Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace"

Transkript

1 RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem, býti studentem určitého ročníku, mít stejný datum narození a samozřejmě i vysloveně matematicky formulované vztahy jako býti větší než, býti podmnožinou, býti dělitelem atd. Přejděme k definici pojmu binární relace. Definice. Za binární relaci mezi množinami A a B budeme považovat každou podmnožinu kartézského součinu množin A B. Binární relací na množině A budeme rozumět každou podmnožinu kartézského součinu množin A A. Relace mezi množinami A a B může být i prázdná podmnožina nebo množina A B. Skutečnost, že dva prvky a, b jsou v relaci R A B, tj. (a, b) R budem obvykle vyjadřovat zápisem a R b. V dalším budeme místo slovo binární vynechávat a místo binární relace budeme říkat krátce jen relace. Poznamenejme také, že každé zobrazení f množiny A do množiny B je relace. Dvojice prvků a A a b B jsou v relaci f, právě tehdy, když je f(a) = b. Zobrazení je speciální případ relace. Aby relace R byla zobrazení musí platit: je li a R b a a R c, potom je nutně b = c. S relacemi můžeme provádět veškeré operace, které umíme dělat s množinami. Zavádíme i pojem podrelace. Relace S je podrelací relace R, je lis R. Jsou li R a S relace mezi A a B, pak jsou relacemi mezi A a B i množiny R S a R S. Doplnkěm relace R je relace (A B) \ R. Naříklad pro relace býti menší, býti menší nebo rovno a býti rovno na množině R platí, že býti menší je podrelací býti menší nebo rovno a býti menší nebo rovno je sjednocením relací býti menší a rovno. Ke každé relaci R mezi množinami A a B můžeme definovat inverzní relaci R 1 mezi množinami B a A takto: b R 1 a, právě tehdy, když je a R b. Uvědomme si, že z toho že relace R je zobrazení, neplyne, že relace R musí také být zobrazení. Uvažujme například zobrazení S z množiny všech reálných čísel R do R definované a S b b = a 2. Relace S 1 není zobrazení, protože je například dvojice (1, 1) a ( 1, 1) jsou obě v relaci S 1. Lze a je účelné definovat i skládání relací. Je li R A B a S B C definujeme relaci R S mezi množnami A a C takto: a R S c, právě tehdy, když existuje prvek b B takový, že je a R b a b S c. Skládaní relací je asociativní, tj. je li R A B, S B C a T C D, pak je R (S T ) = (R S) T. Skládání relací ale není komutativní, tj. nemusí platit rovnost R S = S R i když je složení v obou případech definováno. Například pokud relace R je býti sourozencem (bratrem nebo sestrou) a relace S je býti potomkem (synem nebo dcerou), je relace R S rovna R a relace S R je býti synovcem nebo neteří. Samozřejmě pokud pro všechna a, b platí: a R b b R a a a S b b S a, je R S = S R. Vidíme, že je asi vhodné zkoumat i další vlastnosti relací na množinách a jejich vztahy.

2 2 Vlastnosti relací na množině Definice. Řekneme, že relace R na množině A je 1) reflexivní, jestliže pro všechna a A platí: a R a; 2) symetrická, jestliže pro všechna a, b A platí: je li a R b, pak je b R a; 3) antisymetrická, jestliže pro všechna a, b A platí: je li a R b a b R a, pak je a = b; 4) tranzitivní, jestliže pro všechna a, b, c A platí: je li a R b a b R c, pak je nutně a R c. Uveďme si některé příklady. Relace na množině R všech reálných čísel je reflexivní, tranzitivní a antisymetrická a není symetrická. Relace < na množině R není reflexivní, není symetrická a je tranzitivní a antisymetrická. Relace = na množině R je reflexivní, symetrická, tranzitivní i antisymetrická. Definujeme li na množině R relaci R předpisem x R y, právě tehdy, je li x y 1, pak máme reflexivní a symetrickou relaci, která není tranzitivní. Je li R relace na množině A, pak lze přirozeným způsobem definovat relaci na kartézském součinu A n = A A předpisem (a 1, a 2,..., a n ) R n (b 1, b 2,..., b n ), právě tehdy, když je a i R b i, pro všechna i {1, 2,..., n}. Takto definovaná relace se nazývá kartézskou mocninou relace R nebo relací indukovanou relací R. Často se pro relaci na množině a relaci indukovanou touto relací na kartézské mocnině množiny používá tentýž symbol. Ukažte, že se výše uvedené vlastnosti relací zachovávají při kartézském umocňování relací. Ekvivalence Definice. Řekneme, že relace R na množině A je ekvivalence, je li reflexivní, symetrická a tranzitivní. Ekvivalence představují velmi významný příklad relací a jsou studovány nejen v matematice, ale i všech ostatních vědách. Každá ekvivalence na množině A rozdělí množinu A na systém disjunktních podmnožin, které nazýváme třídy ekvivalence. Je li R evivalence na množině A, pak pro každý prvek a A určuje jednoznačně podmnožinu A[a] = {x A; a R x} množiny A. Přitom dva prvky a, b A určují tutéž podmnožinu, tj. je A[a] = A[b], právě tehdy, je li a R b. Je zcela evidentní, že {A[a]; a A} = A a A[a] A[b] = pro a b. Platí také opačné tvrzení. Je li množina A sjednocením disjunktních podmnožin, tj. A = {A i ; i I} a A i A j = pro i j, pak relace R definovaná předpisem a R b právě tehdy, existuje li i I, takové, že a A i a b A i je ekvivalence na množině A. Na každé množině A je možno definovat dvě triviální ekvivalence. První je identita definovaná vztahem id A = {(a, a); a A}, při které nejsou žádné dva různé prvky ekvivalentní. Druhá triviální relace je relace A A, která dává všechny prvky do jedné třídy, tedy každé dva prvky množiny A jsou ekvivalentní. Uveďme si nějaké netriviální příklady ekvivalencí. Na množině Z = {0, ±1, ±2, ±3,... } všech celých čísel definujme relaci R předpisem: m R n právě tehdy, když je číslo m n sudé, tj. m n {0, ±2, ±4 ± 6,... }. Ukažte, že tato relace je skutečně reflexivní, symetrická a tranzitivní. Obdobně lze definovat pro každé přirozené číslo p na množině Z ekvivalenci R(p) předpisem: m R(p) n právě tehdy, když je číslo m n je násobkem čísla p, tj. m n = t p pro nějaké číslo t Z. Dále budeme relace R(p) označovat symbolem p a budeme říkat, že celá čísla m a n jsou ekvivalentní modulo p, je li m p n. Nechť M je konečná množina. Na množině P (M) všech podmnožin množiny M definujme relaci R takto: pro A M, B M je A R B právě tehdy, když mají obě podmnožiny

3 A a B stejný počet prvků. Ukažte, že takto definovaná relace je ekvivalence na množině P (M). Nechť M je množina všech výrokových formulí vytvořených z nějaké množiny výroků. Na této množině definujme relaci R takto: řekneme, že formule α a β jsou v relaci R právě tehdy, je li formule α β tautologií. Opět snadno ověříte, že má daná relace vlastnosti ekvivalence. Uspořádání Další velmi významný příklad relací jsou tzv. relace uspořádání, nazývané též někde částečné uspořádání. Definice. Řekneme, že relace R na množině A je uspořádání (částečné uspořádání), je li R reflexivní, antisymetrická a tranzitivní relace. Množinu A na které je definována relace uspořádání pak nazýváme uspořádanou množinou. Relace uspořádání budeme obvykle značit symboly nebo. Symbolem a < b resp. a > b budeme označovat skutečnost, že a b a a b resp. a b a a b. Relace < a > již nejsou relace uspořádání. Přesto se někdy se tyto relace nazývají ostré uspořádání. Říkáme, že dva prvky a a b z uspořádaná množiny (A, ) jsou srovnatelné, jestliže je a b nebo b a a že jsou nesrovnatelné, jestliže není ani a b ani b a. Uspořádaná množina (A, ) se nazývá úplně uspořádanou množinou, nebo řetězcem, jestliže každé dva její dva prvky jsou srovnatelné, tj. je a b nebo b a. Ověřte si, že inverzní relace k uspořádání je také uspořádání. Jako příklady úplně uspořádaných množin lze uvést množinu R všech reálných čísel, množinu Z všech celých čísel a množinu N všech přirozených čísel vzhledem ke známému přirozenému uspořádání. Jako příklad uspořádané množiny, která není úplně uspořádáná, můžeme uvést množinu uspořádanou množinu (P (M), ) všech podmnožin (včetně prázdné podmnožiny ) nějaké alespoň dvouprvkové množiny M, kde A B (pro A, B P (M)) znamená, že každý prvek z množiny A je nutně i prvkem množiny B. Jsou li a a b dva různé prvky z M, pak jednoprvkové podmnožiny {a} a {b} množiny M jsou dva nesrovnatelné prvky v uspořádané množině (P (M), ). Dalším příkladem uspořádané množiny, která není úplně uspořádanou množinou, je množina všech přirozených čísel N na které je definován relace R na základě dělitelnosti čísel, tj. m R n právě tehdy, když existuje číslo t N tak, že je n = m t. Ověřte, že takto definovaná relace je skutečně reflexivní, antisymetrická a tranzitivní. Je zřejmé, že je li (A, ) uspořádaná množina, pak (A n, ), kde na A n je relace indukovaná uspořádáním na A, je opět uspořádanou množinou. Je li (A, ) úplně uspořádaná množina, pak ale (A n, ) nemusí být úplně uspořádanou množinou a také jí není pokud množina A má alespoň dva prvky. Když ale například na množině A A definujeme relaci R předpisem (a 1, a 2 ) R (b 1, b 2 ), právě tehdy, jesliže je a 1 < b 1 nebo je a 1 = b 1 a zároveň a 2 b 2, pak relace R je úplné uspořádání. Ověřte si to. Takto definované relaci se říká lexikografické uspořádání. Pojem lexikografického uspořádání ještě zobecníme. Inspirujeme se při tom obecně známým postupem při kterém vytváříme různé abecedně řazené seznamy. Mějme konečnou uspořádanou množina (A, ), kterou můžeme nazývat abeceda. Označme S(A) množinu všech konečných posloupností prvků z A, tj. S(A) = A A 2 A 3 = A i. Prvky této množinu můžeme nazývat slova i N nad abecedou A). A na této množině budeme definovat tzv. lexikografické uspořádání. 3

4 4 Definice. Nechť (A, ) je konečná uspořádaná množina. Lexikografickým uspořádáním (které je indukováno uspořádáním ) na S(A) nazveme relaci definovanou takto: (x 1, x 2,..., x r ) (y 1, y 2,..., y s ), právě tehdy,když nastává jedna z následujících dvou možností: existuje k r takové, že je x i = y i pro všechna i < k a je x k < y k nebo je r s a je x i = y i pro všechna i r. Věta. Lexikografické uspořádáním (které je indukováno uspořádáním ) na S(A) je uspořádání. Pokud je navíc (A, ) úplně uspořádaná množina, je i lexikografické uspořádání úplným uspořádáním na množině S(A). Ukažme si alespoň jeden příklad. Nechť A = {a, b, c, d,..., z} je množina všech 26 písmen mezinárodní abecedy, která je abecedně uspořádána, tj. je a < b < c < z. V lexikograficky uspořádané množině slov S(A) pak platí: hora horakova, hora vlk, horak horal apod. Pokud bychom chtěli rozlišovat příjmení a jméno a chtěli, aby v lexikografickém uspořádání platilo, že hora milan horak jan (uvědomme si, že je horakjan horamilan), musíme do abecedy přidat ještě jeden znak, např a rozšířit definici relace < na množině A = {a, b, c, d,..., z} { } takto: < a < b < c < z. Potom bude v S(A) platit hora milan horak jan. Uveďme si ještě několik pojmů, které jsou pro studium uspořádaných množin důležité. Definice. Nechť (A, ) je uspořádaná množina. Řekneme, že 1) prvek a je minimálním prvkem uspořádané množiny A, jestliže v A neexistuje žádný prvek x, x < a; 2) prvek a je maximálním prvkem uspořádané množiny A, jestliže v A neexistuje žádný prvek x, x > a; 3) prvek a je nejmenším prvkem uspořádané množiny A, jestliže je a x pro každý prvek x A; 4) prvek a je největším prvkem uspořádané množiny A, jestliže je x a pro každý prvek x A; 5) prvek a je pokrýván prvkem b (nebo, že prvek b pokrývá prvek a), jestliže je a < b a neexistuje prvek x A takový, že a < x a x < b. Nejmenší prvek uspořádané množiny budeme obvykle zančit symbolem 0 a největší prvek symbolem 1. Je zřejmé, že nejmenší prvek množiny je minimálním prvkem a největší prvek je maximálním prvkem. Samozřejmě existují uspořádané množiny, které nemají ani minimální ani maximální prvky, např. množina R všech reálných čísel. Na druhou stranu každá konečná uspořádaná množina má alespoň jeden maximální a alespoň jeden minimální prvek. Skutečnost, že prvkek a je pokrýván prvkem b budeme vyjadřovat symbolem a b. Relaci budeme nazývat pokrýváním. Uspořádané konečné množiny, a to zejména ty, které nemají moc prvků, si pro větší názornost můžeme zobrazovat v tzv. diagramech uspořádaných množin. Na těchto diagramech budeme obvykle prvky zobrazovat jako kolečka (dutá nebo plná) a dále budeme znázorňovat pouze relaci pokrytí a vždy platí, že prvek a je pokrýván prvkem b, právě tehdy, když je prvek b zobrazen nad prvkem a oba prvky jsou spojeny usečkou. Z tranzitivity relace uspořádání plyne, že x < y poznáme na diagramu tak, že prvek y je zobrazen nad prvkem x a prvky jsou spojeny čarou, která se skládá z jedné či více úseček. Na Obr. 1 jsou uvedeny příklady diagramů uspořádaných množin.

5 5 Obr. 1: Diagramy uspořádaných množin Svazy V této části si uvedeme základní informace o uspořádaných množinách, které mají další speciální vlastnosti a které budeme nazývat svazy. Nechť (A, ) je uspořádaná množina a M A podmnožina množiny A. Řekneme, že prvek c A je supremum podmnožiny M v uspořádané množině (A, ), jestliže pro všechny prvky m M je m c a prvek c je nejmenší ze všech prvků s touto vlastností, tj. jestliže pro nějaký prvek x A je m x pro všechny prvky m M, pak je c x. Duálně definujeme, že prvek c A je infimum podmnožiny M v uspořádané množině (A, ), jestliže pro všechny prvky m M je c m a prvek c je největnší ze všech prvků s touto vlastností, tj. jestliže pro nějaký prvek x A je x m pro všechny prvky m M, pak je x m. Skutečnost, že prvek m je supremum nebo infimum množiny M označujeme symbolem c = sup M resp. c = inf M. Nyní si již můžeme říci, které uspořádané množiny budem nazývat svazy. Definice. Řekneme, že neprázdná uspořádaná množina (L, ) je svaz, jestliže pro každé dva prvky a, b L existuje sup {a, b} a inf {a, b} v (L, ). Za podsvaz svazu (L, ) budeme považovat každou neprázdnou podmnožinu P množiny L, která má tu vlastnost, že s každými dvěma prvky obsahuje i jejich supremumu a infimum, tj. platí, že sup {a, b} P a inf {a, b} P pro každé a, b P. Poznámka. Lze poměrně velmi snadno ukázat, že pokud existuje supremum (nebo infimum) každé dvouprvkové podmnožiny, pake existuje supremum (nebo infimum) i pro každou konečnou podmnožinu. Důsledkem toho je, že každý konečný svaz má největší a nejmenší prvek. Je evidentní, že každý podsvaz P svazu (L, ) je svazem vyhledem ke stejné relaci uspořádání. Triviálními případy podsvazu jsou celý svaz P = L a jednoprvkové podsvazy P = {a} pro libovolný prvek a L. Dále je ihned zřejmé, že pokud jsou prvky a a b srovnatelné v uspořádané množině (A, ), pak je vždy existuje infimum i supremum pomnožiny {a, b}. Navíc platí, že každá dvě tvrzení ze tří tvrzení a b, inf {a, b} = a a sup {a, b} = b jsou navzájem ekvivalentní. Věta. Nechť je uspořádaná množina (L, ) svaz. Pro každé dva prvky a, b L označme inf {a, b} = a b a sup {a, b} = a b. Potom pro každé tři prvky a, b, c L platí: (1) a a = a, a a = a; (2) a b = b a, a b = b a; (3) a (b c) = (a b) c, a (b c) = (a b) c; (4) a (a b) = a, a (a b) = a. Naopak nechť jsou na množině L definovány dvě binární operace a, které splňují zákony uvedené v bodech (1), (2), (3) a (4). Na množině L definujme relaci vztahem a b, právě tehdy, když je a b = a. Takto definovaná relace je uspořádáním na L a (L, ) je svaz, ve kterém platí: inf {a, b} = a b a sup {a, b} = a b.

6 6 Poznámka. Binární operace se nazývá průsek, binární operace se nazývá spojení. Zákony uvedené v bodech (1), (2), (3) a (4) se postupně nazývají idempotentní, komutativní, asociativní a absorbční. Na Obr. 2 jsou uvedeny diagramy všech možných svazů na jednoprvkové, dvouprvkové, tříprvkové a čtyřprvkové množině (dva svazy). Obr. 2: Svazy na maximálně čtyřprvkové množině Je velmi snadné ukázat, že v každém svazu (L,, ) platí následující vztahy: a a b, a b a, a b a c d implikuje a c b d a a c b d, a b a c b implikuje a c b a a b a a c implikuje a b c, a (b c) (a b) (a c), (a b) (a c) (a (b c). V některých svazech platí i některé další identity či vztahy. Příkladem takových svazů jsou. tzv. distributivní svazy a komplementární svazy. Uveďme si definici a ukažme některé zajímavé vlastnosti. Definice. Řekneme, že svaz (L,, ) je distributivní, jestliže pro libovolné tři prvky a, b, c L platí: a (b c) = (a b) (a c) a (a b) (a c) = (a (b c). Poznámka. Identity, které musí splňovat distributivní svazy se nazývají distributivní zákony. Je možno ukázat (pokuste se o to) že platí li v nějakém svazu jeden z distributivních zákonů, pak v něm platí i druhý. jsou možné i jiné ekvivalentní definice. Ukažme si dvě vlastnosti distributivních svazů, které by mohly být považovány i definici distributivních svazů. Připomeňme, že podsvazem svazu (L,, ) se rozumí každá neprázdná podmnožina M L pro kterou platí: jsou li a, b M, pak i a b M a a b M. Je zřejmé, že v tomto případě je (M,, ) opět svaz. Věta. Následující tvrzení jsou pro svaz (L,, ) ekvivalentní: a) (L,, ) je distributivní svaz; b) pro každé tři prvky a, b, c L platí: je li a b = a c a a b = a c, pak je b = c; c) svaz (L,, ) neobsahuje jako podsvaz ani jeden ze svazů uvedených na Obr. 3. Obr. 3: Nedistributivní svazy

7 Nejmenší prvek svazu (pokud existuje) budeme značit 0 a největší prvek svazu (pokud existuje) budeme značit 1. Svaz (L,, ) s největším a nejmenším prvkem budeme dále obvykle označovat (L,,, 0, 1). Definice. Řekneme, že svaz (L,,, 0, 1) je komplementární, jestliže ke každému prvku a L existuje prvek a L takový, že je a a = 0 a a a = 1. Distributivní a komplementární svaz, který má alespoň dva prvky, budeme nazývat Booleovou algebrou. Poznámka. Zobrazení a a je unární operace na množině L a proto budeme svazy s největším a nejmenším prvkem obvykle značit (L,,, 0, 1, ). Je zřejmé, že 0 = 1, 1 = 0 a (a ) = a. Pokud je komplementární svaz distributivní (tedy Booleova algebra), platí v něm i tzv. de Morganovy zákony, tj. pro každé dva prvky a, b L je (a b) = a b a (a b) = a b. Poznámka. Jsou li L 1, L 2,..., L n svazy, pak jejich kartézský součin L 1 L 2 L n je opět svaz. Pro operace průsek a spojení v tomto svazu platí, že (a 1, a 2,..., a n ) (b 1, b 2,..., b n ) = (a 1 b 1, a 2 b 2,..., a n b n ), (a 1, a 2,..., a n ) (b 1, b 2,..., b n ) = (a 1 b 1, a 2 b 2,..., a n b n ). Pokud svazy L 1, L 2,..., L n mají nejmenší prvky 0 1, 0 2,... 0 n, případně největší prvky 1 1, 1 2,... 1 n. nebo jsou komplementární, potom také svaz L 1 L 2 L n má nejmenší prvek 0 = (0 1, 0 2,... 0 n ), případně největší prvek = (1 1, 1 2,... 1 n ). Pokud svazy L 1, L 2,..., L n jsou komplementární resp. distributivní, potom je i svaz L 1 L 2 L n komplementární resp. distributivní. Speciálně z toho plyne, že kartézský součin Booleových algeber je opět Booleova algebra. Příklady k procvičení 1) Jaké vlastnosti mají relace R a S na množině Z všech celých čísel definované vztahy x R y právě tehdy, je li x y = 2 a x S y právě tehdy, je li x y = 2? 2) Jaké vlastnosti mají relace R a S na množině Z definované vztahy x R y právě tehdy, je li x y {0, 2, 4,... } (tj. x y je sudé číslo) a x S y právě tehdy, je li x y = {0, 2, 4,... } (tj. x y je liché číslo? 3) Jaké vlastnosti mají relace R a S na množině Z Z definované vztahy (a, b) R (c, d) právě tehdy, když a c a b d a (a, b) S (c, d) právě tehdy, když a + b c + d? Jaký je mezi nimi vztah? 4) Na množině M = {(x, y); x Z, y Z, y 0} definujeme relaci R předpisem (m, n) R (p, q)právě tehdy, je li m q = n p. Jaké vlastnosti má a co popisuje tato relace? 5) Jaké vztahy platí mezi relacemi mod(3), mod(5) a mod(15)? 6) Určete průnik relací mod(6), mod(8) a mod(10)? 7) Na následujícím obrázku Obr. 4 jsou zobrazeny diagramy uspořádaných množin A, B, C a D. Které z těchto uspořádaných množin jsou svazy? Které ze svazů jsou distributivní a které komplementární? Výsledky 1) Relace R je pouze symetrická, relace S je symetrická a reflexivní. 2) Relace R je reflexivní, symetrická a tranzitivní (tj. je ekvivalence), relace S je pouze symetrická. 3) Relace R je uspořádání, relace S je reflexivní a tranzitivní. 7

8 8 A B C D Obr. 4: Uspořádané množiny A, B, C, D 4) Relace R je ekvivalence na množině M a (m, n) R (p, q) popisuje rovnost dvou racionálních čísel m n a p q. 5) mod(3) mod(5) = mod(15). 6) mod(6) mod(8) mod(10) = mod(60). 7) Uspořádané množiny A, C a D jsou svazy, B svaz není. Distributivní svazy jsou svazy A a C. Komplementární svaz je pouze svaz D.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

Diskrétní matematika. Martin Kovár

Diskrétní matematika. Martin Kovár Diskrétní matematika Martin Kovár Tento text byl vytvořen v rámci realizace projektu CZ.1.07/2.2.00/15.0156, Inovace výuky matematických předmětů v rámci studijních programů FEKT a FIT VUT v Brně, realizovaném

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

Matematické základy kryptografických algoritmů Eliška Ochodková

Matematické základy kryptografických algoritmů Eliška Ochodková Matematické základy kryptografických algoritmů Eliška Ochodková Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor 2 Předmluva (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor Výpočetní technika na Elektrotechnické fakultě ČVUT. Jak název napovídá, hlavním cílem

Více

Jaromír Kuben. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016

Jaromír Kuben. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA DIFERENCIÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ Jaromír Kuben Petra Šarmanová Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04..03/3..5./006

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Úvod do teorie dělitelnosti

Úvod do teorie dělitelnosti Úvod do teorie dělitelnosti V předchozích hodinách matematiky jste se seznámili s desítkovou soustavou. Umíte v ní zapisovat celá i desetinná čísla a provádět zpaměti i písemně základní aritmetické operace

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4.

Obsah 1. Základní algebraické pojmy... 2 2. Monoidové okruhy a některé další základní konstrukce... 4 3. Podgrupy a jiné podstruktury... 7 4. Obsah 1. Základní algebraické pojmy........................ 2 2. Monoidové okruhy a některé další základní konstrukce.............. 4 3. Podgrupy a jiné podstruktury....................... 7 4. Kvocientní

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Aritmetika s didaktikou I.

Aritmetika s didaktikou I. Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 11 Nejmenší společný násobek Největší společný dělitel O čem budeme hovořit: Nejmenší společný násobek a jeho vlastnosti Největší

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

5. Formalizace návrhu databáze

5. Formalizace návrhu databáze 5. Formalizace návrhu databáze 5.1. Úvod do teorie závislostí... 2 5.1.1. Funkční závislost... 2 5.1.2. Vícehodnotová závislost (multizávislost)... 7 5.1.3. Závislosti na spojení... 9 5.2. Využití teorie

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

ZÁKLADY TEORETICKÉ INFORMATIKY

ZÁKLADY TEORETICKÉ INFORMATIKY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ZÁKLADY TEORETICKÉ INFORMATIKY PAVEL MARTINEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Spolehlivost soustav

Spolehlivost soustav 1 Spolehlivost soustav Spolehlivost soustav 1.1 Koherentní systémy a strukturní funkce Budeme se zabývat modelováním spolehlivosti zřízení s ohledem na spolehlivost jeho komponent. Jedním z hlavních cílů

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Reziduovaná zobrazení

Reziduovaná zobrazení Reziduovaná zobrazení Irina Perfilieva Irina.Perfilieva@osu.cz 1. března 2015 Outline 1 Reziduované zobrazení 2 Izotónní/Antitónní zobrazení Definice Necht A, B jsou uspořádané množiny. Zobrazení f : A

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Základy fuzzy logiky 1

Základy fuzzy logiky 1 A Tutorial Základy fuzzy logiky 1 George J. Klir Petr Osička State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University, Olomouc, Czech Republic prepared

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Matematické struktury

Matematické struktury . Texty k přednášce Matematické struktury Aleš Pultr Katedra aplikované matematiky a ITI, MFF University Karlovy, 2005 . 2 Obsah Místo úvodu Kapitola I : Množiny, relace, zobrazení 1. Množiny : dohoda

Více

Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8].

Poznámka 1.1. Nechť A(α i i I)jealgebraaA j jepodalgebra Aprokaždé j J.Pak j J A jjerovněžpodalgebra A. Důkaz. Viz[D, 2.1, 2.8]. 1. Algebry, homomorfismy, kongruence Definice. Prokaždécelé n 0nazveme n-ární operací na množině Akaždé zobrazení A n A(číslo nbudemenazývataritounebočetnostíoperace).nechť (α i i I)jesystémoperacínamnožině

Více

Analýza a modelování dat 3. přednáška. Helena Palovská

Analýza a modelování dat 3. přednáška. Helena Palovská Analýza a modelování dat 3. přednáška Helena Palovská Historie databázových modelů Relační model dat Codd, E.F. (1970). "A Relational Model of Data for Large Shared Data Banks". Communications of the ACM

Více

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26

2 Vektory a vektorové prostory 23 2.1 Lineární závislost a nezávislost vektorů... 25 2.2 Souřadná soustava a báze... 26 Obsah 1 Matice 3 11 Operace s maticemi 4 12 Soustavy lineárních rovnic 11 13 Maticové rovnice a výpočet inverzní matice 15 14 Elementární matice 19 15 Cvičení 21 16 Řešení 22 2 Vektory a vektorové prostory

Více

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte

dr. Gollové vyjít, se podívat sem. Když si budete ty příklady jen tupě pročítat, tak se naučíte lim 0. Pokud máte Úvod Právě se díváte na moje řešení příkladů z X01AVT z roku 2007/2008. Zajisté obsahují spousty chyb a nedokáže je pochopit nikdo včetně autora, ale aspoň můžou posloužit jako menší návod k tomu, jak

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Hierarchický databázový model

Hierarchický databázový model 12. Základy relačních databází Když před desítkami let doktor E. F. Codd zavedl pojem relační databáze, pohlíželo se na tabulky jako na relace, se kterými se daly provádět různé operace. Z matematického

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR):

Jaký je rozdíl v definicicíh VARCHAR2(20 BYTE) a VARCHAR2(20 CHAR): Mezi příkazy pro manipulaci s daty (DML) patří : 1. SELECT 2. ALTER 3. DELETE 4. REVOKE Jaké vlastnosti má identifikující relace: 1. Je relace, která se využívá pouze v případě modelovaní odvozených entit

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.

Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150. Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Teorie čísel a úvod do šifrování RNDr. Zbyněk Šír, Ph.D. Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím online

Více

Pokrytí šachovnice I

Pokrytí šachovnice I Pokrytí šachovnice I VŠB-TU Ostrava, fakulta FEI Obor: Informatika výpočetní technika Předmět: Diskrétní matematika (DIM) Zpracoval: Přemysl Klas (KLA112) Datum odevzdání: 25.11.2005 1) Abstrakt: Máme

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více