prvy z tělesa K, ale lze i jié strutury, apř čtvercové matice ad K p x=a x a xa x p A=a A a Aa I : Pro p R x platí, že p x= (tj p x= x= ), právě dyž a ==a = Malá Fermatova Pro aždé a Z p, a platí a p = Důaz: Zafixuji a, uvážím zobrazeí f :i a i Tedy f :{,, p }{,, p } je prosté a f je permutací a {,, p } p p i= p a i=a p i =a p, QED i= Důsl: V Z p : x p x= q Z p x r Z p x, deg r p : x Z p : q x = r x Koře polyomu p K x je taové a K, že pa= Např polyom p x= x 2 () má oře i v K=C (2) emá oře v K=R (3) emá oře v K=Z 3 (4) má oře 2 v K=Z 5 Tělesa, de všechy polyomy mají oře, se azývají algebraicy uzavřeá Záladí věta algebry Každý mohočle stupě alespoň ad C má oře Důsl: Každý mohočle stupě alespoň ad C lze rozložit jaou souči moomů p x = a x x x x, de x,, x jsou ořey Důaz (idea): Záladí věta algebry: p x=a x a xa Otáza:Reprezetace polyomů p x stupě pomocí oeficietů a a K (+ def); a algebraicy uzavřeém tělese pomocí ořeů a a ; hodotami p x v + růzých bodech px= a i x i i= sadé??? x,, x jaým způsobem lze užít oeficiety a a polyomu p x, záme-li dvojice x i; y i pro + růzých bodů x x? = p x i (předáša 639) řešíme soustavu o ezámých a a a x a x a =y a x a x a = y Maticově: x x x x Vadermodova matice a = a y y 5

6 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Vadermodova matice je regulárí, právě dyž hodoty x x jsou avzájem růzé Důaz: Prví řáde odečteme od x x ostatích = x x x x x 2 x x 2 x x x x x Provedeme rozvoj dle prvího sloupce a vyteme x i x i =x x i x i x i 2 i x x x x j x j= 2 x x x 2 x x 2 2 j =2 x x x x x x = produt eulový ( matice regulárí) x i růzé QED x j x Vadermatova matice a proměých x 2 x = x j x i i j Postup: Lagragerova iterpolace - alterativí postup, ja proložit polyom stupě body x i, y i, i { } Pro i { } ozačme P i x = x x x x 2 x x i x x i x x x i x x i x 2 x i x i x i x i x i x Platí P i x i = a pro j i: P i x j = (ěde máme x x j = eulový čitatel) Položíme Px = y P x y P x Úloha: Jaým způsobem sestavit m líčů, aby libovolý m líčů doázalo odemout ód, ale libovolých méě ež ioliv? Sestavme polyom stupě a určíme jeho hodoty v m růzých bodech Úvod: ód líč Vlastí čísla a vlastí vetory Jedoduchý abstratí model dyamicého systému Systém reprezetová vetorovým prostorem V ad K Dyamia reprezetováa lieárím zobrazeím f :V V Stabilí stavy (a) pevé body zobrazeí f čili f u = u (b) body jejichž obraz je salárím ásobem vzoru: f u = a u, a K Př: Osová souměrost v R 2 Nechť V je vetorový prostor ad K a f :V V je li zobrazeí Vlastím číslem zobrazeí f je taové λ K pro teré existuje etriviálí u V taový, že f u = u Vlastím vetorem příslušý vlastímu číslu λ je libovolé u V, tž f u = u (Poz: Zdvojeá defiice, abychom obešli u= ) Je-li V oečě geerovaý, tj dimv = N, potom lze f reprezetovat maticí zobrazeí A = [f ] VV a rozšířit defiici a matice: Vlastí číslo matice A je libovolé K taové, že A x = x pro x K, x Vlastí vetor příslušý vlastímu číslu λ je taové x K, že Ax = λ x Možia všech vlastích čísel matice se azývá spetrum matice Charateristicý mohočle Úvod: f u = λ u, u A x = x A x λ x = A x λ I x = A λ I x = Př: Tvrz: Charateristicým mohočleem matice A azveme polyom p a t, terý je urče výrazem: p a t = det A t I Pro aždou čtvercovou matici A platí, že λ je jejím vlastím číslem, právě dyž je λ ořeem charateristicého mohočleu p A t, čili p A = Důaz: viz úvod A I x = A I je sigulárí det A t I =, x etriviálí! QED Viz slidy Jsou-li A, B čtvercové matice stejého řádu ad stejým tělesem, potom A B a B A mají stejá vlastí čísla Důaz: Pro ásobeí bloových matic platí: I J K L P Q IPJR KPLR IQJS KQLS AB B AB ABA I = B BA = I A I B BA Platí: C R= R D, říáme, že C a D jsou podobé : Podobé matice mají shodé charateristicé mohočley R S = 6

7 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy C= R D R (*) * toto= p C t=det C t I =det R D R t I =det R D R t R I R =det R D t I R =det R det D t I det R =P d t Podobé matice mají tedy shodá i vlastí čísla Čili A B t I B t I = A B t I t I = p ABt= p BA t= t I B A t I = t I B B A t I Stejé charateristicé mohočley stejá charateristicá čísla, QED Cayley-Hamilto Nechť p A t je charateristicý mohočle matice A Potom platí p A A = A t p Důaz: Využijeme fatu, že M adjm =det M I, a dosadíme M := A t I p A t p A t adj A t I Má a aždém místě polyom proměé t Můžeme zapsat adj A t I =t B t B B, tedy A t I t B t B B = p A t I =a t I a t I a I Koeficiet u t : I B =a I A u t i : A B i I B i =a i I A i u t : A B =a I ic Provedeme úpravy (ásobeí jsou zleva) a sečteme Pravá straa je a a a Aa I = p A A A B A A B B 2 A 2 A B 2 B 3 A 2 A B 2 B A A B B A B =, QED : () Každá matice řádu má ejvýše vlastích čísel (2) Každá omplexí matice řádu má právě vlastích čísel (ěterá mohou být víceásobá): p A t= t t p A t = t r t r ; (3) a = det A dosazeím t = p A t=a t a ta =det A t I = a, t (4) a = (5) a = dosazeím t = do p A t = t t (6) a = a i,i = i Úloha: (ze cvičeí) Ve městě Pupáově jsou tři stray: Asetičtí, Bohatí a Chudí Podrobým výzumem se zjistilo, že 75% z těch, co volilo Asety, je bude volit opět, 5% bude volit Bohaté a 2% chudé Podobě z těch co volili Bohaté zvolí 6% Bohaté, 2% Asety a 2% Chudé 8% voličů chudých je bude volit i v ásledujícím období, o zbylé hlasy se podělí % Aseti a 2% Bohatí Ja bude vypadat limití rozložeí sil v místím (stočleém) zastupitelstvu? A B C A= A,75,2, B,5,6, C,2,3,8 Ax= x A = A' := Ax=2 x Rozděleí dle popisů oolo matice, apř a diagoále jsou ti co volí stejě Součet sloupců matice dá vždy (%) a 2,2 t r i = a, t : 5 t 4 2 = 5 t 2 t 6 t t 85 t 46 t = 2 t 2 = 2 t2 t t t x p: p 3 p 3 p = p= 2 x 3 = p 3 p= x 2 = p/3 x = 2p x= p 2 = 2 = = = 2 3 ; 3 ; x = 3 ; 6 ; 2, de aždá složa je zastoupeí přislušé stray Poud bychom dosadili jié vlastí číslo přílad by evyšel smysluplě Nechť x,, x jsou vlastí vetory příslušé avzájem růzým vlastím číslům,, lieárího zobrazeí f 7

8 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Potom x,, x jsou lieárě ezávislé Důaz: iducí a sporem Nechť x x tvoří ejmeší protipřílad, tj a,,a : a i x i = = f = f = = a i x i = i= a i i x i a i f x i = a i i x i a = = i= a i x i = a i x i i= a i x i = i a i x i x x jsou lieárě závislé, SPOR s miimalitou protipříladu QED Čtvercové matice A, B azveme podobé, poud existuje regulárí matice R taová, že platí: A = R B R Nechť matice A, B jsou si podobé a,x jsou vlastí číslo a příslušý vlastí vetor matice A, potom y = R x je vlastí vetor matice B příslušý vlastímu číslu Důaz: B y= R A R R x=r A x=r x= R x= y A=R B R B=R A R, QED : Vlastí čísla diagoálí matice jsou prvy a diagoále a aoicá báze dává vlastí vetory Matice A je diagoalizovatelá, poud je podobá ějaé diagoálí matici Apliace: (a) A = R D R ; = D ii je i-té vlastí číslo a j-tý sloupec R je vlastí vetor A (b) mocěí matic A = R D R D i,i = D i, i Tvrz: Důsl: Matice A řádu je diagoalizovatelá, právě dyž má lieárě ezávislých vlastích vetorů Důaz: Má-li platit R A R= D, pa sloupce R jedozačě odpovídají vlastím vetorům () Má-li matice A řádu, růzých čísel potom je diagoalizovatelá (2) Platí, že A C má vlastí čísla,, ásobosti r,, r a avíc i {,, } : ra A I = r i, právě dyž A je diagoalizovatelá Fat: Př: Každá čtvercová omplexí matice A je podobá matici v tzv Jordaově ormálím tvaru, což je Teto tvar je dá jedozačě až a pořadí bloů eí diagoalizovatelá : Nechť A= vlastí číslo s příslušým vlastím vetorem x má Pa A x= x A I x=, tedy A I x =* (* začí cooliv ) a lze alézt posloupost vetor, tzv zobecěé vetory, taovou, že A I x i = x i Komplexí čtvercová matice A je hermitovsá, poud platí a i, j = a j,i (omplexě sdružeé číslo) Hermitovsá traspozice A je A H, de A H i, j = A j,i Jiými slovy: hermitovsá A H = A aalogie: symetricá A T = A Komplexí čtvercová matice A se azývá uitárí, poud platí A H A = I : Souči uitárích matic je uitárí: A H A = I, B H B = I AB H AB = B H A H A B = I Př: A= i i t ; P at=t 2 3 3t =3, 2 = R=i 3 3 i 3 R =R = i H i 3 R A R= 3 : A je diagoizovatelá: A R = R D A je podobá J : A R = R J Každá hermitovsá matice má všecha vlastí čísla reálá a existuje uitárí matice R, že R A R je diagoálí 8

9 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Důaz: Iducí podle řádu matice A :=A C Záladí věta algebry existuje vlastí číslo a ěmu vlastí vetor x Fat: x lze doplit dalšími vetory a uitárí matici P x = (Důaz: Gra-Schmidtova ortogoizace) Nyí máme matici z teré jsme vyšli, její vlastí vetor a uitárí matici P H A H P H H = P H A P P H A P H = z def 2x a H hermitovsá A P má v prvím sloupci vetor x P H A P má v prvím sloupci,,, T R (z, je hermitovsá) A je hermitovsá matice řádu, z iduce existuje R uitárí tž R A R = D R Defiujme: := P =S R uitárí uitárí uitárí R A R =R H A R =S H P H A P S = = H R A = R IP = = H, QED R A R D Opa: K = 2 je počet oster úplého grafu Laplaceova matice grafu G a vrcholech v,, v je matice Q taová, že q i, j = v,v i j E G ; i j jia q i, i =degv i Q i, j je matice vyilá y Q vyšrtutím i-tého řádu a j-tého sloupce Pro aždý graf G platí KG = detq Pozáma důaz: Q= det Q = = 2 Důaz věty o G : Bimet-Cauchyho Pro A, B K m platí A T B = A T I B I ; *: I * { } m Zvolíme orietaci G, zavedeme orietovaou matici icidece v D R m ; = V G, m= E G ; d i, j ={ i začáte e j v i oec e j jia } : D D T =Q Zavedeme D = D bey prvího řádu Platí D D T =Q, a dle Bimet-Cauchyho: det Q, =det D D T = I =,,m} { D I D I T = I =,,m} { Lemma : D I =±, právě dyž {e i ; i I } iduují strom lemma 2 D I = G Lemma 2: D I =, právě dyž {e i ; i I } eiduují strom Stačí již je doázat lemmáta () {e i ; i I } iduují strom, spořádáme vrcholy w,,w ta, že w i je list ve zbylém stromu w i,, w Přeuspořádáme sloupce D I podle pořadí w,,w ± D I =± ± determiat ± (2) {e i ; i I } eiduují strom, pa existuje cylus v cylus sloupce hra, teré jsou LZ det= má ompoetu, terá obsahuje v : e e 2, QED LZ v 2 9

10 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Prostory se salárím součiem Úvod: Vetory můžeme ásobit jao matici: x y = xy R a C: i aa R ii a a R iii a R Nechť je V vetorový prostor ad C Zobrazeí, teré dvěma vetorům u, v V přiřadí číslo u v C, se azývá salárí souči (ss), poud splňuje axiomy: N u V : u u = u= L a C, u, v V : a u v = a u v L2 u,v, w V : uv w = u w v w KS u,v V : v u = u v P u V : u u Poz, () Formálě: : V V C (2) Pro prostory ad R se salárí souči defiuje stejě, (KS) se iterpretuje jao u, v V : v u = u v SS pro R stejé až a axiom (KS): KS u,v V : v u = v u Př: () Stadardí SS pro aritmeticé vetorové prostory: V = C : u v = u i v i = v H u u H v V = R : u v = u i v i = v T u = u T v u a v = a v u = a v u = a v u = a u v (2) SS a R defiovaý pomocí regulárí matice A : u v := u T A T A v, apřílad V := R 2 A := 2 u v =u T 2 v = u v 2 u v 2 u 2 v 5 u 2 v 2 (3) SS a prostoru spojitých fucí itegrovatelých a itervalu [a, b ] : b f g = a f x g x dx Nechť V je vetorový prostor se SS Potom orma určeá tímto SS je zobrazeí : V R daé předpisem u = u u Poz: Výzam: u déla vetoru u u v vzdáleost vetorů u a v u v určuje úhel mezi u a v a= u b= v c= u v Na R : u v = u v cos, de je úhel sevřeý vetory u a v Plye z cosiové věty: c 2 = a 2 b 2 2ab cos u v u v = u u v v 2 u v cos u u u v v u u u = u u v v 2 u v cos = 2 u v Cauchy-Schwarzova erovost u, v V : u v Nechť V je vetorový prostor se SS a ormou z ěj odvozeou, potom platí u v Důaz: Je-li u= ebo v= platí a C : ua v a tedy ua v 2 = ua v ua v = u u a v u a u v a a v v Zvolíme a := u v elimiuje posledí dva čley v v v u u v u u v u u v v v u u v v u v 2 u 2 v 2 = u v u v, QED u v 2 BÚNO Důsl: () Nerovost mezi aritmeticým a vadraticým průměrem: u R : Důaz: Zvolíme v=,, T R vůli C u i 2 u i u i = u v u v = u 2 i, QED (2) Norma odvozeá ze SS splňuje trojúhelíovou erovost: uv u v

11 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Důaz: uv = uv uv = u u u v v u v v u 2 2 u v v 2 u 2 2 u v v 2 = u v 2 = u v QED Odboča do aalýzy Obecě je orma ad prostorem zobrazeí V R ) u V : u pozitivost 2) u V : u = u = jedozačost uly 3) u V, a C: a u = a u liearita (?) 4) u, v V : uv u v trojúhelíová erovost Př: jiých orem: L p ormy a R : u p = p stat orma odpovídá p =2 p= u = u i p= u = max u i,, ui p Ortogoalita Dva vetory u a v v prostoru se SS jsou avzájem olmé (začíme u v ), poud platí, že u v = : Každý systém vzájemě olmých vetorů je lieárě ezávislý Důaz sporem: Máme: u,,u : u i u j i j, ale LZ u i = i=2 a i u i u i u j = u a i u i= 2 i = a i u u i = SPOR QED Nechť Z je báze prostoru V se SS taová, že v Z : v = a avíc v, v' Z : v v ' v v' Potom taovou bázi azveme ortoormálí bází prostoru V : Mějme Z ortoormálí bázi prostoru R Pa A= v v A T A=I A je ortogoálí (aalogicy C : A H A = I A je uitárí) Tvrz: Nechť Z=v,, v je ortoormálí báze prostoru V, potom u V : u= u v v u v 2 v 2 u v v Důaz: v,, v je báze, vyjádříme: v = a i v i, chceme uázat: a i = u v i u v i = a j v j= j i v = j= 2 možosti a j v j v i = a i ; možosti: a) <> = pro i j, b) <>= pro i = j Q E D ( ) Pro ortoormálí bázi v,,v a vetor u V se oeficietům u v i říá Fourierovy oeficiety Tvrz: Parsevalova rovost: Je-li Z =v,,v ortogoálí báze prostoru V, potom u, w V : u w = [w] Z H [u] Z Důaz: u = u v i v i ; w = w v i v i u w = u v i v i w v j v j= j = j= u v i w v j v i v j = u v i w v i = [w] H Z [u] Z Q E D Tvrz: Lieárí zobrazeí f :V W mezi prostory s SS se azývá uitárí, poud f zachovává SS u, v V : u v = f u f v Zobrazeí f :V W je uitárí právě dyž pro ormy odvozeé se SS platí: u V : u = f u Důaz: => u = u u = f u f u = f u <= Jao u CS erovosti va w = w =

12 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Uitárí isomorfismus prostorů s SS se azývá ISOMETRIE Nechť V a W jsou prostory s ortogoálími bázemi X=Y, stejé oečé dimeze, potom platí, že f :V W je isometrie právě dyž [ f ] XY je uitárí Nechť W je prostor se SS, V W, a Z =v,, v je ortoormálí báze V Zobrazeí p:w V je defiováo předpisem: pu := u v i v i se azývá ortogoálí projecí prostoru W a V Lemma:Nechť p je ortogoálí projecí W a V, potom u pu v i pro v i Z i v = u v i u v j v j v i = u v i u v i = Q E D Důaz: u pu v i = u u v i Gram-Schmidtova ortogoalizace Vstup: Libovolá váze u,, u prostoru V se SS Výstup: Ortoormálí báze v,, v Algoritmus: pro i:= do opauj { i ) w i := u i j= 2) v i = w i w i j= u i v j v j } Koretost: ) w i v j pro j=i z => w i v j pro i j 2) w i = w i w i = w i w i = 3) spav v i, u i, v i v z lemmatu o výměě Poz, toto je využito ve větě o diagoalizovatelosti hermitovsých matic potřebujeme G-S algoritmus : p(u) je ejbližší bod z u v prostoru V u a = u pu a b a a b b = u pu a b = a b a b = a a a b b a b b a = V Př: pu w Ortogoálí doplě Nechť V je možia vetorů ve vetorovém prostoru W se SS Ortogoálí doplě možiy V je možia: V := {u W : u v v V } Když hledáme řešeí homogeí soustavy, ta hledáme Ax= <=> hledáme r a vůči std SS (4 5 29) : U V U V Důaz: u V u v v V u v v U u U Q E D Nechť V je podprostorem W se SS, potom platí: (a) V je podprostorem W (b) V V ={} Je-li avíc W oečé dimeze: (c) dimv dimv =dimw (d) V = V Důaz: (a) I u, v V, w W : uv w = u w v w = = uv V II u V a u w = a u w = a = a u V I II je podprostorem (b) sporem: dyby u V V, v u V u = spor V Příprava a (c) a (d): Vezmeme ortoormálí bázi X prostoru V a rozšíříme ji a ON bázi Z prostoru W Y =Z X X ={x x } Y ={y y } Cíl: Chceme uázat, že V = spay 2

13 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy ) x i X a y j Y : x i y j y j i x i Y V avíc: w spaw w = w z = j= l l j= l j y j i x i = j = l 2) Libovolé w V vyjádříme jao j= j y j z V : Z = j y j i x i j i y j x i = spay V i x i = w x i = i Z je ON báze V w spay V spay oec přípravy (c) dimv = X ; dimv = Y ; dimw = X Y (d) V = spa Z Y = spa X = V Q E D Tvrz: Pozitivě defiití matice Nechť V prostor se SS a X = y,, y je jeho báze, potom pro matici A defiovaou: a i, j := x i x j platí, že u,v V : u w = [w] H X A [u] X Poz: Je-li X ON báze, je A jedotová Důaz: [u] X =,, u = i x i [w ] X =,, w = i x i u w = i x i j x j = j = j = i j x i x j = [w] X H A [u] X Q E D Jaé vlastosti musí mít A? ) a ij = x j x i = x i x j = a ij A je hermitovsá 2) musí zaručit, že u u = [u] X H A [u] X pro u Užití: Tvrz: Hermitovsá matice A řádu se azývá pozitivě defiití, poud x C { } platí: x H A x V MA vyšetřováí loálích a globálích extrémů fucí více proměých Pro hermitovsou matici A řádu jsou ásledující podmíy evivaletí: a) A je pozitivě defietí b) A má všecha vlastí čísla ladá c) existuje regulárí matice U taová, že A = U H U Důaz: (a=>b) A hermitovsá, vlastí číslo A R, vezmeme vlastí vetor x, aby A x = x (b=>c) (c=>a) x H A x = x H x x H x ze součiu a C: a a A hermitovsá => regulárí R, tž A = R H D R, D diagoálí D: d ij =d ij A = R H D H D R = U H U x H A x = x H U H U x =Ux H Ux U je regulárí ax Pro pozitivě defiití matice existuje jedozačá trojúhelíová matice U s ladými prvy a diagoále taová, že A = U H U, matici U se říá Choleseho rozlad Důaz: algoritmem: Vstup: hermitovsá matice A Výstup: cholesého rozlad, ebo odpověď, že A eí poz defietí Pro i:= do V proveď: { ) U ii := a ii } Q E D = U i U i 2) eí-li u ii R,u ii STOP, A eí pozitivě defietí 3) pro j = (i + ) do u proveď: i { u ij := u ii a ij U i U j } = (předáša 59) Tvrz: Bloová matice A= ah a A je positivě defiití, právě dyž a zároveň A a ah je positivě defiití 3

14 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Poz, Gaussovou elimiací sloupce pod dostaeme a H a A = H a a ah A C Důaz: Nechť x C,x, začme x= x C x x H A x= x, x H ah a A x x =x x H a, x a H x A H x x = =x x x x H ax a H x x H A x x H a a H x x H a a H x = = = x H A a a H x x x H a x a H x, y y C C protože alespoň a jedé straě bude ostrá erovost, jia by muselo platit zároveň x = x= Položíme =e H A e, e =,,, T Pro libovolé x C zvolíme x := a H x, potom platí: = x H A x= x H A a ah A a ah je positivě defiití, QED Důsl: () Positivě defiití matice lze rozezat Gaussovou elimiací (2) Jacobiho podmía: Hermitovsá matice A řádu je positivě defiití, právě dyž mají matice A,, A ladý determiat, de A i vzie z A umazáím posledích i řádů a sloupců Důaz: Apliujeme předchozí tvrzeí reuretě a převedeme do odstupňovaých tvarů Bilieárí a vadraticé formy Nechť V je vetorový prostor ad K a f je zobrazeí V V K splňující axiomy: u, v, w V : f uv,w= f u,w f v, w 2 u, v V K : f u, v= f u,v 3 u, v, w V : f u,vw= f u, v f u, w 4 u, v V K : f u, v= f u,v Potom se f azývá bilieárí formou V Bilieárí forma je symetricá, platí-li u, v V : f u, v = f v,u Zobrazeí g :V K se azývá vadraticá forma, poud existuje bilieárí forma taová, že u V : g u = f u, u Nechť V je vetorový prostor a X = v,, v je jeho báze, pa matice bilieárí formy f vůči bázi X je B, de platí b i, j = f v i, v j a matice vadraticé formy g je matice symetricé bilieárí formy, terá g vytvořuje, poud taová existuje : b i, j = f v i, v j = 2 g v iv j g v i gv j matice vadraticé formy existuje vždy, je-li K charateristiy 2 : Počítáí s maticemi formy: f u, w =[u ] X T B [w ] X, protože f i gu=[u] X T B [u] X a i v i, j b j v j = i j a i b j [ u] X f v i, v j, [ w] X B Pro bilieárí formu f a K je její aalyticé vyjádřeí polyom f x,, x T, y,, y T = x i y j b i, j j = Podobě aalyticé vyjádřeí vadraticé formy vůči daé bázi Sylvesterův záo o setrvačosti vadraticých forem Nechť V je prostor oečé dimeze ad R a g :V R je vadraticá forma Potom existuje báze X taová, že matice g vůči X je diagoálí a prvy a diagoále jsou, - ebo, avíc počet, -, ezávisí a X a je pro všechy vhodé báze stejý (předáša 859) Důaz: (a) existece Zvolíme libovolou bázi Y, sestavíme matici B ' formy g vůči Y Víme, že B ' je reálá symetricá Platí, že aždá symetricá matice A má vlastí čísla reálá a existuje ortogoálí matice R, že A=R D R (záme v hermitovsé verzi) Tedy existuje R, že R B ' R=R T B ' R= D ' Víme, že pro B matici g vůči X a B ' vůči Y platí B=[id ] T XY B ' [id ] XY Zvolíme B, S diagoálí matice, že: d i,i b i,i =, s i, i =d i,i 4

15 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy d i,i b i,i =, s i,i = d i,i d i,i = b i,i =, s i,i = d i, i d i,i d i, i d i i, S T B S Čili platí R T B ' R= S T B S, S, R regulárí i,i =d d i,i D= D T B=S T R T B ' R S, čili pro bázi X: [id ] XY =R S platí, že matice B formy g vůči X je diagoálí a dle zěí věty (, -, ) Poz, sloupce [id ] XY jsou tvořey souřadicemi vetorů hledaé báze X vůči bázi Y (b) jedozačost: Začeí: g :V R, X =v,, v,y =w,, w dvě báze taové, že matice formy g vůči X, Y jsou B, B' diagoálí ve tvaru (odlišé je délou úseů) Pozorováí: # v B= ra B = B =R T B ' R ra B '= # v B' Zbývá již je hraice /- Ozačme '=ra B =# # Aalyticé vyjádřeí formy g je g u= x 2 x 2 2 x 2 2 r x r x 2 ', de [u] X = x,,x T, r=# v B y 2 y 2 2 y 2 2 s y s y 2 ', de [u] Y = y,, y T, s=# v B' Pro spor ať r s Zvolíme etriviálí z L{v,,v } r L{w s,,w } L dim L =r, dim L 2 = s Víme, že pro U, V platí L 2, dimu dimv =dimlu V dimlu V z L{v,, v r } {} pro [z ] X = x,, x r T je alespoň jedo z x,, x r a zároveň x r,,x = g z z L{w s,,w } {} pro [z ] Y = y s,, y T je alespoň jedo z y s,, y ; y,, y s =, čili = g z = y y s y s y 2 ', SPOR QED Vetoru #,#, # se říá sigatura formy, respetive sigatura symetricé matice, a příslušá báze se azývá polárí báze Úloha: Na závěr, oli lze v R d alézt ejvíce příme, aby aždé dvě svíraly stejý úhel? (poud ědo chce, abych přepsal i tuto úlohu, echť se mi ozve) 5

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků

1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků 1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

7.3.9 Směrnicový tvar rovnice přímky

7.3.9 Směrnicový tvar rovnice přímky 739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu

Aplikace marginálních nákladů. Oceňování ztrát v distribučním rozvodu Apliace margiálích áladů Oceňováí ztrát v distribučím rozvodu Učebí text předmětu MES Doc. Ig. J. Vastl, CSc. Celové ročí álady a ztráty N P ( T ) z z sj z wj Kč de N z celové ročí álady a ztráty *Kč+

Více

Carl Friedrich Gauss

Carl Friedrich Gauss Carl Friedrich Gauss F. KOUTNÝ, Zlí (. 4. 777.. 855) Každé vyprávěí o ěkom, kdo žil dávo, je utě je kompilací prameů a odkazů, které v ejlepším případě pocházejí od jeho pamětíků. Rámec tohoto textu tvoří

Více

Máme dotazníky. A co dál? Martina Litschmannová

Máme dotazníky. A co dál? Martina Litschmannová Máme dotazíy. A co dál? Martia Litschmaová. Úvod S dotazíy se setáváme běžě. Vídáme je v oviách, v časopisech, jsou součásti evaluačích zpráv (sebehodoceí šol, ), výzumých zpráv, Využívají se v sociologii,

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

MODELY HROMADNÉ OBSLUHY Models of queueing systems

MODELY HROMADNÉ OBSLUHY Models of queueing systems MODELY HROMADNÉ OBSLUHY Models of queueig systems Prof. RNDr. Ig. Miloš Šeda, Ph.D. Vysoé učeí techicé v Brě, Faulta strojího ižeýrství, Ústav automatizace a iformatiy e-mail: seda@fme.vutbr.cz Abstrat

Více

Téma 5: Analýza závislostí

Téma 5: Analýza závislostí Aalýza závlotí Téma 5: Aalýza závlotí Předáša 5 Závlot mez ev Záladí pom Předmětem této aptol ude zoumáí závlotí ouvlotí mez dvěma a více ev. Jedá e o proutí do vztahů mez ledovaým ev a tím přlížeí tzv.

Více

stavební obzor 1 2/2014 11

stavební obzor 1 2/2014 11 tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

č Ú ť é á č š é ň č á é á č á ňí á ň á é č á Š š ň Í áč ť ň áž á é á á á á ň é á č é é ň š č Ť é ňí é Ž ň š é á č á é á č á ň á á é á é é á é č é Ó ň é é é é é á é á ů č š š š Ť é é á á é áň á Ť á č š

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

É á ž ž ý Ů Ů ý Ů ř ž š ě á ň č ř ž ý Ů Ž É Á á á š á ř ú ř Č ě š ř š ň ů ě ěž ý ů á ří ář č ě Ů ář Á á ř č á á Č á ě ÍÁ á č ř áž Š ě á ě á á á Š ř řá ě ě ý ř á á á ý ě ě Ž á ž ý č á á ý ů á č č ě č á

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

č úč ř ú úč é š ř úč ř ář ž úč úč ř ň á č á á á ř á ř ř ř úč Č ář é úč é á á ř á č úč š ř áš á á á č úč š ř úč ř č á úč é úč á č á á š ř á č Í š ř č úč č ž á é á é š é úč ď ž č Ýé ř á é ř úč úč ř ž ď š

Více

š ú ě Ú ě ě ú Ú Ý Í Ě Í Ú Í Á Ý Ů Ý Ů Í ě Á Í ě Č ú ř ě ň ř ů ň ř ů Č ň ř ů ů ň ř ů Í ň ř šť š ů ř ř ě ř ř ů ň ů ř ě ř š ř ř ř ů ř ů ř ů ř ř ř ů ě ě ě ř ř ů ř ů ě š ě ř ů Ú ř ě ř ř ě Č ř ů ř ř ě ř ů ř

Více

ů Č š Š É É Í Ě ť ú Č ů ž č ú ý ů ý ú Ú Č á ě á ý ř š ě šš ř č š ě š ě ý ř š š ě ř š ě šš č š ě ž ěř ý ř ř řá ý ů á ě š ě ř č řá č řá š ě ř ý ř č č á Č á á áš č á á č ě š Č š ů ž č ě ý úř ž ř á ě č ě ě

Více

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha

Obyčejné diferenciální rovnice. Cauchyova úloha Dirichletova úloha Občejé erecálí rovce Caucova úloa Drcletova úloa Občejé erecálí rovce - Caucova úloa Úlo: I. = s omíou = jea rovce. řáu II. soustava rovc. řáu III. = - jea rovce -téo řáu = = = - = - Hleáme uc res. uce

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Fourierova transformace ve zpracování obrazů

Fourierova transformace ve zpracování obrazů Fourierova trasformace ve zpracováí obrazů Jea Baptiste Joseph Fourier 768-83 6. předáška předmětu Zpracováí obrazů Martia Mudrová 24 Motivace Proč používat Fourierovu trasformaci? základí matematický

Více

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák

Základy teorie chyb a zpracování fyzikálních měření Jiří Novák Zálad eore chb a zpracováí zálích měřeí Jří ová Teo e je zamýšle jao pomůca pro vpracováí laboraorích úloh z z Je urče pouze pro sudjí účel a jeho účelem je objas meod zpracováí měřeí Chb měřeí Druh chb

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

ř ř ř ó é ř ř é ř ř ů ř ř ó ř ř é ř ť Ď ž ň é ř ň ř ň ř é ž ů ň ř ň řú é ň ř ů ň ř ň ř ž ž ň ř é ž ů é ů é ň ů ů ž ř é ř ů š é ů ř é ř ů ř ů é ň ň é ř ň é ř ř ž ů ů ř ž ž ž ř é ř ř ů ř é ř ů ř ú ů ú ů

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů:

uvedení do problematiky i Bezpečnostní kódy: detekční kódy = kódy zjišťující chyby samoopravné kódy = kódy opravující chyby příklady kódů: I. Bezpečnostníkódy úvod základní pojmy počet zjistitelných a opravitelných chyb 2prvkové těleso a lineární prostor jednoduché bezpečnostní kódy lineární kódy Hammingův kód smysluplnost bezpečnostních

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

ů č ý ř á ř ě á ý č š áš é á Žá é š ě ě č ý ě ě é č č č č ř á ý á áš ě ů ě ý ř č ř é č ě ř Ú Ř Á Í Ů č Ý Á č Í Á Ř Ě Ě Ý Í ť Í Á É Ě Í Ě ŠÍ Ř Ů Á Á Ů Ř Ě Á Ý Č É ý ůž ě ě é á ů á ě ý á á ů á č ú ě ý ů

Více

á ě č č ú řá ě řá ř č Ú č á ě ú řá ě řá á úř ř ř š á č ú á řá á ě ě š ř ů á é ěř š á á ě á řá ě ě š ř ů á á řá é ě ú úč ůú ř ě ů č ř ř čá ř Ž ř š é ř šť é ě é ř ř ů č ř ř čá ř Ž ř ď é ř š é ě é ř Ť č á

Více