Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na.

Rozměr: px
Začít zobrazení ze stránky:

Download "Determinanty Opakování: Permutace na n prvcích je zobrazení p:{1,..., n} {1,..., n}, které je prosté a na."

Transkript

1 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Lieárí algebra II láta z II semestru iformatiy MFF UK dle předáše Jiřího Fialy Zpracovali: Ja Zaatar Štětia, Odřej Keddie Profat Obsah Determiaty2 Geometricý výzam determiatu4 Polyomy4 Vlastí čísla a vlastí vetory6 Charateristicý mohočle6 Prostory se salárím součiem Ortogoalita Ortogoálí doplě2 Pozitivě defiití matice3 Bilieárí a vadraticé formy4

2 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Determiaty Opaováí: Permutace a prvcích je zobrazeí p:{,, } {,, }, teré je prosté a a S začí možiu všech permitací a prvcích S, tvoří grupu (existují eutrálí prve, idetita a všechy iverzí permutace) Iverze v permutaci je dvojice i,j taová, že i j a pi p j Zaméo permutace p je sg p= # iverzí v p Sudé permutace tvoří ormálí podgrupu S ; Fatorgrupa je izomorfí grupě {, }, Nechť A je čtvercová matice řádu ad tělesem K, potom determiat matice A je dá výrazem det A:= sg p a i, p i p S Formálě jde o zobrazeí K m K Determiaty matic se začí místo det : det A T =det A Důaz: det A T = sg p A T i, p i = sg p A T p i,i = p S p S j= * (*) víme, že j= p i; i= p j a sg p= sg p QED sg p p S j= a j, p j =det A Důsl: Poud řádová úprava eměí determiat, pa ai stejá sloupcová úprava jej ezměí : Přerováí sloupců matice A podle permutace q (a) ezměí determiat, poud sgq= (b) změí zaméo determiatu, poud sgq= Důaz: Budiž A původí matice, B přerovaá matice Důsl: det B = sg p b i, p i = sg p a, protože i,q p i b =a ; b =a, a dále se rová i,q j i, j i, j i,q j p S p S sgq sgq sg p a, de vždy i,q pi sg q sgq = a sg q sg p= sg q p, taže p S sg q sgq p a i,q pi = sgq det A QED p S (a) záměa dvou řádů změí zaméo, (b) jsou-li dva řády matice A shodé, potom det A= Tvrz: Determiat matice je lieárě závislý a aždém řádu matice Důaz: Na i-tém řádu provedeme (a) salárí ásobe řádu (b) součet dvou řádů (a) Liearita vůči ásobu Budiž A původí matice, A' pozměěá matice (i-tý řáde vyásobeý t K ) Důsl: Pa det A' = p S sg p a ', p a' i, p i a ', p = sg p a, p t a i, p i a, p =t det A p S (b) Liearita vůči sčítáí Budiž A původí matice Zostruujeme B,C předpisem j i:a, j =b, j =c, j, Pa j :a i, j =b i, j c i, j det A= sg p a, p a i, p i a, p = sg p a, p b i, p i c i, p i a, p = p S p S = p S sg p a, p b i, p i a, p sg p a, p c i, p i a, p =det B det C QED p S Přičteí t-ásobu j-tého řádu i-tému (pro i j ) eměí determiat matice Důaz: obrázem Postup: Výpočet determiatu Převedeím a odstupňovaý tvar přičteím ásobů ostatích řádů, ale esmíme prohazovat řády ai ásobit t K, zato můžeme provádět úpravy i a sloupcích (předáša 239) 2

3 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Nechť A a B jsou čtvercové matice stejého řádu ad K, potom platí det A B=det A det B Důaz: Je-li A ebo B sigulárí, pa A B je sigulárí Něterý řáde sigulárí matice lze složit lieárí ombiací ostatích, odečteím této ombiace zísáme matici s ulovým řádem a stejým determiatem = Je-li A regulárí, lze ji rozložit a souči elemetárích matic A=E E Potom platí det A B =det E E B=det E E 2 E B = * = * det E det E 2 E B Ad *, máme dvě možosti Důsl: (a) Čtvercová matice A je regulárí, právě dyž det A (b) det A =det a, respetive det A det A = (a) E odpovídá vyásobeí i-tého řádu t determiat součiu t-rát vzroste: det E = t =t (b) E odpovídá přičteí j-tého řádu i-tému Začeí: A i, j začí matici, terá vzie z matice A vypuštěím i-tého řádu a j-tého sloupce determiat součiu se ezměí: det E = = Tedy det E det E det B =det E E det B=det A det B QED Tvrz: Poz, Rozvoj determiatu podle i-tého řádu Pro libovolou matici A řádu 2 a libovolé i {,, } platí det A= a i, j i j det A i, j j = toto je efetiví pro řády s ulami Důaz: (a) Vytýáí prvů a i, j z předpisu pro determiat ebudeme doazovat (b) Využití liearity: zapíšeme i-tý řáde jao vhodou lieárí ombiaci: e T det a i, a =a i, i, det a i, det a i,,,a i, =a i,,,,a i,2,,,a i,,,, Zbývá určit: det je a [i,j] permutace řádů = i det je a[,j] = i j det x = x i j det A ij, QED permutace sloupců x - idy evyužijeme Pro čtvercovo matici A defiujeme adjugovaou matici adj A předpisem adj Ai, j = i j det změa pořadí idexů! A j, i Pro aždou regulárí matici A platí A = adj A det A Důaz: z rozvoje podle i-tého řádu: A i adj A i =det A a pro j i : i-tý řáde A j adj A i = rozvoj podle i-tého řádu v matici, terá vzie z A ahrazeím i-tého řádu j-tým řádem = A =det A A adj A=I det, QED det A A A adj A Cramerovo pravidlo Nechť A je regulárí matice, potom řešeí aždé soustavy A x=b lze spočítat po složách výrazem x i = det A i b, det A de A i b zameá matici, terá vzie z A ahrazeím i-tého sloupce vetorem pravých stra b Důaz (): X = A b= adj A b det A X i = det A adj A b i= adj A det A i, j b j = j= Provedeme rozvoj podle i-tého sloupce v A i b = det A det A i b, QED Důaz (2): Ozačme I i x matici, terá vzie z I ahrazeím i-tého sloupce vetorem x =b A I i x = A e, A e 2,, A x,= A i b Víme det I i x =x i a tedy det A x i =det A ib, QED 3

4 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Postup: Výpočet determiatu (ze cvičeí) a I) V odstupňovaém tvaru stačí souči diagoály: = a i a II) Vytýáí z řádu: III) =2 a b c = 6 6= d =a d b c IV) =3 Sarrusovo pravidlo: V) Rozvoj dle i-tého řádu det A= j= { } = = = a i, j i j det A i, j ; př: = Geometricý výzam determiatu Poz, Záme růzé druhy obalů X R, X ={x,, x } () L X Lieárí obal ejmeší vetorový prostor obsahující X L X ={ a i x i ; x i X, a i R} (2) A X Afií obal ejmeší afií prostor obsahující X A X ={ a i x i ; x i X, a i R, a i =} (3) K X Kovexí obal ejmeší ovexí možia obsahující X K X ={ (4) R X Rovoběžostě vymezeý X a i x i ; x i X, a i R, a, i :a i [,]} R X ={ a i x i ; x i X, a i R, i :a i [,]} Pro vetory x,, x udává det A, de A sestává z x,, x (po řádcích aebo po sloupcích), objem rovoběžostěu určeého x,, x Důaz (idea): Protože přičítáí jiých řádů eměí ai determiat, ale ai objem Důsl: Je-li f lieárí zobrazeí R R a A=[ f ] KK je matice tohoto zobrazeí, vol f v= det A vol v ta platí, že objem objem obrazu těleso Polyomy Polyom (též mohočle) stupě v proměé x ad tělesem K je výraz p x=a x a x a xa, de a a K, a Začeí p K x Operace s polyomy p, q K x : p x= a i x i i= Sčítáí a odčítáí p±q x= i = Násobeí salárem t K, pa t px= t a i x i Násobeí mezi sebou m p q x= i= m a q x= b i x i, BÚNO m i= c i x i, de c i= a i±b i pro i {,, m} a i jia i= c i x i, de c i = mii, j=max,i m a j b i j 7 9 = = 6 2 = 2 4

5 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Děleí se zbytem r,t K X : deg tdegq p=r qt stupeň t Kostruce řešeí: p x a x m q x b má stupeň ižší ež p x prví čle r Poz, Typicy za x volíme prvy z tělesa K, ale lze i jié strutury, apř čtvercové matice ad K p x=a x a xa x p A=a A a Aa I : Pro p R x platí, že p x= (tj p x= x= ), právě dyž a ==a = Malá Fermatova Pro aždé a Z p, a platí a p = Důaz: Zafixuji a, uvážím zobrazeí f :i a i Tedy f :{,, p }{,, p } je prosté a f je permutací a {,, p } p p i= p a i=a p i =a p, QED i= Důsl: V Z p : x p x= q Z p x r Z p x, deg r p : x Z p : q x = r x Koře polyomu p K x je taové a K, že pa= Např polyom p x= x 2 () má oře i v K=C (2) emá oře v K=R (3) emá oře v K=Z 3 (4) má oře 2 v K=Z 5 Tělesa, de všechy polyomy mají oře, se azývají algebraicy uzavřeá Záladí věta algebry Každý mohočle stupě alespoň ad C má oře Důsl: Každý mohočle stupě alespoň ad C lze rozložit jaou souči moomů p x = a x x x x, de x,, x jsou ořey Důaz (idea): Záladí věta algebry: p x=a x a xa Otáza:Reprezetace polyomů p x stupě pomocí oeficietů a a K (+ def); a algebraicy uzavřeém tělese pomocí ořeů a a ; hodotami p x v + růzých bodech px= a i x i i= sadé??? x,, x jaým způsobem lze užít oeficiety a a polyomu p x, záme-li dvojice x i; y i pro + růzých bodů x x? = p x i (předáša 639) řešíme soustavu o ezámých a a a x a x a =y a x a x a = y Maticově: x x x x Vadermodova matice a = a y y 5

6 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Vadermodova matice je regulárí, právě dyž hodoty x x jsou avzájem růzé Důaz: Prví řáde odečteme od x x ostatích = x x x x x 2 x x 2 x x x x x Provedeme rozvoj dle prvího sloupce a vyteme x i x i =x x i x i x i 2 i x x x x j x j= 2 x x x 2 x x 2 2 j =2 x x x x x x = produt eulový ( matice regulárí) x i růzé QED x j x Vadermatova matice a proměých x 2 x = x j x i i j Postup: Lagragerova iterpolace - alterativí postup, ja proložit polyom stupě body x i, y i, i { } Pro i { } ozačme P i x = x x x x 2 x x i x x i x x x i x x i x 2 x i x i x i x i x i x Platí P i x i = a pro j i: P i x j = (ěde máme x x j = eulový čitatel) Položíme Px = y P x y P x Úloha: Jaým způsobem sestavit m líčů, aby libovolý m líčů doázalo odemout ód, ale libovolých méě ež ioliv? Sestavme polyom stupě a určíme jeho hodoty v m růzých bodech Úvod: ód líč Vlastí čísla a vlastí vetory Jedoduchý abstratí model dyamicého systému Systém reprezetová vetorovým prostorem V ad K Dyamia reprezetováa lieárím zobrazeím f :V V Stabilí stavy (a) pevé body zobrazeí f čili f u = u (b) body jejichž obraz je salárím ásobem vzoru: f u = a u, a K Př: Osová souměrost v R 2 Nechť V je vetorový prostor ad K a f :V V je li zobrazeí Vlastím číslem zobrazeí f je taové λ K pro teré existuje etriviálí u V taový, že f u = u Vlastím vetorem příslušý vlastímu číslu λ je libovolé u V, tž f u = u (Poz: Zdvojeá defiice, abychom obešli u= ) Je-li V oečě geerovaý, tj dimv = N, potom lze f reprezetovat maticí zobrazeí A = [f ] VV a rozšířit defiici a matice: Vlastí číslo matice A je libovolé K taové, že A x = x pro x K, x Vlastí vetor příslušý vlastímu číslu λ je taové x K, že Ax = λ x Možia všech vlastích čísel matice se azývá spetrum matice Charateristicý mohočle Úvod: f u = λ u, u A x = x A x λ x = A x λ I x = A λ I x = Př: Tvrz: Charateristicým mohočleem matice A azveme polyom p a t, terý je urče výrazem: p a t = det A t I Pro aždou čtvercovou matici A platí, že λ je jejím vlastím číslem, právě dyž je λ ořeem charateristicého mohočleu p A t, čili p A = Důaz: viz úvod A I x = A I je sigulárí det A t I =, x etriviálí! QED Viz slidy Jsou-li A, B čtvercové matice stejého řádu ad stejým tělesem, potom A B a B A mají stejá vlastí čísla Důaz: Pro ásobeí bloových matic platí: I J K L P Q IPJR KPLR IQJS KQLS AB B AB ABA I = B BA = I A I B BA Platí: C R= R D, říáme, že C a D jsou podobé : Podobé matice mají shodé charateristicé mohočley R S = 6

7 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy C= R D R (*) * toto= p C t=det C t I =det R D R t I =det R D R t R I R =det R D t I R =det R det D t I det R =P d t Podobé matice mají tedy shodá i vlastí čísla Čili A B t I B t I = A B t I t I = p ABt= p BA t= t I B A t I = t I B B A t I Stejé charateristicé mohočley stejá charateristicá čísla, QED Cayley-Hamilto Nechť p A t je charateristicý mohočle matice A Potom platí p A A = A t p Důaz: Využijeme fatu, že M adjm =det M I, a dosadíme M := A t I p A t p A t adj A t I Má a aždém místě polyom proměé t Můžeme zapsat adj A t I =t B t B B, tedy A t I t B t B B = p A t I =a t I a t I a I Koeficiet u t : I B =a I A u t i : A B i I B i =a i I A i u t : A B =a I ic Provedeme úpravy (ásobeí jsou zleva) a sečteme Pravá straa je a a a Aa I = p A A A B A A B B 2 A 2 A B 2 B 3 A 2 A B 2 B A A B B A B =, QED : () Každá matice řádu má ejvýše vlastích čísel (2) Každá omplexí matice řádu má právě vlastích čísel (ěterá mohou být víceásobá): p A t= t t p A t = t r t r ; (3) a = det A dosazeím t = p A t=a t a ta =det A t I = a, t (4) a = (5) a = dosazeím t = do p A t = t t (6) a = a i,i = i Úloha: (ze cvičeí) Ve městě Pupáově jsou tři stray: Asetičtí, Bohatí a Chudí Podrobým výzumem se zjistilo, že 75% z těch, co volilo Asety, je bude volit opět, 5% bude volit Bohaté a 2% chudé Podobě z těch co volili Bohaté zvolí 6% Bohaté, 2% Asety a 2% Chudé 8% voličů chudých je bude volit i v ásledujícím období, o zbylé hlasy se podělí % Aseti a 2% Bohatí Ja bude vypadat limití rozložeí sil v místím (stočleém) zastupitelstvu? A B C A= A,75,2, B,5,6, C,2,3,8 Ax= x A = A' := Ax=2 x Rozděleí dle popisů oolo matice, apř a diagoále jsou ti co volí stejě Součet sloupců matice dá vždy (%) a 2,2 t r i = a, t : 5 t 4 2 = 5 t 2 t 6 t t 85 t 46 t = 2 t 2 = 2 t2 t t t x p: p 3 p 3 p = p= 2 x 3 = p 3 p= x 2 = p/3 x = 2p x= p 2 = 2 = = = 2 3 ; 3 ; x = 3 ; 6 ; 2, de aždá složa je zastoupeí přislušé stray Poud bychom dosadili jié vlastí číslo přílad by evyšel smysluplě Nechť x,, x jsou vlastí vetory příslušé avzájem růzým vlastím číslům,, lieárího zobrazeí f 7

8 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Potom x,, x jsou lieárě ezávislé Důaz: iducí a sporem Nechť x x tvoří ejmeší protipřílad, tj a,,a : a i x i = = f = f = = a i x i = i= a i i x i a i f x i = a i i x i a = = i= a i x i = a i x i i= a i x i = i a i x i x x jsou lieárě závislé, SPOR s miimalitou protipříladu QED Čtvercové matice A, B azveme podobé, poud existuje regulárí matice R taová, že platí: A = R B R Nechť matice A, B jsou si podobé a,x jsou vlastí číslo a příslušý vlastí vetor matice A, potom y = R x je vlastí vetor matice B příslušý vlastímu číslu Důaz: B y= R A R R x=r A x=r x= R x= y A=R B R B=R A R, QED : Vlastí čísla diagoálí matice jsou prvy a diagoále a aoicá báze dává vlastí vetory Matice A je diagoalizovatelá, poud je podobá ějaé diagoálí matici Apliace: (a) A = R D R ; = D ii je i-té vlastí číslo a j-tý sloupec R je vlastí vetor A (b) mocěí matic A = R D R D i,i = D i, i Tvrz: Důsl: Matice A řádu je diagoalizovatelá, právě dyž má lieárě ezávislých vlastích vetorů Důaz: Má-li platit R A R= D, pa sloupce R jedozačě odpovídají vlastím vetorům () Má-li matice A řádu, růzých čísel potom je diagoalizovatelá (2) Platí, že A C má vlastí čísla,, ásobosti r,, r a avíc i {,, } : ra A I = r i, právě dyž A je diagoalizovatelá Fat: Př: Každá čtvercová omplexí matice A je podobá matici v tzv Jordaově ormálím tvaru, což je Teto tvar je dá jedozačě až a pořadí bloů eí diagoalizovatelá : Nechť A= vlastí číslo s příslušým vlastím vetorem x má Pa A x= x A I x=, tedy A I x =* (* začí cooliv ) a lze alézt posloupost vetor, tzv zobecěé vetory, taovou, že A I x i = x i Komplexí čtvercová matice A je hermitovsá, poud platí a i, j = a j,i (omplexě sdružeé číslo) Hermitovsá traspozice A je A H, de A H i, j = A j,i Jiými slovy: hermitovsá A H = A aalogie: symetricá A T = A Komplexí čtvercová matice A se azývá uitárí, poud platí A H A = I : Souči uitárích matic je uitárí: A H A = I, B H B = I AB H AB = B H A H A B = I Př: A= i i t ; P at=t 2 3 3t =3, 2 = R=i 3 3 i 3 R =R = i H i 3 R A R= 3 : A je diagoizovatelá: A R = R D A je podobá J : A R = R J Každá hermitovsá matice má všecha vlastí čísla reálá a existuje uitárí matice R, že R A R je diagoálí 8

9 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Důaz: Iducí podle řádu matice A :=A C Záladí věta algebry existuje vlastí číslo a ěmu vlastí vetor x Fat: x lze doplit dalšími vetory a uitárí matici P x = (Důaz: Gra-Schmidtova ortogoizace) Nyí máme matici z teré jsme vyšli, její vlastí vetor a uitárí matici P H A H P H H = P H A P P H A P H = z def 2x a H hermitovsá A P má v prvím sloupci vetor x P H A P má v prvím sloupci,,, T R (z, je hermitovsá) A je hermitovsá matice řádu, z iduce existuje R uitárí tž R A R = D R Defiujme: := P =S R uitárí uitárí uitárí R A R =R H A R =S H P H A P S = = H R A = R IP = = H, QED R A R D Opa: K = 2 je počet oster úplého grafu Laplaceova matice grafu G a vrcholech v,, v je matice Q taová, že q i, j = v,v i j E G ; i j jia q i, i =degv i Q i, j je matice vyilá y Q vyšrtutím i-tého řádu a j-tého sloupce Pro aždý graf G platí KG = detq Pozáma důaz: Q= det Q = = 2 Důaz věty o G : Bimet-Cauchyho Pro A, B K m platí A T B = A T I B I ; *: I * { } m Zvolíme orietaci G, zavedeme orietovaou matici icidece v D R m ; = V G, m= E G ; d i, j ={ i začáte e j v i oec e j jia } : D D T =Q Zavedeme D = D bey prvího řádu Platí D D T =Q, a dle Bimet-Cauchyho: det Q, =det D D T = I =,,m} { D I D I T = I =,,m} { Lemma : D I =±, právě dyž {e i ; i I } iduují strom lemma 2 D I = G Lemma 2: D I =, právě dyž {e i ; i I } eiduují strom Stačí již je doázat lemmáta () {e i ; i I } iduují strom, spořádáme vrcholy w,,w ta, že w i je list ve zbylém stromu w i,, w Přeuspořádáme sloupce D I podle pořadí w,,w ± D I =± ± determiat ± (2) {e i ; i I } eiduují strom, pa existuje cylus v cylus sloupce hra, teré jsou LZ det= má ompoetu, terá obsahuje v : e e 2, QED LZ v 2 9

10 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Prostory se salárím součiem Úvod: Vetory můžeme ásobit jao matici: x y = xy R a C: i aa R ii a a R iii a R Nechť je V vetorový prostor ad C Zobrazeí, teré dvěma vetorům u, v V přiřadí číslo u v C, se azývá salárí souči (ss), poud splňuje axiomy: N u V : u u = u= L a C, u, v V : a u v = a u v L2 u,v, w V : uv w = u w v w KS u,v V : v u = u v P u V : u u Poz, () Formálě: : V V C (2) Pro prostory ad R se salárí souči defiuje stejě, (KS) se iterpretuje jao u, v V : v u = u v SS pro R stejé až a axiom (KS): KS u,v V : v u = v u Př: () Stadardí SS pro aritmeticé vetorové prostory: V = C : u v = u i v i = v H u u H v V = R : u v = u i v i = v T u = u T v u a v = a v u = a v u = a v u = a u v (2) SS a R defiovaý pomocí regulárí matice A : u v := u T A T A v, apřílad V := R 2 A := 2 u v =u T 2 v = u v 2 u v 2 u 2 v 5 u 2 v 2 (3) SS a prostoru spojitých fucí itegrovatelých a itervalu [a, b ] : b f g = a f x g x dx Nechť V je vetorový prostor se SS Potom orma určeá tímto SS je zobrazeí : V R daé předpisem u = u u Poz: Výzam: u déla vetoru u u v vzdáleost vetorů u a v u v určuje úhel mezi u a v a= u b= v c= u v Na R : u v = u v cos, de je úhel sevřeý vetory u a v Plye z cosiové věty: c 2 = a 2 b 2 2ab cos u v u v = u u v v 2 u v cos u u u v v u u u = u u v v 2 u v cos = 2 u v Cauchy-Schwarzova erovost u, v V : u v Nechť V je vetorový prostor se SS a ormou z ěj odvozeou, potom platí u v Důaz: Je-li u= ebo v= platí a C : ua v a tedy ua v 2 = ua v ua v = u u a v u a u v a a v v Zvolíme a := u v elimiuje posledí dva čley v v v u u v u u v u u v v v u u v v u v 2 u 2 v 2 = u v u v, QED u v 2 BÚNO Důsl: () Nerovost mezi aritmeticým a vadraticým průměrem: u R : Důaz: Zvolíme v=,, T R vůli C u i 2 u i u i = u v u v = u 2 i, QED (2) Norma odvozeá ze SS splňuje trojúhelíovou erovost: uv u v

11 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Důaz: uv = uv uv = u u u v v u v v u 2 2 u v v 2 u 2 2 u v v 2 = u v 2 = u v QED Odboča do aalýzy Obecě je orma ad prostorem zobrazeí V R ) u V : u pozitivost 2) u V : u = u = jedozačost uly 3) u V, a C: a u = a u liearita (?) 4) u, v V : uv u v trojúhelíová erovost Př: jiých orem: L p ormy a R : u p = p stat orma odpovídá p =2 p= u = u i p= u = max u i,, ui p Ortogoalita Dva vetory u a v v prostoru se SS jsou avzájem olmé (začíme u v ), poud platí, že u v = : Každý systém vzájemě olmých vetorů je lieárě ezávislý Důaz sporem: Máme: u,,u : u i u j i j, ale LZ u i = i=2 a i u i u i u j = u a i u i= 2 i = a i u u i = SPOR QED Nechť Z je báze prostoru V se SS taová, že v Z : v = a avíc v, v' Z : v v ' v v' Potom taovou bázi azveme ortoormálí bází prostoru V : Mějme Z ortoormálí bázi prostoru R Pa A= v v A T A=I A je ortogoálí (aalogicy C : A H A = I A je uitárí) Tvrz: Nechť Z=v,, v je ortoormálí báze prostoru V, potom u V : u= u v v u v 2 v 2 u v v Důaz: v,, v je báze, vyjádříme: v = a i v i, chceme uázat: a i = u v i u v i = a j v j= j i v = j= 2 možosti a j v j v i = a i ; možosti: a) <> = pro i j, b) <>= pro i = j Q E D ( ) Pro ortoormálí bázi v,,v a vetor u V se oeficietům u v i říá Fourierovy oeficiety Tvrz: Parsevalova rovost: Je-li Z =v,,v ortogoálí báze prostoru V, potom u, w V : u w = [w] Z H [u] Z Důaz: u = u v i v i ; w = w v i v i u w = u v i v i w v j v j= j = j= u v i w v j v i v j = u v i w v i = [w] H Z [u] Z Q E D Tvrz: Lieárí zobrazeí f :V W mezi prostory s SS se azývá uitárí, poud f zachovává SS u, v V : u v = f u f v Zobrazeí f :V W je uitárí právě dyž pro ormy odvozeé se SS platí: u V : u = f u Důaz: => u = u u = f u f u = f u <= Jao u CS erovosti va w = w =

12 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Uitárí isomorfismus prostorů s SS se azývá ISOMETRIE Nechť V a W jsou prostory s ortogoálími bázemi X=Y, stejé oečé dimeze, potom platí, že f :V W je isometrie právě dyž [ f ] XY je uitárí Nechť W je prostor se SS, V W, a Z =v,, v je ortoormálí báze V Zobrazeí p:w V je defiováo předpisem: pu := u v i v i se azývá ortogoálí projecí prostoru W a V Lemma:Nechť p je ortogoálí projecí W a V, potom u pu v i pro v i Z i v = u v i u v j v j v i = u v i u v i = Q E D Důaz: u pu v i = u u v i Gram-Schmidtova ortogoalizace Vstup: Libovolá váze u,, u prostoru V se SS Výstup: Ortoormálí báze v,, v Algoritmus: pro i:= do opauj { i ) w i := u i j= 2) v i = w i w i j= u i v j v j } Koretost: ) w i v j pro j=i z => w i v j pro i j 2) w i = w i w i = w i w i = 3) spav v i, u i, v i v z lemmatu o výměě Poz, toto je využito ve větě o diagoalizovatelosti hermitovsých matic potřebujeme G-S algoritmus : p(u) je ejbližší bod z u v prostoru V u a = u pu a b a a b b = u pu a b = a b a b = a a a b b a b b a = V Př: pu w Ortogoálí doplě Nechť V je možia vetorů ve vetorovém prostoru W se SS Ortogoálí doplě možiy V je možia: V := {u W : u v v V } Když hledáme řešeí homogeí soustavy, ta hledáme Ax= <=> hledáme r a vůči std SS (4 5 29) : U V U V Důaz: u V u v v V u v v U u U Q E D Nechť V je podprostorem W se SS, potom platí: (a) V je podprostorem W (b) V V ={} Je-li avíc W oečé dimeze: (c) dimv dimv =dimw (d) V = V Důaz: (a) I u, v V, w W : uv w = u w v w = = uv V II u V a u w = a u w = a = a u V I II je podprostorem (b) sporem: dyby u V V, v u V u = spor V Příprava a (c) a (d): Vezmeme ortoormálí bázi X prostoru V a rozšíříme ji a ON bázi Z prostoru W Y =Z X X ={x x } Y ={y y } Cíl: Chceme uázat, že V = spay 2

13 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy ) x i X a y j Y : x i y j y j i x i Y V avíc: w spaw w = w z = j= l l j= l j y j i x i = j = l 2) Libovolé w V vyjádříme jao j= j y j z V : Z = j y j i x i j i y j x i = spay V i x i = w x i = i Z je ON báze V w spay V spay oec přípravy (c) dimv = X ; dimv = Y ; dimw = X Y (d) V = spa Z Y = spa X = V Q E D Tvrz: Pozitivě defiití matice Nechť V prostor se SS a X = y,, y je jeho báze, potom pro matici A defiovaou: a i, j := x i x j platí, že u,v V : u w = [w] H X A [u] X Poz: Je-li X ON báze, je A jedotová Důaz: [u] X =,, u = i x i [w ] X =,, w = i x i u w = i x i j x j = j = j = i j x i x j = [w] X H A [u] X Q E D Jaé vlastosti musí mít A? ) a ij = x j x i = x i x j = a ij A je hermitovsá 2) musí zaručit, že u u = [u] X H A [u] X pro u Užití: Tvrz: Hermitovsá matice A řádu se azývá pozitivě defiití, poud x C { } platí: x H A x V MA vyšetřováí loálích a globálích extrémů fucí více proměých Pro hermitovsou matici A řádu jsou ásledující podmíy evivaletí: a) A je pozitivě defietí b) A má všecha vlastí čísla ladá c) existuje regulárí matice U taová, že A = U H U Důaz: (a=>b) A hermitovsá, vlastí číslo A R, vezmeme vlastí vetor x, aby A x = x (b=>c) (c=>a) x H A x = x H x x H x ze součiu a C: a a A hermitovsá => regulárí R, tž A = R H D R, D diagoálí D: d ij =d ij A = R H D H D R = U H U x H A x = x H U H U x =Ux H Ux U je regulárí ax Pro pozitivě defiití matice existuje jedozačá trojúhelíová matice U s ladými prvy a diagoále taová, že A = U H U, matici U se říá Choleseho rozlad Důaz: algoritmem: Vstup: hermitovsá matice A Výstup: cholesého rozlad, ebo odpověď, že A eí poz defietí Pro i:= do V proveď: { ) U ii := a ii } Q E D = U i U i 2) eí-li u ii R,u ii STOP, A eí pozitivě defietí 3) pro j = (i + ) do u proveď: i { u ij := u ii a ij U i U j } = (předáša 59) Tvrz: Bloová matice A= ah a A je positivě defiití, právě dyž a zároveň A a ah je positivě defiití 3

14 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy Poz, Gaussovou elimiací sloupce pod dostaeme a H a A = H a a ah A C Důaz: Nechť x C,x, začme x= x C x x H A x= x, x H ah a A x x =x x H a, x a H x A H x x = =x x x x H ax a H x x H A x x H a a H x x H a a H x = = = x H A a a H x x x H a x a H x, y y C C protože alespoň a jedé straě bude ostrá erovost, jia by muselo platit zároveň x = x= Položíme =e H A e, e =,,, T Pro libovolé x C zvolíme x := a H x, potom platí: = x H A x= x H A a ah A a ah je positivě defiití, QED Důsl: () Positivě defiití matice lze rozezat Gaussovou elimiací (2) Jacobiho podmía: Hermitovsá matice A řádu je positivě defiití, právě dyž mají matice A,, A ladý determiat, de A i vzie z A umazáím posledích i řádů a sloupců Důaz: Apliujeme předchozí tvrzeí reuretě a převedeme do odstupňovaých tvarů Bilieárí a vadraticé formy Nechť V je vetorový prostor ad K a f je zobrazeí V V K splňující axiomy: u, v, w V : f uv,w= f u,w f v, w 2 u, v V K : f u, v= f u,v 3 u, v, w V : f u,vw= f u, v f u, w 4 u, v V K : f u, v= f u,v Potom se f azývá bilieárí formou V Bilieárí forma je symetricá, platí-li u, v V : f u, v = f v,u Zobrazeí g :V K se azývá vadraticá forma, poud existuje bilieárí forma taová, že u V : g u = f u, u Nechť V je vetorový prostor a X = v,, v je jeho báze, pa matice bilieárí formy f vůči bázi X je B, de platí b i, j = f v i, v j a matice vadraticé formy g je matice symetricé bilieárí formy, terá g vytvořuje, poud taová existuje : b i, j = f v i, v j = 2 g v iv j g v i gv j matice vadraticé formy existuje vždy, je-li K charateristiy 2 : Počítáí s maticemi formy: f u, w =[u ] X T B [w ] X, protože f i gu=[u] X T B [u] X a i v i, j b j v j = i j a i b j [ u] X f v i, v j, [ w] X B Pro bilieárí formu f a K je její aalyticé vyjádřeí polyom f x,, x T, y,, y T = x i y j b i, j j = Podobě aalyticé vyjádřeí vadraticé formy vůči daé bázi Sylvesterův záo o setrvačosti vadraticých forem Nechť V je prostor oečé dimeze ad R a g :V R je vadraticá forma Potom existuje báze X taová, že matice g vůči X je diagoálí a prvy a diagoále jsou, - ebo, avíc počet, -, ezávisí a X a je pro všechy vhodé báze stejý (předáša 859) Důaz: (a) existece Zvolíme libovolou bázi Y, sestavíme matici B ' formy g vůči Y Víme, že B ' je reálá symetricá Platí, že aždá symetricá matice A má vlastí čísla reálá a existuje ortogoálí matice R, že A=R D R (záme v hermitovsé verzi) Tedy existuje R, že R B ' R=R T B ' R= D ' Víme, že pro B matici g vůči X a B ' vůči Y platí B=[id ] T XY B ' [id ] XY Zvolíme B, S diagoálí matice, že: d i,i b i,i =, s i, i =d i,i 4

15 Li algebra determiaty, polyomy, vlast čísla a vetory, charateristicý mohočle, salárí souči, posdef matice, bilieárí a vadraticé formy d i,i b i,i =, s i,i = d i,i d i,i = b i,i =, s i,i = d i, i d i,i d i, i d i i, S T B S Čili platí R T B ' R= S T B S, S, R regulárí i,i =d d i,i D= D T B=S T R T B ' R S, čili pro bázi X: [id ] XY =R S platí, že matice B formy g vůči X je diagoálí a dle zěí věty (, -, ) Poz, sloupce [id ] XY jsou tvořey souřadicemi vetorů hledaé báze X vůči bázi Y (b) jedozačost: Začeí: g :V R, X =v,, v,y =w,, w dvě báze taové, že matice formy g vůči X, Y jsou B, B' diagoálí ve tvaru (odlišé je délou úseů) Pozorováí: # v B= ra B = B =R T B ' R ra B '= # v B' Zbývá již je hraice /- Ozačme '=ra B =# # Aalyticé vyjádřeí formy g je g u= x 2 x 2 2 x 2 2 r x r x 2 ', de [u] X = x,,x T, r=# v B y 2 y 2 2 y 2 2 s y s y 2 ', de [u] Y = y,, y T, s=# v B' Pro spor ať r s Zvolíme etriviálí z L{v,,v } r L{w s,,w } L dim L =r, dim L 2 = s Víme, že pro U, V platí L 2, dimu dimv =dimlu V dimlu V z L{v,, v r } {} pro [z ] X = x,, x r T je alespoň jedo z x,, x r a zároveň x r,,x = g z z L{w s,,w } {} pro [z ] Y = y s,, y T je alespoň jedo z y s,, y ; y,, y s =, čili = g z = y y s y s y 2 ', SPOR QED Vetoru #,#, # se říá sigatura formy, respetive sigatura symetricé matice, a příslušá báze se azývá polárí báze Úloha: Na závěr, oli lze v R d alézt ejvíce příme, aby aždé dvě svíraly stejý úhel? (poud ědo chce, abych přepsal i tuto úlohu, echť se mi ozve) 5

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Kapitola 4 Euklidovské prostory

Kapitola 4 Euklidovské prostory Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Kombinatorika a grafy I

Kombinatorika a grafy I Kombiatoria a grafy I Asymptoticá otace, ČUM, PIE, Vytvořující fuce, Bi stromy, SRR, KPR, Bloová schémata, Toy v sítích, Ramsey Kombiatoria a grafy I láta z II semestru iformatiy MFF UK podle předáše Odřeje

Více

Kapitola 5 - Matice (nad tělesem)

Kapitola 5 - Matice (nad tělesem) Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

1. Přirozená topologie v R n

1. Přirozená topologie v R n MATEMATICKÁ ANALÝZA III předášy M Krupy Zií seestr 999/ Přirozeá topologie v R V prví části tohoto tetu zavádíe přirozeou topologii a ožiě R ejprve jao topologii orovaého prostoru a pa jao topologii součiu

Více

Iterační metody řešení soustav lineárních rovnic

Iterační metody řešení soustav lineárních rovnic Iteračí metody řešeí soustav lieárích rovic Matice je: diagoálě domiatí právě tehdy, když pozitivě defiití (symetrická matice) právě tehdy, když pro x platí x, Ax a ij Tyto vlastosti budou důležité pro

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

20. Eukleidovský prostor

20. Eukleidovský prostor 20 Eukleidovský prostor V této kapitole budeme pokračovat ve studiu dalších vlastostí afiích prostorů avšak s tím rozdílem že místo obecého vektorového prostoru budeme uvažovat prostor uitárí Proto bude

Více

Matematika I, část II

Matematika I, část II 1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být

Více

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12

definované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12 Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

2 Diferenciální počet funkcí více reálných proměnných

2 Diferenciální počet funkcí více reálných proměnných - 6 - Difereciálí počet fucí více proměých Difereciálí počet fucí více reálých proměých 1 Spoitost, limity a parciálí derivace Fuce více reálých proměých Defiice Pod reálou fucí reálých proměých rozumíme

Více

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina

Lineární algebra I. látka z. I. semestru informatiky MFF UK. Obsah. Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina 1 Lineární algebra I látka z I semestru informatiky MFF UK Zpracovali: Ondřej Keddie Profant, Jan Zaantar Štětina Obsah Matice2 Grupy4 Grupa permutací4 Znaménko, inverze a transpozice grup5 Podgrupy5 Tělesa6

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

GEOMETRIE I. Pavel Burda

GEOMETRIE I. Pavel Burda GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor

Více

n-rozměrné normální rozdělení pravděpodobnosti

n-rozměrné normální rozdělení pravděpodobnosti -rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici

Více

Přednáška 7: Soustavy lineárních rovnic

Přednáška 7: Soustavy lineárních rovnic Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

NEPARAMETRICKÉ METODY

NEPARAMETRICKÉ METODY NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

Diskrétní Fourierova transformace

Diskrétní Fourierova transformace Disrétí Fourierova trasformace Záladí idea trasformace x Trasformace Zpracováí v časové oblasti Zpracováí v trasform. oblasti x Iverzí Trasformace Spojitá Fourierova trasformace f j πft x t e dt Disrétí

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1 3. cvičeí Přílady. (a) (b) (c) ( ) ( 3 ) = Otestujeme itu 3 = 3 = = 0. Je vidět, že posloupost je elesající, tedy z Leibize řada overguje, ( ) Řada overguje podle Leibizova ritéria, ebot je zjevě erostoucí.

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008

Lineární algebra II. Adam Liška. 9. února 2015. Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak. rok 2007/2008 Lineární algebra II Zápisky z přednášek Jiřího Fialy na MFF UK, letní semestr, ak rok 2007/2008 Adam Liška 9 února 2015 http://kammffcunicz/~fiala http://wwwadliskacom 1 Obsah 10 Permutace 3 11 Determinant

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019 Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f

Více

66. ročník matematické olympiády III. kolo kategorie A. Liberec, března 2017

66. ročník matematické olympiády III. kolo kategorie A. Liberec, března 2017 66. ročí matematicé olympiády III. olo ategorie A Liberec, 26. 29. březa 2017 MO 1. Na hromádce leží 100 očíslovaých diamatů, z ichž 50 je pravých a 50 falešých. Pozvali jsme svérázého zalce, terý jediý

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více

= + nazýváme tečnou ke grafu funkce f

= + nazýváme tečnou ke grafu funkce f D E R I V A C E F U N KCE Deiice. (derivace Buď ukce,!. Eistuje-li limitu derivací ukce v bodě a začíme ji (. lim ( + lim Deiice. (teča a ormála Přímku o rovici y ( v bodě, přímku o rovici y ( (, kde (

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru

PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické

S polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické 5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí

Více

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n

Regrese. Aproximace metodou nejmenších čtverců ( ) 1 ( ) v n. v i. v 1. v 2. y i. y n. y 1 y 2. x 1 x 2 x i. x n Regrese Aproxmace metodou ejmeších čtverců v v ( ) = f x v v x x x x Je dáo bodů [x, ], =,,, předpoládáme závslost a x a chceme ajít fuc, terá vsthuje teto tred - Sažíme se proložt fuc = f x ta, ab v =

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku Cvičeí z ieárí agebry 4 Vít Vodrák Cvičeí č Determiat a vastosti determiatů Výpočet determiat djgovaá a iverzí matice Cramerovo pravido Determiat Defiice: Nechť je reáá čtvercová matice řád Čtvercovo matici,

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

1.2. NORMA A SKALÁRNÍ SOUČIN

1.2. NORMA A SKALÁRNÍ SOUČIN 2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace: . cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:

Užitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové: Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D.

3. část: Teorie hromadné obsluhy. Ing. Michal Dorda, Ph.D. 3. část: Teorie hromadé obsluhy Ig. Michal Dorda, h.d. Zálady teorie pravděpodobosti Náhodý pous je děj, jehož výslede eí ai při dodržeí všech předepsaých podmíe předem zám. Náhodý jev je výsledem áhodého

Více

množina všech reálných čísel

množina všech reálných čísel /6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor.

5 PŘEDNÁŠKA 5: Jednorozměrný a třírozměrný harmonický oscilátor. 5 PŘEDNÁŠKA 5: Jedorozměrý a třírozměrý harmoický oscilátor. Půjde o spektrum harmoického oscilátoru emá to ic společého se spektrem atomu ebo se spektrálími čarami atomu. Liší se to právě poteciálem!

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Důkazy Ackermannova vzorce

Důkazy Ackermannova vzorce Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem

Více

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.

SPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem restart. To oceníme při opakovaném použití dokumentu. SPOTŘEBITELSKÝ ÚVĚR Úloha 3 - Fiacováí stavebích úprav Rozhodli jsme se pro stavebí úpravy v bytě. Po zhotoveí rozpočt a tyto úpravy jsme zjistili, že ám chybí ještě 30 000,-Kč. Máme možost si tto část

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N? 1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí

Více

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost

je číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet

Více

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze

procesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a) fx) x 5x+4 4 x b) fx) x x +4x+ c) fx) 3x 9x+ x +6x 0 d) fx) x 7x+0 4 x. Řešeí a) Nulové body čitatele a jmeovatele

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více