Výslednice, rovnováha silové soustavy.

Rozměr: px
Začít zobrazení ze stránky:

Download "Výslednice, rovnováha silové soustavy."

Transkript

1 Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky : Seznámt studenty s úlohou výslednce a ovnováhy sl.

2 Základy mechanky, 2. přednáška Slová soustava je soustava dvou nebo více sl. O způsobu stanovení výslednce slové soustavy jž pojednávala předcházející kaptola. Tuto poblematku je však třeba doplnt, potože má ještě jeden, zatím nezmíněný aspekt. Ekvvalentní nahazení slové soustavy - výslednce. Jž v předcházejícím textu jsme používal temín výslednce. Defnujme jej : Výslednce slové soustavy je taková síla, kteá ekvvalentně nahazuje slovou soustavu. Výslednce slové soustavy má stejné účnky jako slová soustava. Zdůazněme na tomto místě, že účnky síly nebo slové soustavy jsou dvojí - slový a momentový. V předcházející kaptole jsme podobně popsal způsob, jak učíme velkost a smě výslednce. Takto stanovená výslednce má stejný slový účnek, jako samotná slová soustava. Zatím jsme se však nezmínl o momentovém účnku. Jak jsme ukázal v předchozí kaptole, momentový účnek souvsí s působštěm síly. Vyvstává tedy otázka působště výslednce slové soustavy. V předchozí kaptole, př výkladu o zjšťování výslednce, jsme uvažoval soustavu sl, jež všechny působly v jednom bodě - ve společném působšt Zde je řešení otázky působště výslednce zřejmé - výslednce samozřejmě působí ve stejném bodě, ve kteém působí všechny síly slové soustavy.

3 Základy mechanky, 2. přednáška Působí-l však síly na těleso o učtých, nezanedbatelných ozměech, nemusí všechny síly nutně působt ve stejném bodě. 1 2 V tomto případě je jž otázka působště výslednce aktuální. Výslednc tedy můžeme defnovat takto : 3 4 Výslednce slové soustavy je síla,kteá má stejný slový účnek a stejný momentový účnek jako slová soustava,kteou nahazuje. Poznámka : Dvě síly lze vždy považovat za slovou soustavu se společným působštěm. V předchozí kaptole jsme fomuloval a vysvětll tez, že síla je volná po své nostelce. Dvě síly s lbovolným působštěm můžeme vždy posunout do půsečíku nostelek tak, že tvoří soustavu se společným působštěm. 2 1

4 Základy mechanky, 2. přednáška Po danou slovou soustavu tedy umíme učt její výslednc, jak velkost, tak smě. Je však třeba učt též působště této výslednce, esp. její nostelku. V? 1 2 V? 3 4 V? V ve kteém bodě je působště výslednce? Nostelku výslednce učíme z podmínky stejného momentového účnku. Postupujeme tak, že nejpve vypočteme celkový momentový účnek slové soustavy ke zvolenému momentovému bodu. Výslednce pak musí ležet na takové nostelce, aby její moment k tomuto zvolenému momentovému bodu byl stejný.

5 Základy mechanky, 2. přednáška Vaťme se na chvíl k momentu síly k bodu. V předchozí kaptole jsme ukázal, že moment síly k bodu vypočteme jako součn síly a jejího amene. y y p y y p? ameno síly y y φ y p x p x p působště síly φ x x p x ameno síly x x Učt délku amene síly se někdy může ukázat jako poněkud komplkované, zejména je-l působště síly dáno pavoúhlým souřadncem x p a y p. Jný způsob učení momentu síly k bodu (v tomto případě k počátku souřadného systému), je následující : - Nejpve sílu ozložíme na složky x a y (což stejně musíme udělat za účelem zjštění výslednce; je to úkon, kteý využjeme dvakát). -Vypočteme moment těchto dvou složek (to je obvykle jednoduché, je-l působště zadáno pavoúhlým souřadncem). - Výsledný moment síly učíme jako součet momentů obou složek x a y. p p ( x sn φ y φ) x y sn φ x cos φ y cos p p

6 Základy mechanky, 2. přednáška Postup učení nostelky výslednce demonstujeme na příkladu. 3 y 2 1 y p1 φ 1 4 x p1 x Je-l výsledný momentový účnek slové soustavy V V 7,984 N cm, je ameno výslednce V / V 7,984/2,942,716 cm. Nostelka výslednce je tedy přímka, skloněná od osy x o 116º (26º od osy y), ležící v kolmé vzdálenost 2,716 cm od počátku souřadného systému. Potože síla je volná po své nostelce, exstuje nekonečně mnoho přípustných působšť, jež ale všechna musí ležet na této nostelce; např. : {3,022; 0} nebo {2,441; 1,191} nebo {1,227; 3,679} nebo {0; 6,196} nebo... φ x p y p x cos φ y sn φ y x p - x y p [N] [º] [cm] [cm] [N] [N] [N cm] y º 3 1 1,368 3,759 9,908 V º ,985 0,174-3, º ,928-2,298 2, º ,732 1,000-1,464 φ V x Σ 2,94 116º -1,307 2,635 7,984

7 Základy mechanky, 2. přednáška Závěem konstatujme, že poblém stanovení výslednce slové soustavy nás vede k tomu, že ozlšujeme dva typy slových soustav : - slová soustava se společným působštěm, - slová soustava s ůzným působšt. V předchozím textu jsme fomuloval jednu za základních úloh statky - Ekvvalentní nahazení slové soustavy jednou slou - výsledncí, a popsal její řešení. V pax se však často setkáváme s dalším typem poblému. Rovnováha slové soustavy Jde o poněkud odlšnou úlohu, než úloha výslednce, má však společné ysy. Slová soustava je v ovnováze jestlže má nulové účnky. Souvslost s úlohou výslednce je zřejmá. Jestlže je slová soustava v ovnováze, má nulovou výslednc. Jak však ukážeme dále, toto je nutná, nkolv však postačující podmínka. Jestlže slová soustava má nulovou výslednc, neznamená to automatcky, že je v ovnováze. (V pvní přednášce je popsána slová dvojce. Jde o slovou soustavu, jejíž výslednce je nulová, jež však má nenulový momentový účnek, není tedy v ovnováze.)

8 Základy mechanky, 2. přednáška Z vyšetřování výslednce slové soustavy se společným působštěm je zřejmé, že má-l být výslednce nulová, musí být nulový součet složek všech sl do dvou, k sobě kolmých směů (obvykle označovaných x a y). x y Po slovou soustavu se společným působštěm jsou tyto dvě slové ovnce plně dostačující, aby jednoznačně pokázaly ovnováhu slové soustavy. Po vyjádření ovnováhy slové soustavy s ůzným působšt je třeba ještě doplnt momentovou ovnc, vyjadřující nulový momentový účnek slové soustavy k lbovolnému momentovému bodu. Potože tyto (posledně uvedené) ovnce vyjadřují ovnováhu slové soustavy, říká se jm ovnce ovnováhy

9 Základy mechanky, 2. přednáška Úloha ekvvalentního nahazení a úloha ovnováhy spolu úzce souvsí, tvořídvě stany téže mnce. Je-l výslednce slové soustavy vysl řešením úlohy ekvvalentního nahazení... 3 výsl 2 výsl... a ovnovážná síla ovn řešením úlohy ovnováhy slové soustavy (uvádí slovou soustavu do ovnováhy) ovn 1 výsl... pak evdentně platí : ovn výsl 1 Tedy výslednce slové soustavy vysl má stejnou velkost, stejný smě a opačnou oentac, než ovnovážná síla ovn, uvádějící slovou soustavu do ovnováhy. Tuto skutečnost můžeme využívat př řešení úlohy výslednce. áme-l řešt úlohu výslednce, vyřešíme úlohu ovnováhy (ovnce ovnováhy) a změníme oentac výsledku.

10 Postoová slová soustava Základy mechanky, 2. přednáška Veškeý předchozí výklad se týkal ovnných slových soustav, t.j. takových, kdy všechny síly (jejch vektoy) leží v jedné ovně. Síly však mohou tvořt ovněž postoovou slovou soustavu (k souřadným osám x a y pak přdáváme osu z). I v tomto případě se může jednat o soustavu sl se společným působštěm nebo s ůzným působšt. y y x x z Je zřejmé, že každá síla má v tomto případě tř složky - x, y a z. Je však třeba zdůaznt, že moment síly (jedná se však o moment síly k ose, nkolv k bodu) je vekto o třech složkách x, y a z, (momenty síly k osám x, y a z). Poznámka : Toto platí u ovnné slové soustavy. Osa, k níž moment počítáme, je osa z katézského souřadného systému a do ovny x-y se pomítá jako bod, poto v tomto případě obvykle hovoříme o momentu síly k bodu. Vekto momentu pak má vždy smě osy z, tedy kolmý k ovně x-y. Poto se u ovnných slových soustav vektoový chaakte momentu nezdůazňuje. Po paktcké řešení je podstatná velkost momentu (vyjádřená v N m) a jeho oentace (ve směu nebo pot směu hodnových učček). z

11 Základy mechanky, 2. přednáška Výsledný slový účnek slové soustavy je pak dán výsledncí v, výsledný momentový účnek je dán výsledným momentem v. Vx Vy Vz x y z Rovnováha postoové slové soustavy se společným působštěm je popsána třem slovým ovncem ovnováhy, ovnováha postoové slové soustavy s ůzným působšt je popsána šest ovncem ovnováhy - třem slovým a třem momentovým. x y z Vx Vy Vz x y z x y z

12 Základy mechanky, 2. přednáška Shňme tedy ozdělení slových soustav a jejch chaaktestky. Slové soustavy se dělí podle dvou ktéí (hledsek). - Slové soustavy ovnné a postoové, - slové soustavy se společným působštěm a s ůzným působšt. Počet ovnc ovnováhy je v každém případě jný. slová soustava se společným působštěm s ůzným působštěm ovnná postoová 2. ovnce ovnováhy 3. ovnce ovnováhy x y x y z 3. ovnce ovnováhy x y 6. ovnc ovnováhy x y z x y z

13 Základy mechanky, 2. přednáška Závěečná poznámka : Rovnc ovnováhy lze samozřejmě sestavt lbovolný počet - součet složek sl do ůzných směů, součet momentů k ůzným momentovým bodům (osám). Všechny další ovnce, sestavené navíc k základním ovncím (uvedeným v tabulce), jsou však jž jen jejch lneání kombnací, a tedy jsou nepoužtelné po řešení neznámých. Po výpočtové řešení, jak bude popsáno a vysvětleno v dalších kaptolách, lze použít pouze a jen ten počet ovnc ovnováhy, uvedený v tabulce. Zde uvedená posloupnost čísel , v kontextu s uvedeným tříděním, je po mechanku důležtá a setkáme se s ní znovu v úplně jných souvslostech v knematce. V tomto učebním textu se až na výjmky budeme zabývat pouze ovnným slovým soustavam.

14 Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

Statika soustavy těles v rovině

Statika soustavy těles v rovině Statka soustavy těles v rovně Zpracoval: Ing. Mroslav yrtus, Ph.. U mechancké soustavy s deálním knematckým dvojcem znázorněné na obrázku určete: počet stupňů volnost početně všechny reakce a moment M

Více

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů

Hlavní body. Úvod do dynamiky. Dynamika translačních pohybů Dynamika rotačních pohybů Mechanka dynaka Hlavní body Úvod do dynaky. Dynaka tanslačních pohybů Dynaka otačních pohybů Úvod do dynaky Mechanka by byla neúplná, kdyby se nezabývala, důvody poč se tělesa dávají do pohybu, zychlují,

Více

Základní pojmy Přímková a rovinná soustava sil

Základní pojmy Přímková a rovinná soustava sil Stavební statka, 1.ročník bakalářského studa Základní pojmy římková a rovnná soustava sl Základní pojmy římková soustava sl ovnný svaek sl Statcký moment síly k bodu a dvojce sl v rovně Obecná rovnná soustava

Více

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2

Q N v místě r. Zobecnění Coulombova zákona Q 3 Q 4 Q 1 Q 2 Zobecnění Coulombova zákona Uvažme nyní, jaké elektostatcké pole vytvoří ne jeden centální) bodový náboj, ale více nábojů, tzv. soustava bodových) nábojů : echť je náboj v místě v místě.... v místě Pak

Více

MECHANIKA I. Jaromír Švígler

MECHANIKA I. Jaromír Švígler MECHNIK I Jaomí Švígle OBSH Předmluva Rozdělení a základní pojm mechank 4 Statka Základní pojm a aom statk Síla Moment síl k bodu a k ose Slová dvojce Základní věta statk Páce a výkon síl a momentu 5 Slové

Více

1.7.2 Moment síly vzhledem k ose otáčení

1.7.2 Moment síly vzhledem k ose otáčení .7. oment síly vzhledem k ose otáčení Předpoklady 70 Pedagogická poznámka Situaci tochu komplikuje skutečnost, že žáci si ze základní školy pamatují součin a mají pocit, že se pouze opakuje notoicky známá

Více

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy

4/3.3. bodem v rovině (tvoří rovinný svazek sil), jsou vždy. rovnice z-ová. Pro rovnováhu takové soustavy STROJNICKÁ PŘÍRUČKA čá s t 4, d íl 3, k a p to la 3, str. 1 díl 3, Statka 4/3.3 ROVNOVÁHA TĚLESA Procházejí-l po uvolnění tělesa všechny síly jedním bodem v rovně (tvoří rovnný svazek sl), jsou vždy splněny

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

MECHANIKA I. Jaromír Švígler

MECHANIKA I. Jaromír Švígler MECHNIK I Jaomí Švígle OBSH Pedmluva Rozdlení a základní pojm mechank 4 Statka Základní pojm a aom statk Síla Moment síl k bodu a k ose Slová dvojce Základní vta statk Páce a výkon síl a momentu 5 Slové

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla

KOMPLEXNÍ ČÍSLA. Algebraický tvar komplexního čísla KOMPLEXNÍ ČÍSLA Příklad 1 Řešte na množně reálných čísel rovnc: x + = 0. x = Rovnce nemá v R řešení. Taková jednoduchá rovnce a nemá na množně reálných čísel žádné řešení! Co s tím? Zavedeme tzv. magnární

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

Soustava hmotných bodů

Soustava hmotných bodů Soustava hmotných bodů Těleso soustava hmotných bodů Tuhé těleso - pevný předmět jehož rozměr se nemění každé těleso se skládá z mnoha částc síla působící na -tou částc výsledná síla působící na předmět

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil STAVEBNÍ STATIKA Ing. Lenka Lausová LH 47/1 tel. 59 73 136 římková a ovinná soustava sil lenka.lausova@vsb.c http://fast1.vsb.c/lausova Základní pojmy: Jednotková kužnice 1) Souřadný systém 1 sin potilehlá

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice 9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

Moment síly, spojité zatížení

Moment síly, spojité zatížení oment síly, spojité zatížení Pet Šidlof TECHNICKÁ UNIVERZITA V LIBERCI akulta mechatoniky, infomatiky a mezioboových studií Tento mateiál vznikl v ámci pojektu ES CZ.1.07/2.2.00/07.0247 Reflexe požadavků

Více

KOMPLEXNÍ ČÍSLA (druhá část)

KOMPLEXNÍ ČÍSLA (druhá část) KOMPLEXNÍ ČÍSLA (druhá část) V první kaptole jsme se senáml s algebrackým tvarem komplexního čísla. Některé výpočty s komplexním čísly je však lépe provádět ve tvaru gonometrckém. Pon. V následujícím textu

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo

u (x i ) U i 1 2U i +U i+1 h 2. Na hranicích oblasti jsou uzlové hodnoty dány okrajovými podmínkami bud přímo Metoda sítí základní schémata h... krok sítě ve směru x, tj. h = x x q... krok sítě ve směru y, tj. q = y j y j τ... krok ve směru t, tj. τ = j... hodnota přblžného řešení v uzlu (x,y j ) (Possonova rovnce)

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil

rovinná soustava sil (paprsky všech sil soustavy leží v jedné rovině) rovinný svazek sil rovinná soustava rovnoběžných sil 3.3 Obecé soustav sl soustava sl seskupeí sl působících a těleso vláští případ: svaek sl (papsk všech sl soustav se potíaí v edo bodě) soustava ovoběžých sl (papsk všech sl soustav sou aváe ovoběžé) ová

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SR 1 Pavel Padevět ITŘÍ SÍY PRUTU ITŘÍ SÍY PRUTU Put (nosník) konstukční vek u něhož délka načně řevládá nad dalšími dvěma oměy. Při řešení tyto vky modelujeme jejich střednicí čáou tvořenou sojnicí těžišť

Více

DYNAMIKA BODU. kterou nazýváme setrvačnou silou. Pohybovou rovnici (2) pomocí ní přepíšeme na

DYNAMIKA BODU. kterou nazýváme setrvačnou silou. Pohybovou rovnici (2) pomocí ní přepíšeme na DYNMIK BODU POHYBOVÉ OVNIC Ze kušenost je námo že tělesa (bod) jsou schon uvádět do ohbu nebo měnt jejch ohbový stav na ně ůsobí (statcké) slové účnk. Kvantfkací tohoto stavu je Newtonův nc síl (. nc klascké

Více

eská zem d lská univerzita v Praze, Technická fakulta

eská zem d lská univerzita v Praze, Technická fakulta eská zemdlská unvezta v Paze, Techncká fakulta 9. lektcké pole 9. lektcký náboj Každá látka je vytvoena z tzv. elementáních ástc, kteé vytváejí složtjší stuktuy. ástce na sebe vzájemn psobí slam, kteé

Více

I. MECHANIKA 4. Soustava hmotných bodů II

I. MECHANIKA 4. Soustava hmotných bodů II I. CHIK 4. Soustaa hmotných bodů II 1 Obsah Spojté ozložení hmotnost. Počet stupňů olnost. Knematka tuhého tělesa. Zjednodušení popsu otace kolem osy a peného bodu. Chaslesoa ěta. Dynamka tuhého tělesa.

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru

Zobrazení kružnice v pravoúhlé axonometrii. osy, která je normálou roviny dané kružnice; délka hlavní poloosy je rovna poloměru Geometie Zoazovací metody Zoazení kužnice v pavoúhlé axonometii Zoazení kužnice ležící v souřadnicové ovině Výklad v pavoúhlé axonometii lze poměně snadno sestojit půmět kužnice dané středem a poloměem,

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

M - Kvadratické rovnice a kvadratické nerovnice

M - Kvadratické rovnice a kvadratické nerovnice M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto:

Nejprve určíme posouvající sílu. Pokud postupujeme zprava, zjistíme, že zde nepůsobí žádné silové účinky, píšeme proto: Řešte daný nosník: a,m, b,m, c,m, F = 5kN, kn bychom nal kompletně slové účnky působící na nosník, nejprve vyšetříme reakce v uloženích. Reakc určíme například momentové podmínky rovnováhy k bodu. Fb =

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta strojní DIPLOMOVÁ PRÁCE. Matematický model kinematiky robotizovaného podvozku se šestnácti stupni volnosti

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta strojní DIPLOMOVÁ PRÁCE. Matematický model kinematiky robotizovaného podvozku se šestnácti stupni volnosti ECHNICKÁ UNIVERZIA V IERCI Fakulta stojní DIPOMOVÁ PRÁCE Matematcký model knematk obotovaného podvoku se šestnáct stupn volnost Mathematcal Model of Roboted Chasss Knematcs wth Steen Degees of Feedom 7

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém

Stavební statika. Cvičení 1 Přímková a rovinná soustava sil. Goniometrické funkce. Přímková a rovinná soustava sil. 1) Souřadný systém Vysoká škola báňskb ská Technická univeita Ostava Stavební statika Cvičení 1 římková a ovinná soustava sil římková soustava sil ovinný svaek sil Statický moment síly k bodu a dvojice sil v ovině Obecná

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První

Numerická matematika 1. t = D u. x 2 (1) tato rovnice určuje chování funkce u(t, x), která závisí na dvou proměnných. První Numercká matematka 1 Parabolcké rovnce Budeme se zabývat rovncí t = D u x (1) tato rovnce určuje chování funkce u(t, x), která závsí na dvou proměnných. První proměnná t mívá význam času, druhá x bývá

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohybová rovnice. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohybová rovnce Prof. RNDr. Vlém Mádr, CSc. Prof. Ing. Lbor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

8a.Objektové metody viditelnosti. Robertsův algoritmus

8a.Objektové metody viditelnosti. Robertsův algoritmus 8a. OBJEKOVÉ MEODY VIDIELNOSI Cíl Po prostudování této kaptoly budete znát metody vdtelnost 3D objektů na základě prostorových vlastností těchto objektů tvořt algortmy pro určování vdtelnost hran a stěn

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

6. ANALYTICKÁ GEOMETRIE

6. ANALYTICKÁ GEOMETRIE Vektorová algebra 6. ANALYTICKÁ GEOMETRIE Pravoúhlé souřadnice bodu v prostoru Poloha bodu v prostoru je vzhledem ke třem osám k sobě kolmým určena třemi souřadnicemi, které tvoří uspořádanou trojici reálných

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Momenty setrvačnosti a deviační momenty

Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty Momenty setrvačnosti a deviační momenty charakterizují spolu shmotností a statickými momenty hmoty rozložení hmotnosti tělesa vprostoru. Jako takové se proto vyskytují

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

F - Mechanika tuhého tělesa

F - Mechanika tuhého tělesa F - Mechanika tuhého tělesa Učební text pro studenty dálkového studia a shrnující text pro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 24 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písemnou práci z chemie psalo všech 28 žáků ze

Více

Analytická geometrie kvadratických útvarů v rovině

Analytická geometrie kvadratických útvarů v rovině Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme

Více

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás.

1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. Příklady: 30. Magnetické pole elektrického proudu 1. Dva dlouhé přímé rovnoběžné vodiče vzdálené od sebe 0,75 cm leží kolmo k rovine obrázku 1. Vodičem 1 protéká proud o velikosti 6,5A směrem od nás. a)

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

1 Řešení soustav lineárních rovnic

1 Řešení soustav lineárních rovnic 1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

Otáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení

Otáčení a posunutí. posunutí (translace) otočení (rotace) všechny body tělesa se pohybují po kružnicích okolo osy otáčení Otáčení a posunutí posunutí (translace) všechny body tělesa se pohybují po rovnoběžných trajektorích otočení (rotace) všechny body tělesa se pohybují po kružncích okolo osy otáčení Analoge otáčení a posunutí

Více

6 Samodružné body a směry afinity

6 Samodružné body a směry afinity 6 Samodružné body a směry afinity Samodružnými body a směry zobrazení rozumíme body a směry, které se v zobrazují samy na sebe. Například otočení R(S má jediný samodružný bod, střed S, anemá žádný samodružný

Více

3.2.2 Shodnost trojúhelníků II

3.2.2 Shodnost trojúhelníků II 3.. hodnost tojúhelníků II Předpoklady: 30 Pokud mají tojúhelníky speiální vlastnosti, mohou se věty o shodnosti zjednodušit Př. : Zfomuluj věty o shodnosti: a) ovnoamennýh tojúhelníků b) ovnostannýh tojúhelníků

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět MR 1 Pvel Pdevět PŘÍHRADOVÉ KONTRUKCE REAKCE A VNITŘNÍ ÍLY PŘÍHRADOVÉ KONTRUKCE jsou prutové soustvy s kloubovým vzbm. Příhrdová konstrukce je tvořen z přímých prutů nvzájem spojených ve styčnících kloubovým

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD

MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD XV. konference absolventů studa technckého znalectví s meznárodní účastí MOŽNOSTI MODELOVÁNÍ A ŘEŠENÍ STŘETU PŘI OBJASŇOVÁNÍ FINGOVANÝCH DOPRAVNÍCH NEHOD Zdeněk Mrázek 1 1. Ř ešení stř etu u fngovaných

Více

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný

Více