INVARIANTNÍ ROZDĚLENÍ ČÁSTICOVÝCH SYSTÉMŮ

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "INVARIANTNÍ ROZDĚLENÍ ČÁSTICOVÝCH SYSTÉMŮ"

Transkript

1 ROBUST 2002, c JČMF 2002 INVARIANTNÍ ROZDĚLENÍ ČÁSTICOVÝCH SYSTÉMŮ LUCIE FAJFROVÁ Abstract. In the paper we consider interacting particle system that have zero range interactions. It means we have special Markov process with uncountable state space where one state is configuration of particles on sites and interactions can occur just among particles at the same site. The natural questionareinvariantmeasuresofthismarkovprocess.wecanfindsomeofthem andinspecialcaseswecanfindjustsetofextremalinvariantmeasures.we deal with a characterization of the invariant measures in several examples. Rez me. V statьe izuqaets sistema vzaimode stvih qastic u kotoro estь specialьnye nulь-oblastnye vzaimode stva. Зto znaqitь qto u nas specialьny Markovski process s nesqetnym mnoжestvem sosto ni, gde зlement зtogo mnoжestva estь konfiguracia qastic na poloжeni h, i qasticy mogut vzaimno vli atь na seb tolьko kogda ony na tot жe samom poloжenii. Interesno vl ets problemma invariantnyh mer зtogo processa Markova. Nam bozmoжno na ti nekotorye iz nih i vo specialьnom sluqae mnoжestvo vseh зkstremalьnyh invariantnyh mer. My izuqaem harakterizaci invariantnyh mer v neskolьko primerah. 1. Definice Buď XPolskýprostoropatřenýBorelovskou σ-algebrou.označme Dprostor cadlag funkcí: D= {ϕ: R + Xzpravaspojitáaexistujívlastnílimityzlevavkaždémbodě} se σ-algebrou F, kterou definujeme jako nejmenší σ-algebru, při níž jsou měřitelné projekce π t : D X, ϕ ϕ(t), t 0.Označme(F t : t 0)soubor σ-algeber dočasu t,tzn. F t := σ(π s : 0 s t). Kanonický Markovský proces se stavy v množině X definujeme jako Markovské jádro ( P η : η X ),kde P η jsoupravděpodobnostnímíryna(d, F),jejichž projekcedočasu t=0jsoudirakovymírysoustředěnév η aoznačíme-liprokaždé η X a s 0 P η ( F s )podmíněnoupravděpodobnost odvozenouodpravděpodobnosti P η ( ),tzn. C Fje P η (C F s )náhodnáveličina na(d, F, P η )splňující P η (C B s )= P η (C F s )(ϕ) dp η (ϕ) B s F s, B s potom P η ( F s )měřímnožinu {ψ D:ψ(s+ ) A}stejně,ažnamnožinu nulovémíry P η,jakomíra P ϕ(s) množinu A. 1991MathematicsSubjectClassification. Primary82C22;Secondary60K35,37L40. Klíčová slova. Particle system, Markov process, invariant measure. Tato práce je podporována grantem GAČR 201/00/1149 a MSM

2 108 Lucie Fajfrová Definice: Soubor ( P η : η X ) pravděpodobnostníchměrna(d, F)nazveme kanonický Markovský proces se stavy v X, jestliže 1.zobrazení η P η (A) X [0,1] jeměřitelné A F 2. P η( ϕ(0)=η ) =1 3.(Markovskávlastnost) P η( ψ(s+ ) A F s ) (ϕ)=p ϕ(s) (A)pro P η -s.v. ϕ D. Poznámka 1.1. Podívejme se, že pro spočetnou množinu stavů X je tato definice konzistentní s definicíhomogenníhomarkovskéhořetězce(φ t : t 0),kterouznámevetvaru: t 0, 0 u 1... u n splatí (1) P(Φ s+t = γ Φ s = δ,φ un = δ n,...,φ u1 = δ 1,Φ 0 = η)=p(φ t = γ Φ 0 = δ). Buď X spočetná diskrétní. Vlastnost 1. je nyní splněna vždy a vlastnost 3. lze z definice podmíněné pravděpodobnosti vyjádřit jako: P η( {ψ(s+ ) A} B s ) = B s P ϕ(s) (A) P η (dϕ) B s F s, Zřejměstačíuvažovat B s = {φ:φ(s)=δ, φ(u n )=δ n,...,φ(u 1 )=δ 1 },neboť tytomnožinyprovšechna 0 u 1... u n s, n Ngenerují F s ajsou uzavřenénakonečnéprůniky.podobněstačíuvažovat A={φ:φ(t)=γ, φ(v k )= γ k,..., φ(v 1 )=γ 1 },kde 0 v 1... v k t, k N.Rovnost3.pakdostáváme ve tvaru P η( ψ(s+t)=γ, ψ(s+v k )=γ k,...,ψ(s+v 1 )=γ 1, ψ(s)=δ, ψ(u n )=δ n,..., ψ(u 1 )=δ 1 ) = P δ (ψ(t)=γ, ψ(v k )=γ k,..., ψ(v 1 )=γ 1 ) P η (ψ(s)=δ, ψ(u n )=δ n,...,ψ(u 1 )=δ 1 ) P η -s.v., 0 u 1... u n s, 0 v 1... v k t. OznačmeΦkanonickýprocesna(D, F, P)majícípodmíněnározděleníΦ Φ 0 = η zadanámírou P η prokaždé η Xtj. P(A Φ 0 = η)=p(φ A Φ 0 = η)=p η (A). Potom dostáváme rovnost ve tvaru P ( Φ s+t = γ,φ s+vk = γ k,...,φ s+v1 = γ 1 Φ s = δ,φ un = δ n,...φ u1 = δ 1, Φ 0 = η ) = P ( Φ t = γ,φ vk = γ k,...,φ v1 = γ 1 Φ 0 = δ ), což je ekvivalentní(1). Tedy Φ je homogenní Markovský proces se spočetnou stavovoumnožinou X. Definice: Označme C(X)prostorspojitýchfunkcína Xa C b (X)prostorspojitých, omezenýchfunkcí.buď ( P η : η X ) Markovskýproces.Prokaždé t 0definujme lineárníoperátor S(t)na C b (X)předpisempro f: X Rspojitou,omezenou S(t)f : X η R E η (f π t )= f ( π t (ϕ) ) P η (dϕ)= f ( ) ϕ t P η (dϕ.) D D kde π t jeprojekce D X, E η jestředníhodnotaodpravděpodobnosti P η tj.pronáhodnýproces Zscadlag trajektoriemije E η (Z)= D ZdP η existuje-li(odtudpocházípřirozeněpředpoklad uvažovat jen omezené funkce).

3 Invariantní rozdělení částicových systémů 109 UvažujmeMarkovskýproces ( P η : η X ).Označíme-li t 0P η t projekcimíry P η dočasu t,tedy P η t ( )jepravděpodobnostnímírana(x, B),je P t ( )Markovské jádrona(x, B).SpeciálněMarkovskávlastnost3.zdefinicemáprosouborMarkovskýchjader ( P t( ) ) tvar P η s+t (B)= Ps ξ(b) P η t (dξ) (Chapman-Kolmogorovarovnost). Operátory S(t) jsou potom přímo odvozené od takového souboru Markovských jader, S(t)f(η)= f(ξ)pt(dξ)ap η t(b)=s(t)i η B. Zajímavébudoutysituace,kdeplatí S(t)f C b (X).Snadnodokážeme,žetakový soubor operátorů splňuje vlastnosti t, s 0: 1) S(t)f 0 prokaždou f 0 a S(0)=I 2) t S(t)f(η) R + Xjezpravaspojitézobrazení f, η 3) S(t+s)f= S(t)S(s)f 4) S(t)1=1. Definice: Souboroperátorů ( S(t):t 0 ), S(t):C b (X) C b (X)prokaždé t 0, splňující vlastnosti 1)- 4) nazveme Markovská semigrupa. Markovská semigrupa je pro Markovský proces charakterizací v tom smyslu, že k Markovské semigrupě existuje jediný kanonický Markovský proces splňující S(t)f(η)=E η (f π t )prokaždé f C b (X), η X, t 0.Lzenaléztnapříkladv[2]. Definice: Operátor na C(X) s definičním oborem S(t)f f D(Ω)={f C(X): lim existuje} tց0 t definovaný předpisem S(t)f f Ωf=lim tց0 t se nazývá(infinitesimální) generátor Markovské semigrupy. Poznámka:limitou t ց0vdefinicimyslímelimituvmetrice C(X). Mezi Markovskou semigrupou a jejím generátorem za určitých předpokladů platí 1-1korespondence,toznamená,žeprokaždou f D(Ω)lzevyjádřit ( S(t)f= lim I t ) nf n n Ω aplatí,že S(t)f D(Ω).Potomnavícplatívztah d (2) S(t)f=Ω S(t)f= S(t)Ωf. dt Toto tvrzení bývá označováno jako Hille-Yosidova věta a jak jsem již předeslala je uváděno za určitých topologických předpokladů na prostory X, respektive C(X). Lze jej nalézt v[6],[8]. Takovým postačujícím předpokladem je například X kompaktní metrický prostor. V některých jiných případech stavového prostoru X je možné se vyhnout přímému použití H.-Y. věty a ukázat korespondenci ve smyslu(2) operátoru Ω definovaném na hustépodmnožině C(X)aMarkovskésemigrupy(S(t):t 0)definovanéna C b (X). JemožnévyjítzoperátoruΩazkonstruovatkněmusemigrupu,onížjetřeba ukázat, že odpovídá(2) a má vlastnosti Markovské semigrupy. Tuto konstrukci lze nalézt například v[4].

4 110 Lucie Fajfrová Definice: Buď P množina Borelovských pravděpodobnostních měr na X se slabou topologií.míra µ PsenazýváinvariantnívůčiMarkovskésemigrupě(S(t):t 0), jestližeprokaždou f C b (X)platí (3) S(t)fdµ= fdµ t 0. V ( této souvislosti ) označujeme µs(t) míru na X definovanou předpisem: f d µs(t) = S(t)f dµ pro každou f spojitou omezenou funkci na X. Potomlzemísto(3)psátjednoduše µs(t)=µ t 0. Definice: ZR proces(zero range process) definujeme jako Markovský proces se stavovou množinou X= N S = {η; η: S N}, kde Sjespočetnýdiskrétníprostora kde X opatříme součinovou topologií, tzn. otevřená bazeje { {η: η(x 1 )=k 1,..., η(x n )=k n }: n N +, k 1,...,k n N, x 1,..., x n S }, zadaný operátorem Ω na nějaké husté podmnožině C(X) předpisem (4) Ωf(η)= g ( η(x) ) p(x, y) ( f(η xy ) f(η) ) η X, x S y S kde gjenezápornáfunkcena N, g(0)=0, p(, ) je pravděpodobnost přechodu diskrétního Markovského řetězce na S akonfiguraci η xy Xdefinujeme z Spředpisem η(x) 1 pro z= x, η(x) >0ax y η xy (z)= η(y)+1 pro z= y, η(x) >0ax y η(z) jinak. Poznámka: Aby definice byla korektní, je potřeba ukázat existenci Markovského procesu s takto definovaným generátorem. Jak už bylo poznamenáno, stačí ukázat existenci Markovské semigrupy korespondující(ve smyslu(2)) s operátorem Ω definovanýmv(4).tutokonstrukcilzenaléztv[5],nebo[4],[3]provšechnypříklady, které budou uvedeny. První příklad bude speciálním případem, v němž vezmeme množinu pozic S konečnou, tedy stavový prostor X bude spočetný a ZR proces na X bude klasický Markovský proces se spočetně stavy definovaný intenzitami přechodů. Příklad 1. Mějmeprostorpozic S=[0, n] Z,potomstavovýprostor X= N S jespočetný. Nechťintenzitováfunkce g(k)=1 [k>0] indikujepřítomnostčástica(p(x, y):x, y S) je nerozložitelný Markovský řetězec. Funkci fna Xlzetedypsátjakovektor(f(η):η X)aoperátorΩpřepsatdo matice(ω ηζ ) η,ζ X.VýrazemΩfpotommínímenásobenímaticeavektoruΩ f. Zpředpisu(4)plyne,že(η, ζ)-týčlenmaticeωpro η ζ jeintenzitapřechodu zkonfigurace ηdokonfigurace ζ,kterájenenulovájenvpřípadě ζ= η xy pronějaká x, y Staková,že η(x) >0,avtompřípadě ω ηζ = p(x, y).diagonálníčlen ω ηη je minuscelkováintenzitastavu η,tj. ω ηη = ζ η ω ηζ,kdejenkonečněčlenůsumy je nenulových. Ω je tudíž matice intenzit Markovského řetězce se zprava spojitými trajektoriemi ařešenímzpětnékolmogorovydiferenciálnírovnice S (t)=ω S(t), S(0)=I

5 Invariantní rozdělení částicových systémů 111 získáme maticovou semigrupu(s(t), t 0), která určuje pravděpodobnosti přechodů za čas t tohoto ZR procesu. Míra µ= ( µ(η):η X ) na XjeinvariantnívzhledemkS(t)právětehdykdyž ( ) (5) S(t) f µ(η)= f(η) µ(η) t 0 η η X η X platíprokaždouomezenoufunkci fna X. Zřejměvšak(5)stačídokazovatpro f η =1 {η}, η X,protolze(5)ekvivalentně psátjako: ( S(t) ) T µ=µ t 0. Definujemenynípojemcylindrickéfunkcenasoučinovémprostorutypu X= N S,kde S je spočetný diskrétní prostor. Funkci f: X R nazveme cylindrickou, jestliže existuje K Skonečná,že η, ζ X : (η(x)=ζ(x) x K)platí f(η)=f(ζ). Pozorování: Cylindrické funkce jsou spojité a při vhodně zvolené topologii na C(X) jsouhustévc(x). Příklad 2. Jako prostor pozic, na kterém rozmístíme libovolné množství nerozlišitelných částic,sivezměmemnožinucelýchčísel.tj. S= Z.Konkrétníkonfiguracečástic η N Z, kde η(x)udávápočetčásticnapozici x S,jetedyprvekstavovéhoprostoru X = N Z.Buďopětintenzitováfunkce g(k)=1 [k>0],cožlzeinterpretovat,jakože částicena x tépozicičekajívefrontěsjednoustanicíobsluhynapřeskoknajinou pozici. NechťMarkovskýřetězec p(x, y)jenáhodnáprocházkana Z:buď0<p, q < 1 a p+q=1,potom p(x, x+1)=pap(x, x 1)=q.Pohybčásticpopozicíchje možný jen na sousední pozice. Intenzita přeskoku jedné částice z pozice x do pozice yjetudíž1 [η(x)>0] p(x, y). Generátor tohoto ZR procesu je (6) Ωf(η)= x Z 1 [η(x)>0] (p ( f(η x,x+1 ) f(η) ) + q ( f(η x,x 1 ) f(η) )) η X adefinujemejejprocylindrickéfunkce fna X. Příklad 3. Vezmeme si zobecnění předchozího příkladu v tom smyslu, že Markovský řetězec p(x, y) bude nehomogennínáhodnáprocházkana Z. Tzn. p(x, x+1) = p x a p(x, x 1)=q x,kde q x =1 p x,0<p x, q x <1 xainf p x >0, inf q x >0. Přeskok částice je tedy zase možný jen na sousední pozice, jeho intenzita však tentokrát nezávisí pouze na počtu částic na výchozí pozici a směru pohybu, ale navíc nadalšímparametrupozice p x. Všeostatnízůstávájakovpředchozímpříkladu,tj. X= N Z agenerátortohotozr procesu je (7) Ωf(η)= x Z 1 [η(x)>0] (p x ( f(η x,x+1 ) f(η) ) + q x ( f(η x,x 1 ) f(η) )) η X pro fcylindrickéfunkcena X.

6 112 Lucie Fajfrová 2. Invariantní míry Nyní se zaměříme na to, jak pro uvedené případy ZR procesů definované generátorem(7), nebo speciálně(6), nalezneme míry invariantní vůči jejich semigrupě (S(t), t 0).Invariantnímírynászajímajíztohodůvodu,žechováníprocesuvůči nim vykazuje určitou stabilitu. Je-li totiž µ invariantní vůči semigrupě Markovského procesu(ξ t : t 0),potomvezmeme-li µjakopočátečnírozdělenítohotoprocesu, budecelýprocesstriktněstacionární,tzn.(ξ t : t 0)a(ξ t+s : t 0)majístejná konečně rozměrná rozdělení pro každý čas s 0. Naopak startuje-li proces z libovolnéhorozdělení νna X,pronějžexistujelim t νs(t)=: µ,potom µjeinvariantní. To znamená, že množina invariantních měr obsahuje možné kandidáty na limitní rozdělení. Obojí není těžké ukázat. Vcelététokapitoleseomezmenasituacipopsanouvpříkladě3(speciálně2). Označme I množinu všech invariantních měr pro konkrétní ZR proces se semigrupou (S(t), t 0)agenerátoremΩtypu(7).Označme I e množinuextremálníchbodů I. Ideální situace nastává, známe-li celou množinu invariantních měr I a každému počátečnímu stavu umíme přiřadit tu invariantní míru, jež je limitním rozdělením procesu s tímto počátkem. Následující tvrzení ukazuje, že množinu invariantních měr lze popsat jejími extremálními body. Tvrzení 2.1. a) I= {µ P: µ=µs(t) t 0}jeuzavřená,konvexnípodmnožina P b) I= co I e důkaz: add a) konvexita a uzavřenost I jsou zřejmé, add b) Krein-Milmanova věta pro nekompaktní případ[7]. V některých případech ZR procesů se daří nalézt právě extremální body množiny Iatopostupem,kterýjepopsánvnásledujícívětě[1,(1.8.)].Tadáváalgoritmus, jak nalézt některé invariantní míry pro ZR proces. Z jejího tvrzení je ihned zřejmé, žepokudtímtozpůsobemnaleznemejednumíru µ π,pakcelárodinaměr µ α π,kde α Rtaková,aby µ α π P,jsouinvariantnímíry.Dokázatalespoňvkonkrétních případech, že právě tyto míry jsou extremální body I, není snadné. Větu uvádím jen v té obecnosti, kterou použijeme pro uvedené příklady. Věta 2.2.(Andjel(1982)) Buď p(x, y) irreducibilní Markovský řetězec na S. Buď π: S R +,0 < π(x) <1 x Stakové,že (8) π(x)p(x, y)=π(y) y S, x S potom ν π I,kde ν π jesoučinovámírana Xsmarginálydefinovanými x S: (9) ν π (η: η(x)=k)= ( 1 π(x) )( π(x) ) k k N. Důkazvěty2.2lzenaléztv[1].Probíhávetřechkrocích,znichžprvníjeobsahem následujícího tvrzení, z něhož vyplyne, že pro invarianci míry µ stačí dokazovat Ωfdµ=0 fcylindrickouna N S, µ-integrovatelnou.

7 Invariantní rozdělení částicových systémů 113 Druhý krok spočívá v provedení důkazu speciálně pro S konečnou. Tímto případemjsmesezabývalivpříkladě1,odkudplyne,žestačídokázatω T µ=0,cožje pro míru µ zadanou předpisem(9) snadné ukázat. Třetímkrokemjeaproximovat S= S n,kde S n jsoukonečnédosebevnořené podmnožiny S,avhodnězúžitoperátorΩnaoperátorΩ n na N Sn,takžeΩ n Ω a (Ω n Ω)(f) má µ-integrovatelnoumajorantu.z1.krokupak Ω n f dµ=0 alimitou n jedůkazdokončen. Tvrzení 2.3. NechťoperátorΩna C ( N S) jemarkovskýgenerátorzrprocesusg(k)=1 [k>0]. Nechť ( S(t) ) jekorespondující(vesmyslu(2))markovskásemigrupa.buď µmíra na N S.Paknásledujícítvrzeníjsouekvivalentní: (1) S(t)fdµ= fdµ t 0 fomezenouspojitouna N S (2) Ωfdµ=0 fcylindrickouna N S, µ-integrovatelnou. Důkaz tvrzení 2.3: Uvědomme si, že je-li funkce f cylindrická omezená, pak také S(t)f je cylindrická omezenáprokaždé t 0. Zkorespondence(2)mezi S(t)aΩplyne t ( ) ( t ) (10) S(t)f fdµ= ΩS(u)f dµ du= ΩS(u)f du dµ, 0 kde je ovšem pro druhou rovnost potřeba ověřit předpoklady pro záměnu integrálů. Nechťplatí(2).Prodůkaz(1)stačídokázatrovnost µs(t)=µ t 0probazové množiny X(viz definice ZR procesu). Tzn. stačí dokázat(1) pro cylindrické funkce. Buď f libovolná cylindrická omezená. Zpředpokladuje ΩS(t)fdµ=0prokaždé t 0atudíži ( t ΩS(u)fdµ ) 0 du=0. Pro záměnu integrálů v(10) stačí nalézt integrovatelnou majorantu pro ΩS(u)f. Protože fjeomezená,existuje N N: f(η) N ηapotom S(u)f(η) f(ξ) Pu η (dξ) N η, u 0. S(u)fjecylindrická u 0,speciálněpro S(t)fodtudexistujekonečná K S,že S(u)f(η) 0 u tzavisína ηjenpřessouřadnicezk.tudíž ΩS(u)f(η) 1 [η(x)>0] p(x, y) S(u)f(η x,y ) S(u)f(η) 2N K 2. x K y K Lzeprovéstzáměnuintegrálů,tedy S(t)f fdµ=0. Nechť platí(1). f(η) pokud f(η) N Buď fcylindrická, µ-integrovatelná.označme f N (η)= N pokud f(η) > N N pokud f(η) < N Zřejmě f N jecylindrickáaomezená,protozpředpokladuplatí S(t)f N f N dµ=0 t 0.Použitím(10)dostáváme ) t 0( S(u)ΩfN dµ du=0 t 0.Protoževnitřní integráljespojitoufunkcí u,dostáváme S(u)Ωf N dµ=0 u 0.Speciálněvolbou u=0pakplyne Ωf N dµ=0.zřejměωf N Ωfbodově. Abychom dokázali Ωfdµ = 0, stačí nalézt integrovatelnou majorantu pro Ω(f f N ).Toujekonst.*f,neboťjsmepředpokládali fintegrovatelnou. Tedy Ωfdµ Ω(f f N ) dµ N 0. 0

8 114 Lucie Fajfrová 3. Aplikace Pokusíme se nyní co nejlépe popsat množinu invariantních měr pro případ ZR procesu popsaného v příkladě 3), speciálně 2). Nejprve druhý příklad: máme ZR proces definovaný operátorem(6) odvozený od náhodné procházky na Z. Tzn.provšechna x Zje p(x, x+1)=pap(x, x 1)=q,ostatnípřechodymají pravděpodobnost nula. První krok k získání součinové invariantní míry je podle výše uvedené věty nalezení funkce πna Zřešícísoustavurovnic(8)asplňující0<π(x) <1.Vtomtonašem případě je rovnice(8) tvaru π(x)=pπ(x 1)+qπ(x+1) x Z ( avšechnajejířešeníjsou π(x) = A+B p x, q) A, B libovolnékonstanty.ovšem vzhledemkpodmínce0<π(x) <1jsouproaplikovánívěty2.2zevšechtěchto řešenívhodnájenkonstantnířešení: π(x)=a x Z,kde0<A<1.Potom dostáváme, že součinové míry s marginály ν A (η: η(x)=k)=a k (1 A) x SjsouinvariantníprotentoZRproces,kdykoliv0 < A <1. Tedy {ν A :0<A<1} I. Lze v tomto případě dokonce dokázat, že právě tyto součinové míry tvoří množinu extremálníchbodůpromnožinuinvariantníchměr,tj. {ν A :0<A<1}=I e.důkazjetechnickynáročnýalzejejnaléztv[1].vesmyslutvrzení2.1námmnožina součinovýchměr {ν A :0<A<1}dobřepopisujecelou I. Třetí příklad: máme ZR proces definovaný operátorem(7) a rozdíl od předchozího příkladu je ve zobecnění Markovského řetězce p(x, y), který už není prostorově homogenní. Abychom mohli použít větu 2.2 a nalézt k tomuto procesu invariantní míry, je nyní třeba řešit soustavu diferenčních rovnic (11) π(x)=p x π(x 1)+q x π(x+1) x Z. V této obecnosti její řešení explicitně nevyjádříme. Podívejme se alespoň na speciální případ: p x p x 0 & p x p x 1 pro0 < p p <1. Všechna řešení rovnice(11) jsou potom tvaru: ( q ) x ) x (12) π(x)=a+b x 0, π(x)=ã+ B x 1, p ( p q kde platí (13) (q p)a=( q p)ã & pb p B= qã qa. Vrámci(13)lzekoeficienty A, B, Ã, Bvolittak,abybylasplněnapodmínka (14) 0 < π(x) <1.

9 Invariantní rozdělení částicových systémů 115 Rozeberme řešení pro jednotlivé případy pravděpodobností p, p: I. II. III. IV. p 1/2, p 1/2 p 1/2, p 1/2 p >1/2, p >1/2 p <1/2, p <1/2, z nichž případ, kdy p = p, vyjmeme. Množinu všech funkcí π, splňujících(12),(13) a(14)označme R.Kdykolivje Rneprázdná,dostanemejivetvaru R={π C : c 1 < C < c 2 }. Rjetedyindexovanájednímparametremzotevřenéhointervalu(c 1, c 2 ), podobnějakovpříkladě2),stímrozdílem,že π C neníkonstantní. Množina R vždy intuitivně odpovídá představě o pohybu částic po Z v jednotlivých situacích: I. q 1/2 p 1/2 Dostávámejedině π 0tj. R=. Nastávábuď p q >1a q p >1,cožvedezpodmínky π <1 na B=0= Bazpodmínky π >0na A=0=Ã, nebo p q >1a q p =1,cožvedena Ã=0= Ba A+B=0, nebo p q =1a q p >1,cožvedena A=0=Ba Ã+ B=0. II. p 1/2 q 1/2 Dostáváme Nastávábuď p q <1a q p <1,potomzpodmínky π >0 dostaneme A=0=Ãapro B, Bvztah pb= p B, nebo p q <1a q p =1,cožvedena Ã=0a p B= 1 2 (A+B), nebo p q =1a q p <1,cožvedena A=0apB=1 2 (Ã+ B). R={π(x)=B ( q p ) x pro x 0, π(y)=b p p ( p ) ypro y 1 : 0 < B < b2 }, q kde b 2 závisí na konkrétní volbě p, p, aby platilo π < 1. Snadno zjistíme, že b 2 =min(1, q p ).Toznamená,žepůjde-li levá procházkarychleji(p > q),jetřeba B omezitshorapodílem q p.bude-lisituaceopačnáa pravá procházkapůjderychleji (p < q), stačí B omezit shora 1. Tato nesymetrie vzniká z nesymetrického rozdělení Zna Z (,0]aZ (0, ). III. p >1/2 p >1/2 Dostáváme Abyplatilo0 < π <1,jenutně B=0a0 < à <1 azpodmínky(13)plynepro A, B: A= q pã=: q p F(Ã), B= 1 q p p ( q q p )Ã=: G(Ã) (speciálněpro p > pje A > ÃaB<0). R={π(x)=F(Ã)+G(Ã)( q ) x pro x 0, π(y)= Ãpro y 1 : 0 < p à < a 2}, kde a 2 závisínakonkrétnívolbě p, p,abyplatilo π <1.Zasejejvjednotlivýchpřípadech snadno vyjádříme, výraz však bude složitější než v předchozím případě.

10 116 Lucie Fajfrová IV. q >1/2 q >1/2 Kvůli0 < π <1,jenutně B=0a0 < A <1 azpodmínky(13)plynepro Ã, B: Ã= q p q p A=: H(A), 1 q p B= p (q q p )A=: J(A) (speciálněpro q > qvyjde à < Aa B >0). Dostáváme R={π(x)=Apro x 0, π(y)=h(a)+j(a) ( p ) ypro y 1 : 0 < A < c2 }, q kde c 2 závisínakonkrétnívolbě p, p,abyplatilo π <1. Rozborem případů jsme našli všechna řešení rovnice(11) v našem speciálním případě,kterásplňují(14).označme I R množinusoučinovýchměrdanýchvětou2.2 prokaždýzpřípadůi-iv.vpřípaděije I R =.VpřípadechII-IVplynezcitované věty,že I R I.VpřípaděIIvypadámnožina I R následovně I R = ( ) ( {ν B : ν B η: η(x)=k = 1 B ( p) x )B k( p ) kx x 0 q q 0<B<b 2 k N }. = ( 1 B p p ( p )( ) x k ) kx q) p p ( p q B x 1 VpřípadechIIIaIVbudezápismnožiny I R vypadatobdobně. Otázkou v tomto příkladě zůstává, platí-li(stejně jako v příkladě 2), že jsme nalezli přímo všechny extremální body množiny invariantních měr I. Literatura [1] Andjel, E.D.: Invariant measures for the zero range proces, Ann.Probab. 10, , [2] Fremlin, D.H.: Measure Theory, Vol. 4: Topological measure spaces, in preparation. Partial drafts available via [3] Holley, R.: A Class of Interactions in Infinite Particle System, Adv. in Math. 5, , [4] Liggett, T.M., Spitzer, F.: Ergodic Theorems for Coupled Random Walks and Other Systems with Locally Interacting Components, Z. Wahrsch. Gebiete 56, 443/468, [5] Liggett, T.M.: Interacting Particle Systems, Springer-Verlag, New York, [6] Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales, Cambridge University Press, UK, Vol. 1, [7] Štěpán, J.: A noncompakt Choquet Theorem, Comment. Math. Univ. Carolinae 25,1, 73-89, [8] Yosida, K.: Functional Analysis, Springer-Verlag, New York, ÚTIAAVČR,PodVodárenskouvěží4,18208Praha8

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

1. Jordanův kanonický tvar

1. Jordanův kanonický tvar . Jordanův kanonický tvar Obecně nelze pro zadaný lineární operátor ϕ : U U najít bázi α takovou, že (ϕ) α,α by byla diagonální. Obecně však platí, že pro každý lineární operátor ϕ : U U nad komplexními

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika.

Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Lineární kódy, část 2 Odpřednesenou látku naleznete v kapitole 3.3 skript Diskrétní matematika. Jiří Velebil: A7B01LAG 22.12.2014: Lineární kódy, část 2 1/12 Dnešní přednáška 1 Analýza Hammingova (7, 4)-kódu.

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Definiční obor funkce více proměnných, vrstevnice apod.

Definiční obor funkce více proměnných, vrstevnice apod. vičení 1 Definiční obor funkce více proměnných, vrstevnice apod. 1. Najděte definiční obor funkce fx, y = x y + y x. Řešení: D f = { x y a y x }, což je konvexní množina omezená křivkami x = y a y = x.

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

1. Opakování, značení - filtrace. X : (Ω, A) (E, E), pak symbolem

1. Opakování, značení - filtrace. X : (Ω, A) (E, E), pak symbolem 1. Opakování, značení - filtrace Bud (Ω, A) měřitelný prostor. Označme L(A) = {X : (Ω, A) (R, B)} množinu všech reálných A-měřitelných náhodných veličin, kde B = B(R) značí borelovskou σ-algebru na reálné

Více

DYNAMICKÉ SYSTÉMY I. Marek Lampart Michaela Mlíchová Lenka Obadalová

DYNAMICKÉ SYSTÉMY I. Marek Lampart Michaela Mlíchová Lenka Obadalová DYNAMICKÉ SYSTÉMY I Jana Dvořáková Marek Lampart Michaela Mlíchová Lenka Obadalová Předmluva Tento učební text vznikl v rámci projektu FRVŠ č. 2644/2008. Jde o učební text určený pro první semestr předmětu

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Determinanty a matice v theorii a praxi

Determinanty a matice v theorii a praxi Determinanty a matice v theorii a praxi 1. Lineární závislost číselných soustav In: Václav Vodička (author): Determinanty a matice v theorii a praxi. Část druhá. (Czech). Praha: Jednota československých

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí

Matematické přístupy k pojištění automobilů. Silvie Kafková. 3. 6. září 2013, Podlesí Matematické přístupy k pojištění automobilů Silvie Kafková 3. 6. září 2013, Podlesí Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3 Motivace Obsah 1 Motivace 2 Tvorba tarifních skupin a priori 3

Více

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic

8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic 8 REGULÁRNÍ LINEÁRNÍ TRANSFORMACE SOUŘADNIC 8 Věta o Fourierově transformaci funkcí, které lze na sebe transformovat regulární lineární transformací souřadnic Ze zkušenosti s Fraunhoferovými difrakčními

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Á Ž É Š Í É Ě É Ě Ť Í š Ť Ť š Ť Ť š š š ň š Ť Ť Ó Í Ť š Í Ť ň š Ť Í Ť Ť Í Ž Ý š š ň š š ň ú Ť ň š š Ů Ť š Ť ň ň Ť Ť š Ů ď Ť Ě Ť Í š Ť Ť Ť Ť Ť Ť š ň Ť Ť Ť ť Ť Ů Ť Ť Ť ť ť š š Í Ť Í ď Í Í šš Ž š Ť ť Í Í

Více

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi

PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ. Modelování Petriho sítěmi HPSim PETRIHO SÍTĚ STOCHASTICKÉ PETRIHO SÍTĚ 1962 - Carl Adam Petri formalismus pro popis souběžných synchronních distribučních systémů Modelování Petriho sítěmi Grafický popis a analýza systémů, ve kterých

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Využití programu MS Excel při výuce vlastností kvadratické funkce

Využití programu MS Excel při výuce vlastností kvadratické funkce Využití programu MS Excel při výuce vlastností kvadratické funkce Martin Mikuláš Tabulkové kalkulátory lze ve škole velmi dobře využít při výuce matematiky. Lze v nich totiž snadno naprogramovat aplikace,

Více

Co byste měl/a zvládnout po 6. týdnu

Co byste měl/a zvládnout po 6. týdnu Co byste měl/a zvládnout po 6. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B01LAG Zvládnutá látka po 6. týdnu 1/8 Slovník základních pojmů Monomorfismus,

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

5. Interpolace a aproximace funkcí

5. Interpolace a aproximace funkcí 5. Interpolace a aproximace funkcí Průvodce studiem Často je potřeba složitou funkci f nahradit funkcí jednodušší. V této kapitole budeme předpokládat, že u funkce f známe její funkční hodnoty f i = f(x

Více

Cyklickékódy. MI-AAK(Aritmetika a kódy)

Cyklickékódy. MI-AAK(Aritmetika a kódy) MI-AAK(Aritmetika a kódy) Cyklickékódy c doc. Ing. Alois Pluháček, CSc., 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha&

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Ergodické Markovské et zce

Ergodické Markovské et zce 1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋

Více

1 Zdroj napětí náhradní obvod

1 Zdroj napětí náhradní obvod 1 Zdroj napětí náhradní obvod Příklad 1. Zdroj napětí má na svorkách naprázdno napětí 6 V. Při zatížení odporem 30 Ω klesne napětí na 5,7 V. Co vše můžete o tomto zdroji říci za předpokladu, že je v celém

Více

Reziduovaná zobrazení

Reziduovaná zobrazení Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Optimalizace portfolia a míry rizika. Pavel Sůva

Optimalizace portfolia a míry rizika. Pavel Sůva Základní seminář 6. října 2009 Obsah Úloha optimalizace portfolia Markowitzův model Míry rizika Value-at-Risk Conditional Value-at-Risk Drawdown míry rizika Minimalizační formule Optimalizační modely Empirická

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Co byste měl/a zvládnout po 4. týdnu

Co byste měl/a zvládnout po 4. týdnu Co byste měl/a zvládnout po 4. týdnu Zde je uveden naprostý základ. Nejde o úplný výčet všech dovedností. Jiří Velebil: A7B0LAG Zvládnutá látka po 4. týdnu /9 Slovník základních pojmů Množina generátorů

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

Aplikace multifraktální geometrie na finančních trzích

Aplikace multifraktální geometrie na finančních trzích Aplikace multifraktální geometrie na finančních trzích 5. studentské kolokvium a letní škola matematické fyziky Stará Lesná Fakulta jaderná a fyzikálně inženýrská ČVUT, Praha 1. 9. 2011 Úvod náhodné procesy

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI

MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ROBUST 2000, 119 124 c JČMF 2001 MATEMATIKA MEZI... ANEB NĚCO MÁLO O DISKRIMINACI ARNOŠT KOMÁREK Abstrakt. If somebody wants to distinguish objects from two groups,he can use a statistical model to achieve

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k,

Řešení 1. série. Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy. h = 1 2 v d, h = 1 2 s k, Řešení 1. série Řešení S-I-1-1 Nejdříve si uvědomme, že platí následující vztahy h = 1 2 v d, h = 1 2 s k, kde h je počet hran, v je počet vrcholů, d je stupeň vrcholu, s je počet stěn a k je počet úhlů

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

ASYMPTOTICKÁ ANALÝZA STRATEGIÍ OBCHODOVÁNÍ S AKCIÍ PŘI EXISTENCI TRANSAKČNÍCH NÁKLADŮ

ASYMPTOTICKÁ ANALÝZA STRATEGIÍ OBCHODOVÁNÍ S AKCIÍ PŘI EXISTENCI TRANSAKČNÍCH NÁKLADŮ ROBUST 24 c JČMF 24 ASYMPTOTICKÁ ANALÝZA STRATEGIÍ OBCHODOVÁNÍ S AKCIÍ PŘI EXISTENCI TRANSAKČNÍCH NÁKLADŮ Petr Dostál Klíčová slova: Obchodní strategie, transakční náklady, asymptotický užitek. Abstrakt:

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Lineární algebra nad obecným Z m, lineární kódy

Lineární algebra nad obecným Z m, lineární kódy Lineární algebra nad obecným Z m, lineární kódy Jiří Velebil: X01DML 19. listopadu 2010: Lineární algebra a kódy 1/19 Minule: soustavy lineárních rovnic nad Z p, p prvočíslo, stejně jako nad R. Dále nad

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

MASARYKOVA UNIVERZITA

MASARYKOVA UNIVERZITA MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 2012 VLASTISLAV FORCH MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Pravděpodobný

Více

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4

Přednáška z MA. Michal Tuláček 16. prosince 2004. 1 IV.7 Průběhy funkce 3. 2 Vyšetřování průběhu funkce- KUCHAŘKA 4 Přednáška z MA Michal Tuláček 6. prosince 004 Obsah IV.7 Průběhy funkce 3 Vyšetřování průběhu funkce- KUCHAŘKA 4 3 Vzorový příklad na průběh funkce ze cvičení 4 4 Příkladynadobumezikapremahusou 7 Definice:

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

Analytická geometrie II: Geometrické transformace

Analytická geometrie II: Geometrické transformace Analytická geometrie II: Geometrické transformace Naďa Stehlíková 2006 2008 Tento materiál vzniká postupně na základě skript Geometrické transformace (metoda analytická) autorů M. Hejný, D. Jirotková,

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace

Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace Kapitola 8 Samoopravné kódy Teorie kódování se zabývá tím, jak rychle a spolehlivě přenášet informace z jednoho místa na druhé. Mezi její aplikace patří například minimalizace šumu při přehrávání kompaktních

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více