(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

Rozměr: px
Začít zobrazení ze stránky:

Download "(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace."

Transkript

1 STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními osami setrvačnosti. (3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. Výsledek ověřte měřením. (4) Měrně ověřte Steinerovu větu. 2. Teorie 2.1. metoda torzních kmitů. Pro měření momentu setrvačnosti kolem osy procházející těžištěm lze použít metodu torzních kmitů. Spočívá v upevnění tělesa na torzní závěs. Při vychýlení z rovnovážné polohy začne těleso torzně kmitat s periodou T : (1) T = 2π D kde D je direkční moment vlákna a je moment setrvačnosti tělesa kolem osy procházející závěsem. Necháme - li na stejném závěsu kmitat těleso o známém momentu setrvačnosti T Pak dostaneme moment setrvačnosti prvního tělesa z poměru period T perioda prvního tělesa T T (perioda tělesa s momentem setrvačnosti T ): (2) = T 2 TT 2 T Jako referenční těleso byl použit válec, pro který platí: (3) T = 1 2 MR2 Aby nebyla deformace závěsu v krutu plastická, musí být výchylky menší než momenty setrvačnosti vzhledem k různým osám. Označme momenty setrvačnosti tělesa vzhledem k hlavním osám x = a y = b z = c Pak Moment setrvačnosti vzheledm k ose procházející těžištěm můžeme vyjádřit jako: (4) = vx 2 x + vy 2 y + vz 2 z Kde v x v y v z jsou složky jednotkového vektoru v souřadné soustavě spojené s hlavními osami tělesa. V případě, že chceme určit moment setrvačnosti podle tělesové úhlopříčky kvádru, budou složky vektoru v (v x je rovnoběžné s a,v y je rovnoběžné s b,v z je rovnoběžné s c ): a (5) v x = v b a 2 +b 2 +c 2 y = v c a 2 +b 2 +c 2 z = a 2 +b 2 +c 2 1

2 2 TEREZA ZÁBOJNÍKOVÁ 2.3. Steinerova věta. K ověření platnosti Steinerovy věty můžeme použít tyče, kterou nejprve necháme kývat jako fyzické kyvadllo, pro které platí: (6) T = 2π mgd Kde m je hmotnost tyče, je její moment setrvačosti g je místní tíhové zrychlení a d je vzdálenost středu tyče (těžiště) od osy otáčení. Steinerova věta udává vztah mezi momenty setrvačnosti kolem dvou rovnoběžných os, z nichž jedna prochází těžištěm (kolem ní je moment setrvačnosti 0 ) (7) 0 = md 2 Pokud bude moment 0 změřen metodou nezávislou na rovnici (6) a zároveň bude spolu s momentem splňovat Steinerovu větu, bude její platnost ověřena. 0 lze změřit pomocí vztahu (2). Pokud oním tělesem s momentem setrvačnosti T bude válec, pak platí: MR 2 (8) 0 = T 2 2T 2 T Kde M je hmotnost válce, R je jeho poloměr a T T je perioda torzních kmitů válce a T je perioda torzních kmitů tyče. Teoretická část byla zpracována dle [1]. 3. Měření 3.1. Moment setrvačnosti kvádru. Rozměry kvádru a, b, c i rozměry válce R (poloměr), byly měřeny šuplerou a mikrometrem (měření zaznamenáno v tabulce1). a = (127, 70 ± 0, 05) mm b = (63, 83 ± 0, 02)mm c = (19, 06 ± 0, 1)mm 2R = (108, 06 ± 0, 14)mm Hmotnost válce byla měřena na digitálních vahách. M = (911, 1 ± 0, 1)g Tabulka 1. Měření rozměrů kvádru a b c 2R mm mm mm mm 127,67 63,81 19,01 108,2 127,64 63,83 19,05 107,97 127,77 63,86 19,21 107,93 127,71 63,83 18,95 107,93 108,31 108,02 Na ručních stopkách bylo měřeno vždy 5 period torzních kmitů kolem každé z os kvádru a kolem tělesové úhlopříčky. Měření najdete v tabulce2. Chyby byly určeny jako směrodatné odchylky.t 0 je perioda válce torzně kmitajícího kolem osy kolmé na podstavu a procházející těžištěm, T 1 je perioda kvádru kolem osy rovnoběžné s rozměrem c, T 2 je perioda kvádru kolem osy rovnoběžné s rozměrem b, T 3 je perioda kvádru kolem tělesové úhlopříčky, T 4 je

3 perioda kvádru kolem osy rovnoběžné s rozměrem a. T 0 = (10, 93 ± 0, 03)s T 1 = (11, 70 ± 0, 05)s T 2 = (10, 52 ± 0, 06)s T 3 = (6, 97 ± 0, 07)s T 4 = (5, 78 ± 0, 07)s STUDUM OTÁčENÍ TUHÉHO TěLESA 3 Tabulka 2. Měření period 5T 0 5T 1 5T 2 5T 3 5T 4 s s s s s 54,38 57,86 52,44 34,35 29,14 54,67 58,32 52,46 34,96 28,72 54,76 58,55 53,19 35,31 28,96 54,77 58,59 52,30 34,51 28,80 54,82 58,88 52,51 35,19 28,58 54,59 58,85 52,77 35,06 28,47 54,79 58,46 52,26 34,28 29,02 54,67 58,56 52,49 35,25 28,64 54,38 58,46 52,51 34,81 29,05 54,45 58,39 52,96 34,81 29,73 Moment sestrvačnosti válce dle(3) T = (1330 ± 3)10 3 kgm 2 Moment setrvačnosti kvádru kolem os procházejících těžištěm a rovnoběžných s jednotlivými rozměry a,b,c a u-tělesová úhlopříčka: 1 = c = (1, 524 ± 0, 016)10 3 kgm 2 2 = b = (1, 231 ± 0, 016)10 3 kgm 2 3 = u = (0, 541 ± 0, 011)10 3 kgm 2 4 = a = (0, 372 ± 0, 009)10 3 kgm 2 Dle vzorce (4) a (5) můžeme spočítat u : u spoctene = (0, 561 ± 0, 015)10 3 kgm Měrné ověření Steinerovy věty. Vzdálenost těžiště tyče d od osy otáčení (při kývání kolem břitu jako fyzické kyvadlo) byla měřena šuplerou a hmotnost tyče m byla měřena na digitálních vahách. d = (157 ± 1)mm m = (288, 7 ± 0, 1)g Při kývání tyče jako fyzické kyvadlo bylo měřeno vždy 10 period, při torzních kmitech period 5. Měření je zaznamenáno v tabulce 3.

4 4 TEREZA ZÁBOJNÍKOVÁ Tabulka 3. Měření torzní periody tyče T tor a periody tyče jako fyzického kyvadla T kyv 5T tor 10T kyv s s 80,12 9,47 80,20 9,45 79,98 9,40 80,12 9,23 79,52 9,51 79,89 9,42 80,05 9,41 80,06 9,40 80,11 9,37 80,08 9,53 T tor = (16, 00 ± 0, 04)s T kyv = (0, 942 ± 0, 008)s Z T tor vypočítáme pomocí vzorce (2) moment setrvačnosti tyče: tor = (2, 85 ± 0, 02)10 3 kgm 2 Z T kyv dle vzorce (6) vypočítáme kyv (za g byla dosazována hodnota pro prahu g = 9, 810): kyv = (10, 0 ± 0, 2)10 3 kgm 2 Tyto dva momenty setrvačnosti spolu souvisí skrz Steinerovu větu, kterou ověříme tak, že porovnáme spočtenou hodnotu tor = 0 s jeho nameřenou hodnotou 0spoctene = (2, 9 ± 0, 3)10 3 kgm 2 4. Diskuse Platnost Steinerovy věty byla ověřena, protože spočtení 0 a nameřené tor se v rámci chyby shodují. Velká chyba u spočteného 0 je zpsůsobena hlavně velkou chybu při měření d Toto měření by bylo možno zpřesnit použitím jehly, která by se zabodla do středu závitu a o kterou by se opřel jeden břit šuplery. Nic podobného jehle ovšem nebylo k dispozici, tudíž byla šuplera pouze přiložena tak, aby se jeden břit překrýval se středem závitu (místem, kde by se mělo nacházet těžiště tyče). Rozměr d byl měřen pouze na jedné straně tyče, drý bude předpokládám v rámci chyby stejný, nebot tyč, zavěšená ve středu, byla vyvážená. Též naměřený moment setrvačnosti válce vůči tělesové úhlopříčce a jeho spočtená hodnota se v rámci chyby shodují. Otázkou je, zda předpoklad, že hlavní osy tělesa jsou rovnoběžné s rozměry a,b,c je pravdivý. Pokud by těleso bylo nehomogenní, tyto hlavní osy by byly jinak položené.

5 STUDUM OTÁčENÍ TUHÉHO TěLESA 5 5. Závěr Byly zěmřeny momenty setrvačnosti kvádru kolem hlavních os. 1 = c = (1, 524 ± 0, 016)10 3 kgm 2 2 = b = (1, 231 ± 0, 016)10 3 kgm 2 4 = a = (0, 372 ± 0, 009)10 3 kgm 2 A kolem tělesové úhlopříčky, kdy se naměřená hodnota shoduje v rámci chyby s hodnotou vypočtenou s předchozích tří momentů: 3 = u = (0, 541 ± 0, 011)10 3 kgm 2 u spoctene = (0, 561 ± 0, 015)10 3 kgm 2 Byla měrně ověřena Steinerova věta pomocí porovnání naměřeného 0 a spočteného 0 z momentu setrvačnosti kolem osy neprocházející těžištěm, ale posunuté o vzálenost d. tor = 0 namerene = (2, 85 ± 0, 02)10 3 kgm 2 0 spoctene = (2, 9 ± 0, 3)10 3 kgm 2 6. Literatura [1] Studijní text k fyzikálnímu praktiku 1: 117.pdf

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11

MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta biomedicínského inženýrství LABORATORNÍ PRÁCE MOMENT SETRVAČNOSTI 2009 Tomáš BOROVIČKA B.11 Obsah ZADÁNÍ... 4 TEORIE... 4 Metoda torzních kmitů... 4 Steinerova

Více

PRAKTIKUM I Mechanika a molekulová fyzika

PRAKTIKUM I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č. XXI Název: Měření tíhového zrychlení Pracoval: Jiří Vackář stud. skup. 11 dne 10..

Více

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy

1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy MěřENÍ MOMENTU SETRVAčNOSTI KOLA TEREZA ZÁBOJNÍKOVÁ 1. Teorie Moment setrvačnosti kola lze měřit dvěma metodami. 1.1. Metoda kyvů. Tato metoda spočívá v tom, že na obvod kola do vzdálenosti l od osy otáčení

Více

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického.

3. Vypočítejte chybu, které se dopouštíte idealizací reálného kyvadla v rámci modelu kyvadla matematického. Pracovní úkoly. Změřte místní tíhové zrychlení g metodou reverzního kyvadla. 2. Změřte místní tíhové zrychlení g metodou matematického kyvadla. 3. Vypočítejte chybu, které se dopouštíte idealizací reálného

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem

1. Teorie. jednom konci pevně upevněn a na druhém konci veden přes kladku se zrcátkem MěřENÍ MODULU PRUžNOSTI V TAHU TEREZA ZÁBOJNÍKOVÁ 1. Teorie 1.1. Měření modulu pružnosti z protažení drátu. Pokud na drát působí síla ve směru jeho délky, drát se prodlouží. Je li tato jeho deformace pružná

Více

Měření tíhového zrychlení reverzním kyvadlem

Měření tíhového zrychlení reverzním kyvadlem 43 Kapitola 7 Měření tíhového zrychlení reverzním kyvadlem 7.1 Úvod Tíhové zrychlení je zrychlení volného pádu ve vakuu. Závisí na zeměpisné šířce a nadmořské výšce. Jako normální tíhové zrychlení g n

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem

2. Fyzikální kyvadlo (2.2) nebo pro homogenní tělesa. kde r je vzdálenost elementu dm, resp. dv, od osy otáčení, ρ je hustota tělesa, dv je objem 30. Fyzikální kyvadlo 1. Klíčová slova Fyzikální kyvadlo, matematické kyvadlo, kmitavý pohyb, perioda, doba kyvu, tíhové zrychlení, redukovaná délka fyzikálního kyvadla, moment setrvačnosti tělesa, frekvence,

Více

Měření momentu setrvačnosti prstence dynamickou metodou

Měření momentu setrvačnosti prstence dynamickou metodou Měření momentu setrvačnosti prstence dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=13 Tato úloha patří zejména svým teoretickým základem k nejobtížnějším. Pojem momentu setrvačnosti dělá

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #11 Dynamika rotačního pohybu Jméno: Ondřej Finke Datum měření: 24.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) V domácí přípravě odvoďte

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona. 1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření

Více

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku

( r ) 2. Měření mechanické hysterezní smyčky a modulu pružnosti ve smyku ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku 1 ěření mechanické hysterezní smyčky a modulu pružnosti ve smyku Úkol č.1: Získejte mechanickou hysterezní křivku pro dráty různé tloušťky

Více

Praktikum II Elektřina a magnetismus

Praktikum II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Elektřina a magnetismus Úloha č. IXX Název: Měření s torzním magnetometrem Pracoval: Matyáš Řehák stud.sk.: 13 dne: 31.10.2008

Více

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

TUHÉ TĚLESO. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník TUHÉ TĚLESO Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Tuhé těleso Tuhé těleso je ideální těleso, jehož objem ani tvar se účinkem libovolně velkých sil nemění. Pohyb tuhého tělesa: posuvný

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8.

VY_52_INOVACE_2NOV42. Autor: Mgr. Jakub Novák. Datum: 15. 11. 2012 Ročník: 8. VY_52_INOVACE_2NOV42 Autor: Mgr. Jakub Novák Datum: 15. 11. 2012 Ročník: 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Zvukové děje, Energie Téma: Kmitání kyvadla Metodický

Více

Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL

Jednoduché stroje. Mgr. Dagmar Panošová, Ph.D. KFY FP TUL Vzdělávání pro efektivní transfer technologií a znalostí v přírodovědných a technických oborech (CZ.1.07/2.3.00/45.0011) Jednoduché stroje Mgr. Dagmar Panošová, Ph.D. KFY FP TUL TENTO PROJEKT JE SPOLUFINANCOVÁN

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. II Název úlohy: Studium harmonických kmitů mechanického oscilátoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.3.2015 Datum odevzdání:...

Více

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo.

Pracovní list vzdáleně ovládaný experiment. Obr. 1: Matematické kyvadlo. Mechanické kmitání (SŠ) Pracovní list vzdáleně ovládaný experiment Určení tíhového zrychlení z doby kmitu matematického kyvadla Fyzikální princip Matematickým kyvadlem rozumíme abstraktní model mechanického

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #2 Měření modulu pružnosti v tahu a ve smyku Jméno: Ondřej Finke Datum měření: 15.12.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) DÚ: V domácí

Více

HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV. Studijní text pro řešitele FO a ostatní zájemce o fyziku

HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV. Studijní text pro řešitele FO a ostatní zájemce o fyziku HARMONICKÉ KMITY MECHANICKÝCH SOUSTAV Studijní text pro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý, Ivo Volf a Radmila Horáková ÚVFO Hradec Králové Obsah 1 Kinematika harmonických kmitů 2 2

Více

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny

Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Určení hlavních geometrických, hmotnostních a tuhostních parametrů železničního vozu, přejezd vozu přes klíny Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ.1.07/2.3.00/45.0029 V

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce

Více

Harmonické oscilátory

Harmonické oscilátory Harmonické oscilátory Jakub Kákona, kaklik@mlab.cz Abstrakt Tato úloha se zabývá měřením rezonančních vlastností mechanických tlumených i netlumených oscilátorů. 1 Úvod 1. Změřte tuhost pružiny statickou

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8.

VY_52_INOVACE_2NOV43. Autor: Mgr. Jakub Novák. Datum: 4. 10. 2012 Ročník: 7., 8. VY_52_INOVACE_2NOV43 Autor: Mgr. Jakub Novák Datum: 4. 10. 2012 Ročník: 7., 8. Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Fyzika Tematický okruh: Látky a tělesa, Mechanické vlastnosti tekutin

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

DYNAMIKA ROTAČNÍ POHYB

DYNAMIKA ROTAČNÍ POHYB DYNAMIKA ROTAČNÍ POHYB Dynamika rotačního pohybu hmotného bodu kolem pevné osy - při rotační pohybu hmotného bodu kolem stálé osy stálými otáčkami kolem pevné osy (pak hovoříme o rovnoměrném rotačním pohybu)

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Název: Studium kmitů na pružině

Název: Studium kmitů na pružině Název: Studium kmitů na pružině Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Mechanické kmitání

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. IV Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 17. 10. 2012 Pořadové číslo 05 1 Kmitavý pohyb Předmět: Ročník: Jméno autora:

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: #10 Lineární harmonický oscilátor a Pohlovo kyvadlo Jméno: Ondřej Finke Datum měření: 10.11.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly (a) Změřte

Více

Experimentální určení elipsoidu setrvačnosti hnacího agregátu

Experimentální určení elipsoidu setrvačnosti hnacího agregátu Experimentální určení elipsoidu setrvačnosti hnacího agregátu Zpracoval: Pavel BRABEC Pracoviště: KVM Tento materiál vznikl jako součást projektu n-tech 2, který je spolufinancován Evropským sociálním

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země).

Určení hmotnosti zeměkoule vychází ze základního Newtonova vztahu (1) mezi gravitačním zrychlením a g a hmotností M Z gravitačního centra (Země). Projekt: Cíl projektu: Určení hmotnosti Země Místo konání: Černá věž - Klatovy, Datum: 28.10.2008, 12.15-13.00 hod. Motto: Krása středoškolské fyziky je především v její hravosti, stejně tak jako je krása

Více

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony

Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony Připravil: Roman Pavlačka, Markéta Sekaninová Dynamika, Newtonovy zákony OPVK CZ.1.07/2.2.00/28.0220, "Inovace studijních programů zahradnických oborů s důrazem na jazykové a odborné dovednosti a konkurenceschopnost

Více

SCLPX 07 2R Ověření vztahu pro periodu kyvadla

SCLPX 07 2R Ověření vztahu pro periodu kyvadla Klasické provedení a didaktické aspekty pokusu U kyvadla, jakožto dalšího typu mechanického oscilátoru, platí obdobně vše, co bylo řečeno v předchozích experimentech SCLPX-7 a SCLPX-8. V současném pojetí

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ..07/.5.00/4.080 Zkvalitnění výuky prostřednictvím ICT III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.19 Název: Měření s torzním magnetometrem Odděení fyzikáních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úohač.19 Název: Měření s torzním magnetometrem Pracova: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdadne: Možný počet

Více

Teoretické úlohy celostátního kola 53. ročníku FO

Teoretické úlohy celostátního kola 53. ročníku FO rozevřete, až se prsty narovnají, a znovu rychle tyč uchopte. Tuto dobu změříte stopkami velmi obtížně. Poměrně přesně dokážete zjistit, kam se posunulo na tyči místo úchopu. Vzdálenost obou míst, v nichž

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1

, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1 ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami

Více

Měření momentu setrvačnosti z doby kmitu

Měření momentu setrvačnosti z doby kmitu Úloha č. 4 Měření momentu setrvačnosti z doby kmitu Úkoly měření:. Určete moment setrvačnosti vybraných těles, kruhové a obdélníkové desky.. Stanovení momentu setrvačnosti proveďte s využitím dvou rozdílných

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně Univerzita omáše Bati ve Zíně LABORAORNÍ CVIČENÍ Z FYZIKY II Název úohy: Měření tíhového zrychení reverzním a matematickým kyvadem Jméno: Petr Luzar Skupina: I II/1 Datum měření: 3.října 007 Obor: Informační

Více

Teorie: Hustota tělesa

Teorie: Hustota tělesa PRACOVNÍ LIST č. 1 Téma úlohy: Určení hustoty tělesa Pracoval: Třída: Datum: Spolupracovali: Teplota: Tlak: Vlhkost vzduchu: Hodnocení: Teorie: Hustota tělesa Hustota je fyzikální veličina, která vyjadřuje

Více

Spolupracovník/ci: Téma: Měření setrvačné hmotnosti Úkoly:

Spolupracovník/ci: Téma: Měření setrvačné hmotnosti Úkoly: Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Pracovní list - Laboratorní práce č. 4 Jméno: Třída:

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru 4. Měření rychlosti zvuku ve vzduchu Pomůcky: 1) Generátor normálové frekvence 2) Tónový generátor 3) Digitální osciloskop 4) Zesilovač 5) Trubice s reproduktorem a posuvným mikrofonem 6) Konektory A)

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

Úvod. 1 Převody jednotek

Úvod. 1 Převody jednotek Úvod 1 Převody jednotek Násobky a díly jednotek: piko p 10-12 nano n 10-9 mikro μ 10-6 mili m 10-3 centi c 10-2 deci d 10-1 deka da 10 1 hekto h 10 2 kilo k 10 3 mega M 10 6 giga G 10 9 tera T 10 12 Ve

Více

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku

Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku Fyzika 2 - rámcové příklady Magnetické pole - síla na vodič, moment na smyčku 1. Určete skalární a vektorový součin dvou obecných vektorů a a popište, jak závisí výsledky těchto součinů na úhlu mezi vektory.

Více

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL:

Obsah 11_Síla _Znázornění síly _Gravitační síla _Gravitační síla - příklady _Skládání sil _PL: Obsah 11_Síla... 2 12_Znázornění síly... 5 13_Gravitační síla... 5 14_Gravitační síla - příklady... 6 15_Skládání sil... 7 16_PL: SKLÁDÁNÍ SIL... 8 17_Skládání různoběžných sil působících v jednom bodě...

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 2: Měření modulu pružnosti v tahu a ve smyku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úoha : Měření moduu pružnosti v tahu a ve smyku Datum měření: 9. 10. 009 Jméno: Jiří Sabý Pracovní skupina: 1 Ročník a kroužek:. ročník, 1. kroužek, pátek 13:30 Spoupracovaa:

Více

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Pohyb setrvačníku. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Pohyb setrvačníku Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. Dagmar

Více

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Laboratorní práce č. 3: Kmitání mechanického oscilátoru

Laboratorní práce č. 3: Kmitání mechanického oscilátoru Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA

Více

Moment síly Statická rovnováha

Moment síly Statická rovnováha Moment síly Statická rovnováha Kopírování a šíření tohoto materiálu lze pouze se souhlasem autorky PhDr. Evy Tlapákové, CSc. Jedná se o zatím pracovní verzi, rok 2009 ZKRÁCENÁ VERZE Síla může mít rozdílný

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_6_Mechanika tuhého tělesa Ing. Jakub Ulmann 6 Mechanika tuhého tělesa 6.1 Pohyb tuhého tělesa 6.2 Moment

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské.

1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 1 Pracovní úkol 1. Měřením na rotačním viskozimetru zjistěte, zda jsou kapaliny připravené pro měření newtonovské. 2. Pomocí rotačního viskozimetru určete viskozitu newtonovské kapaliny. 3. Pro nenewtonovskou

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

DYNAMIKY VOZIDEL MEASUREMENT OF INERTIA PROPERTIES OF BODIES FOR THE PURPOSE OF MATHEMATICAL MODELING OF VEHICLE DYNAMICS

DYNAMIKY VOZIDEL MEASUREMENT OF INERTIA PROPERTIES OF BODIES FOR THE PURPOSE OF MATHEMATICAL MODELING OF VEHICLE DYNAMICS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Několik nápadů o volném pádu. Pracovní listy

Několik nápadů o volném pádu. Pracovní listy UNIVERZITA HRADEC KRÁLOVÉ - PŘÍRODOVĚDECKÁ FAKULTA K A T E D R A F Y Z I K Y IVO VOLF - PAVEL KABRHEL Několik nápadů o volném pádu Pracovní listy HRADEC KRÁLOVÉ 01 Obsah Měření tíhového zrychlení g z volného

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 22 KONTROLA A VLASTNOSTI TĚLES]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Aleš Najman [ÚLOHA 22 KONTROLA A VLASTNOSTI TĚLES] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Aleš Najman TĚLES] [ÚLOHA 22 KONTROLA A VLASTNOSTI 1 ÚVOD V této kapitole je probírána tématika zabývající se kontrolou a vlastnostmi těles. Kontrolou

Více

Mechanika - síla. Zápisy do sešitu

Mechanika - síla. Zápisy do sešitu Mechanika - síla Zápisy do sešitu Síla a její znázornění 1/3 Síla popisuje vzájemné působení těles (i prostřednictvím silových polí). Účinky síly: 1.Mění rychlost a směr pohybu 2.Deformační účinky Síla

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. P = 1 T 1 Pracovní úkol 1. Změřte účiník (a) rezistoru (b) kondenzátoru (C = 10 µf) (c) cívky Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky

Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA 4. ročník šestiletého a 2. ročník čtyřletého studia Laboratorní práce č. 2: Určení měrné tepelné kapacity látky Přírodní vědy moderně a interaktivně FYZIKA

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více