Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Rozměr: px
Začít zobrazení ze stránky:

Download "Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny"

Transkript

1 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně omocí řešení odvozených ro jednorozměrné roudění newtonské kaaliny v jednodušších geometriích. A. Využití geometrie evná ohyblivá deska Využití řešení roudění v geometrii evná ohyblivá deska ro řibližné řešení ro: Tangenciální beztlakové roudění (radiální kluzné ložisko, rotační viskosimetr). Axiální atní kluzné ložisko. Kuželové kluzné ložisko. Viskosimetr kužel deska. B. Využití geometrie evná evná deska Využití řešení roudění vlivem tlakového gradientu v geometrii evná ohyblivá deska (štěrbina) ro řibližné řešení ro: Axiální tlakové roudění v mezikruží. Aroximativní řešení A. Využití geometrie evná ohyblivá deska. Proudění v geometrii evná ohyblivá deska Jednorozměrné roudění newtonské kaaliny v mezeře mezi evnou a ohyblivou deskou ohybující se rychlostí v v daném směru - viz obr. A- se zakresleným zvoleným systémem kartézských souřadnic. Obr. A- Pevná a ohyblivá deska řešení

2 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Desky vodorovné nekonečných rozměrů (vzdálenost desek, rychlost ohybující se desky v). Jednorozměrné roudění u x 0, u y = u z = 0. Proudění bez tlakového gradientu v ose x (x, y) = (x, y). Řešení Řešením Cauchyho rovnice a Newtonova zákona vazkého tření res. řešením Navier tokesovy rovnice: Rychlostní rofil u x ( y) = v y Profil dynamického naětí τ yx µ ( y) = v (A ) (A ) Tlakový rofil = + ρ g ( ) (A ) 0 y Vztah (A-) oisuje růběh hydrostatického tlaku v mezeře. Vzhledem k obvyklým rozměrům mezery je změna hydrostatického tlaku zanedbatelná a ři výočtech se neuvažuje. Vztahy (A-) a (A-) jsou odvozeny mimo jiné za ředokladu nekonečné desky a řesně vzato latí ouze a jen ro nekonečnou desku. Avšak v říadě konečné desky konečných rozměrů, kdy rozměry desky >>> mezera mezi deskami, si můžeme dovolit tuto konečnou desku ovažovat za nekonečnou a oužít ro ois rychlostního rofilu a rofilu dynamického naětí vztahy (A-) a (A-). amozřejmě na okrajích desky toto nelatí, zde jsou rofily ovlivněny okrajem a je zde D roudění, avšak vzhledem k vzájemným rozměrům desky a mezery mezi deskami je zůsobená chyba zanedbatelná. V říadě konečné desky o šířce B a délce, kdy B >>> lze dále vyočítat: íla ůsobící na desku o loše d = B. a zajišťující ohyb desky rychlostí v F = τ yx d v µ (A 4) = d Objemový růtok kaaliny mezerou o růřezu = B. vyvolaný ohybem desky ; V" = u x d = d = B dy = u 0 x B dy = B v třední rychlost toku kaaliny u růřezem = B. V" u x = = = B = v (A 5) (A 6)

3 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze. Tangenciální roudění bez tlakového gradientu řibližné řešení Jednorozměrné roudění newtonské kaaliny v mezeře mezi vnitřním rotujícím válcem o oloměru R a vnějším evným válcem o oloměru R. Proudění je vyvoláno rotací jednoho z válců, nikoli tlakovým gradientem - viz obr. A-. Válce nekonečné délky res. >>> (R R ). Jednorozměrné roudění u ϕ 0, u r = u z = 0. Proudění bez tlakového gradientu v mezeře. Přibližné řešení Obr. A- Tangenciální roudění bez tlakového gradientu řibližné řešení Rozvinutí odle středního oloměru R R + R R = Relace mezi arametry obou geometrií (A 7) y = R r ro r R ; R (A 8) = R R (A 9) B = π (A 0) R

4 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze v = ω R (A ) ω = π n (A ) kde ω úhlová rychlost, n otáčky. Rychlostní rofil (římkový rofil) r R ; R u ϕ R + R R + R ( r) = ω ( R r) = π n ( R R R R R r Profil dynamického naětí (konstantní rofil) r R ; R R + R R + R ( r) = µ ω = π µ n R R R R τ r ϕ ) (A ) (A 4) íla ůsobící na rotujícím válci o loše =.π.r. a zajišťující ohyb válce rychlostí v F( R v µ v µ ) = τ yx ( R ) ( R ) = = π R Kroutící moment zajišťující ohyb válce rychlostí v M K (A 5) = F( R ) R (A 6) ojením a úravou (A-7), (A-9), (A-0), (A-), (A-), (A-5) a (A-6): M k π ( R + R ) π ( R + R = µ ω ) = µ n 4 R R R R (A 7) Vztah (A-7) řesně vzato latí ouze a jen ro nekonečné válce. Avšak v říadě konečných válců konečných rozměrů, kdy rozměry válců >>> mezera mezi válci, si můžeme dovolit ovažovat tyto konečné válce za nekonečné a oužít ro ois rychlostního rofilu a rofilu dynamického naětí vztahy (A-) a (A-4) a ro výočet kroutícího momentu vztah (A-7). amozřejmě na okrajích válců toto nelatí, zde jsou rofily ovlivněny okrajem a je zde D roudění, avšak vzhledem k vzájemným rozměrům válců a mezery mezi válci je zůsobená chyba zanedbatelná. Chyba aroximace Chyba aroximace je rezentována na orovnání výočtových hodnot dynamických. viskozit: κ = R /R 0,95 0,9 0,85 0,8 0,75 0,7 0,65 0,6 0,55 0,5 µ r / µ 0,999 0,994 0,987 0,975 0,960 0,99 0,9 0,879 0,89 0,790 ymboly: R oloměr vnitřního rotujícího válce, R oloměr vnějšího evného válce, R střední oloměr ; R = (R + R )/, délka vnitřního rotujícího válce, κ = R / R = D / D, M k kroutící moment na rotujícím válci, ω - úhlová rychlost, n otáčky vnitřního rotujícího válce, µ r - dynamická viskozita z rovinné aroximace, µ - dynamická viskozita z řesného řešení, r oloměr. 4

5 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze. Axiální atní kluzné ložisko Jednorozměrné roudění newtonské kaaliny v mezeře mezi sodní lochou rotujícího válce o oloměru R. Proudění je vyvoláno rotací válce - viz obr. A-. Válec nekonečného růměru res. R >>>. Jednorozměrné roudění u ϕ 0, u r = u z = 0. Proudění bez tlakového gradientu v mezeře. Obr. A- Axiální atní kluzné ložisko řibližné řešení Přibližné řešení Relace mezi arametry obou geometrií v = ω r (A 8) kde ω úhlová rychlost dle (A-). Kroutící moment kde dm K = r df (A 9) v df = τ xy d = µ d (A 0) d = π r dr (A ) ojením (A-8), (A-9), (A-0) a (A-): integrací v mezích 0 R: µ ω dm K = π r dr, M k = π R 4 µ ω, (A ) (A ) 5

6 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze v říadě existence středového vybrání o oloměru R V integrace v mezích R V R. Vztah (A-) je oužitelný za ředokladu R >>>. amozřejmě na okraji válce jsou rofily ovlivněny okrajem a je zde D roudění, avšak vzhledem k vzájemným rozměrům válce a mezery za ředokladu R >>> je zůsobená chyba zanedbatelná. 4. Kuželové atní kluzné ložisko Jednorozměrné roudění newtonské kaaliny v mezeře mezi kuželovými lochami. Proudění je vyvoláno rotací válce ukončeného kuželovou lochou - viz obr. A-4. Kuželová locha nekonečného rozměru res. R >>>. Jednorozměrné roudění u ϕ 0, u r = u ϑ = 0. Proudění bez tlakového gradientu v mezeře. Přibližné řešení Obr. A-4 Kuželové atní kluzné ložisko řibližné řešení Relace mezi arametry obou geometrií v = ω r (A 4) kde ω úhlová rychlost dle (A-). Kroutící moment kde dm K = r df (A 5) v df = τ xy d = µ d (A 6) d = π r dx (A 7) dr dx = sin(α / ) (A 8) 6

7 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze ojením (A-4), (A-5), (A-6), (A-7) a (A-8): integrací v mezích 0 R: µ ω dm K = π r dr, sin( α / ) M K = R µ ω π sin( α / ) 4. (A 9) (A 0) Vztah (A-0) je oužitelný za ředokladu R >>>. amozřejmě na okraji a vrcholu kuželové lochy jsou rofily ovlivněny okrajem a je zde D roudění, avšak vzhledem k vzájemným rozměrům lochy a mezery za ředokladu R >>> je zůsobená chyba zanedbatelná. 5. Viskosimetr kužel deska Jednorozměrné roudění newtonské kaaliny v rostoru mezi kuželovou lochou o výšce a oloměru R a deskou. Proudění je vyvoláno rotací kuželové lochy - viz obr. A-5. Tato konfigurace se oužívá ro měření viskosity velmi viskózních látek astovitého charakteru. Konfigurace zobrazená na obr. A-5 není z důvodu řehlednosti zakreslena v měřítku úhel α je cca 0,5. Kužel. locha nekonečného rozměru s velkým vrcholovým úhlem res.r >>> a α 0. Jednorozměrné roudění u ϕ 0, u r = u ϑ = 0. Proudění bez tlakového gradientu v rostoru. Obr. A-5 Viskosimetr kužel deska řibližné řešení 7

8 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Přibližné řešení Relace mezi arametry obou geometrií δ = r tgα (A ) v = ω r (A ) kde ω úhlová rychlost dle (A-). Kroutící moment kde dm K = r df (A ) v (A 4) df = τ xy d = µ d δ d = π r dr (A 5) ojením (A-), (A-), (A-), (A-4) a (A-5): integrací v mezích 0 R: µ ω dm K = π r dr, tgα R = π µ ω. tgα M K (A 6) (A 7) Vztah (A-7) je oužitelný za ředokladu R >>>. amozřejmě na okraji a u vrcholu kuželové lochy jsou rofily ovlivněny okrajem a je zde D roudění, avšak vzhledem k vzájemným rozměrům lochy a mezery za ředokladu R >>> a α 0 je zůsobená chyba zanedbatelná. 8

9 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze B. Využití geometrie evná evná deska. Proudění v geometrii evná evná deska Jednorozměrné roudění newtonské kaaliny v mezeře mezi dvěma evnými deskami vlivem tlakového gradientu - viz obr. B- se zakresleným zvoleným systémem kartézských souřadnic. Obr. B- Dvě evné desky řešení Desky vodorovné nekonečných rozměrů (vzdálenost desek ). Jednorozměrné roudění u x 0, u y = u z = 0. Proudění vlivem tlakového gradientu ; (x = ) =, (x = ) =. Řešení Rychlostní rofil u x ( y) = µ ro (x = ) =, (x = ) =, kde < a >. y Profil dynamického naětí τ yx ( y) = y y (B ) (B ) Tlakový rofil ( y) = 0 + ρ g ( y) (B ) Vztah (B-) oisuje růběh hydrostatického tlaku v mezeře. Vzhledem k obvyklým rozměrům mezery a tlakovému gradientu / je změna hydrostatického tlaku zanedbatelná a ři výočtech se neuvažuje. 9

10 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Vztahy (B-) a (B-) jsou odvozeny mimo jiné za ředokladu dvou nekonečných desek a řesně vzato latí ouze a jen ro nekonečné desky. Avšak v říadě konečných desek konečných rozměrů, kdy rozměry desek >>> mezera mezi deskami, si můžeme dovolit tyto konečné desky ovažovat za nekonečné a oužít ro ois rychlostního rofilu a rofilu dynamického naětí vztahy (B-) a (B-). amozřejmě na okrajích desky toto nelatí, zde jsou rofily ovlivněny okrajem a je zde D roudění, avšak vzhledem k vzájemným rozměrům desek a mezery mezi deskami je zůsobená chyba zanedbatelná. V říadě konečných desek o šířce B a délce, kdy B >>> lze dále vyočítat: Objemový růtok kaaliny mezerou o růřezu = B. : V" = ux d = d = B dy = ux B dy = µ třední rychlost toku kaaliny u růřezem = B. V" u x = = = B = 0. Axiální tlakové roudění v mezikruží µ B (B 4) (B 5) Jednorozměrné roudění newtonské kaaliny v mezikruží mezi dvěma evnými válci o oloměru R a R (R < R ) vlivem tlakového gradientu - viz obr. B-. Obr. B- Axiální tlakové roudění v mezikruží řibližné řešení Dva koncentrické válce vodorovné nekonečné délky o oloměru R a R (R < R ). Jednorozměrné roudění u z 0, u r = u ϕ = 0. Proudění vlivem tlakového gradientu ; (x = ) =, (x = ) =. 0

11 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Přibližné řešení Rozvinutí odle středního oloměru R R + R R = Relace mezi arametry obou geometrií R (B 6) y = r ro r R ; R (B 7) = R R (B 8) B = π (B 9) R Rychlostní rofil (arabolický rofil) r R ; R třední rychlost u z ( r) = µ u = µ ( R R ) ( R R ) r R R R r R R R Maximální rychlost maximální rychlost v ose štěrbiny, tj y umax = /: r u max u (B 0) (B ) = R + ( R R ) / (B a) max ( R R ) (B b) = 8 µ Profil dynamického naětí (římkový rofil) r R ; R τ yx ( r) = Objemový růtok ( R ojením a úravou (B-4), (B-6), (B-8) a (B-9): V" π = µ r R R ) R R ( R + R ) ( R R ) (B ) (B 4) Vztah (B-4) řesně vzato latí ouze a jen ro nekonečné válce. Avšak v říadě konečných válců konečných rozměrů, kdy rozměry válců >>> mezera mezi válci, si můžeme dovolit ovažovat tyto konečné válce za nekonečné a oužít ro ois rychlostního rofilu a rofilu dynamického naětí vztahy (B-0) a (B-) a ro výočet objemového růtoku vztah (B-4). Chyba aroximace Chyba aroximace je rezentována na orovnání růtoků: κ = R /R 0,9 0,8 0,7 0,6 0,5 0,4 0, 0, 0, V" r / V",000 0,999 0,998 0,996 0,99 0,987 0,978 0,96 0,9

12 U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Ověření ředokladu jednorozměrného roudění V" ( + κ ) ( κ ) = (B 5) r" V 4 ( κ ) κ ln κ Předoklad jednorozměrného roudění je slněn, je li roudění laminární. Zda je roudění laminární nebo turbulentní se určí dle hodnoty Reynoldsova čísla. V říadě nekruhového rofilu je Renoldsovo číslo definováno dle: u d ρ = h u d Re = h h, ν µ kde : d h hydraulický růměr, u střední rychlost, ν kinematická viskozita, µ - dynamická viskozita, ρ hustota. (B 6) Režim toku: laminární roudění Re h < 00 ; turbulentní roudění 00 < Re h ydraulický růměr Rovinná štěrbina d h = (B 7a) Mezikruží = d d = ( R ) (B 7b) d h R ymboly tlak v trubce v délce, tlak v trubce v délce, = ( ) tlakový sád na délce =, R vnější oloměr vnitřní trubky, R vnitřní oloměr vnější trubky, R střední oloměr ; R = (R + R )/ D vnější růměr vnitřní trubky, D vnitřní růměr vnější trubky, κ = R / R = D / D V" r - objemový růtok z rovinné aroximace, V " - objemový růtok z řesného řešení, délka trubky, µ - dynamická viskozita, r oloměr. Radek Šulc 004/v

HYDROMECHANIKA 3. HYDRODYNAMIKA

HYDROMECHANIKA 3. HYDRODYNAMIKA . HYDRODYNAMIKA Hydrodynamika - část hydromechaniky zabývající se říčinami a důsledky ohybu kaalin. ZÁKLADY PROUDĚNÍ Stavové veličiny roudění Hustota tekutin [kgm - ] Tlak [Pa] Telota T [K] Rychlost [ms

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

K141 HY3V (VM) Neustálené proudění v potrubích

K141 HY3V (VM) Neustálené proudění v potrubích Neustálené roudění v tlakových otrubích K4 HY3 (M) Neustálené roudění v otrubích 0 ÚOD Ustálené roudění ouze rostorové změny Neustálené roudění nejen rostorové, ale i časové změny vznik ři jakýchkoliv

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze Přenos hybnosti Příklad I/1 Ocelová deska o ploše 0,2 m 2 se pohybuje rovnoměrným přímočarým pohybem na tenkém olejovém filmu rychlostí 0,1 m/s. Tloušťka filmu 2 mm. Vypočtěte sílu F, kterou musíte působit

Více

VYHODNOCENÍ MĚŘENÍ (varianta "soulodí")

VYHODNOCENÍ MĚŘENÍ (varianta soulodí) VYHODNOCENÍ MĚŘENÍ (varanta "soulodí") Měřl (Jméno, Příjmení, skuna):... Datum:... Vyhodnocení hydrometrckého měření na Berounce (soulodí) Z vyočtených rychlostí ve všech bodech svslce určíme střední svslcovou

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

PROCESY V TECHNICE BUDOV cvičení 1, 2

PROCESY V TECHNICE BUDOV cvičení 1, 2 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ AKULTA APLIKOVANÉ INORMATIKY PROCESY V TECHNICE BUDOV cvičení, část Hana Charvátová, Dagmar Janáčová Zlín 03 Tento studijní materiál vznikl za finanční odory Evroského sociálního

Více

Nelineární model pneumatického pohonu

Nelineární model pneumatického pohonu XXVI. SR '1 Seminar, Instruments and Control, Ostrava, ril 6-7, 1 Paer 48 Nelineární model neumatického ohonu NOSKIEVIČ, Petr Doc.,Ing., CSc., Katedra TŘ-35, VŠ-TU Ostrava, 17. listoadu, Ostrava - Poruba,

Více

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob

Povrchová vs. hloubková filtrace. Princip filtrace. Povrchová (koláčová) filtrace. Typy filtrů. Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace Princi iltrace Povrchová vs. hloubková iltrace» Dělení evných částic od tekutiny na orézní iltrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka Tyy

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Inženýrství chemicko-farmaceutických výrob

Inženýrství chemicko-farmaceutických výrob Tekutiny Dorava tekutin Filtrace 1 Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrační koláč Filtrační řeážka Filtrát Povrchová vs. hloubková filtrace

Více

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin.

Princip filtrace. Inženýrství chemicko-farmaceutických výrob. Inženýrství chemicko-farmaceutických výrob. Tekutiny Doprava tekutin. Tekutiny Dorava tekutin Filtrace Princi filtrace» Dělení evných částic od tekutiny na orézní filtrační řeážce Susenze, Aerosol Filtrát Filtrační koláč Filtrační řeážka 1 Povrchová vs. hloubková filtrace

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

PROCESNÍ INŽENÝRSTVÍ 7

PROCESNÍ INŽENÝRSTVÍ 7 UNIERZITA TOMÁŠE BATI E ZÍNĚ AKUTA APIKOANÉ INORMATIKY PROCENÍ INŽENÝRTÍ 7 ýočty sojené s filtrací Dagmar Janáčová Hana Carvátová Zlín 01 Tento studijní materiál vznikl za finanční odory Evroskéo sociálnío

Více

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60 KLUZNÁ LOŽIKA U PM oužití ro uložení ojnic, klikovýc a vačkovýc řídelů, vaadel a kol rovodů, Zde dnes výradně kluná ložiska s řívodem tlakovéo maacío oleje. Pro rvní návr se oužívá nejjednoduššíc metod

Více

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1)

Postup řešení: Výkon na hnacích kolech se stanoví podle vztahu: = [W] (SV1.1) říklad S1 Stanovte potřebný výkon spalovacího motoru siničního vozidla pro jízdu do stoupání 0 % rychlostí 50 km.h -1 za bezvětří. arametry silničního vozidla jsou: Tab S1.1: arametry zadání: G 9,8. 10

Více

VI. Nestacionární vedení tepla

VI. Nestacionární vedení tepla VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více

Kuželový čep. D α. Krouticí moment (N.m) M k =M k (D,h,ω,α,µ) Teplota vzduchu ( C) T=T(z,...) s d. 160 o C 100 o C

Kuželový čep. D α. Krouticí moment (N.m) M k =M k (D,h,ω,α,µ) Teplota vzduchu ( C) T=T(z,...) s d. 160 o C 100 o C Kuželový čep o průměru 40 mm, znázorněný na obrázku, se otáčí úhlovou rychlostí 100 s -1 na olejovém filmu tloušťky 0,001 m. Určete krouticí moment potřebný k překonání vazkého tření v případě, že znáte

Více

Vzorové příklady - 4.cvičení

Vzorové příklady - 4.cvičení Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

Předpjatý beton Přednáška 12

Předpjatý beton Přednáška 12 Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od

Více

Proudění vody v potrubí. Martin Šimek

Proudění vody v potrubí. Martin Šimek Proudění vody v potrubí Martin Šimek Zadání problému Umělá vlna pro surfing Dosavadní řešení pomocí čerpadel Sestrojení modelu pro přívod vody z řeky Vyčíslení tohoto modelu Zhodnocení výsledků Návrh systému

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2

PŘÍKLADY K MATEMATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY. x 2. 3+y 2 PŘÍKLADY K ATEATICE 3 - VÍCENÁSOBNÉ INTEGRÁLY ZDENĚK ŠIBRAVA.. Dvojné integrály.. Vícenásobné intergrály Příklad.. Vypočítejme dvojný integrál x 3 + y da, kde =, 3,. Řešení: Funkce f(x, y) = x je na obdélníku

Více

CVIČENÍ Z ELEKTRONIKY

CVIČENÍ Z ELEKTRONIKY Střední růmyslová škola elektrotechnická Pardubice CVIČENÍ Z ELEKRONIKY Harmonická analýza Příjmení : Česák Číslo úlohy : Jméno : Petr Datum zadání :.1.97 Školní rok : 1997/98 Datum odevzdání : 11.1.97

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány

Více

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE

ˇ EDNA SˇKA 9 DALS ˇ I METODY INTEGRACE PŘEDNÁŠKA 9 DALŠÍ METODY INTEGRACE 1 9.1. Věta o substituci Věta 1 (O substituci) Necht je ϕ(x) prosté regulární zobrazení otevřené množiny X R n na množinu Y R n. Necht je M X, f(y) funkce definovaná

Více

7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová

7 Usazování. I Základní vztahy a definice. Lenka Schreiberová, Pavlína Basařová 7 Usazování Lenka Schreiberová, Pavlína Basařová I Základní vztahy a definice Usazování neboli sedimentace slouží k oddělování částic od tekutiny v gravitačním oli. Hustota částic se roto musí lišit od

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Veronika Chrastinová, Oto Přibyl

Veronika Chrastinová, Oto Přibyl Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami

Frézování. Podstata metody. Zákl. způsoby frézování rovinných ploch. Frézování válcovými frézami Fréování obrábění rovinných nebo tvarových loch vícebřitým nástrojem réou mladší ůsob než soustružení (rvní réky 18.stol., soustruhy 13.stol.) Podstata metody řený ohyb: složen e dvou ohybů cykloida (blížící

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

ROTAČNÍ PLOCHY. 1) Základní pojmy

ROTAČNÍ PLOCHY. 1) Základní pojmy ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech

Vícefázové reaktory. MÍCHÁNÍ ve vsádkových reaktorech Vícefázové reaktory MÍCHÁNÍ ve vsádkových reaktorech Úvod vsádkový reaktor s mícháním nejběžnější typ zařízení velké rozmezí velikostí aparátů malotonážní desítky litrů (léčiva, chemické speciality, )

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Opakování základních znalostí z pružnosti a pevnosti

VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Opakování základních znalostí z pružnosti a pevnosti VŠ Technická univerzita Ostrava akulta strojní Katedra ružnosti a evnosti (9) Oakování základních znalostí z ružnosti a evnosti utor: Jaroslav Rojíček Verze: Ostrava 00 PP ouhrn Oakování základní ružnosti:

Více

Úvod. K141 HYAR Úvod 0

Úvod. K141 HYAR Úvod 0 Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje

Více

Plošný integrál funkce

Plošný integrál funkce Kapitola 9 Plošný integrál funkce efinice a výpočet Plošný integrál funkce, kterému je věnována tato kapitola, je z jistého pohledu zobecněním integrálů dvojného a křivkového. Základním podnětem k jeho

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,

Výpo ty Výpo et hmotnostní koncentrace zne ující látky , "Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů

Více

Spojitá náhodná veličina

Spojitá náhodná veličina Lekce 3 Sojitá náhodná veličina Příad sojité náhodné veličiny je komlikovanější, než je tomu u veličiny diskrétní Je to dáno ředevším tím, že jednotková ravděodobnost jistého jevu se rozkládá mezi nekonečně

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Namáhání krutem. Napětí v krutu podle Hookova zákona roste úměrně s deformací a svého maxima dosahuje na povrchu součásti

Namáhání krutem. Napětí v krutu podle Hookova zákona roste úměrně s deformací a svého maxima dosahuje na povrchu součásti Pužnost a evnost namáhání utem Namáhání utem Namáhání utem zůsobuje silová dvojice, esetive její outicí moment = F.a, teý vyvolává v namáhaných ůřezech vnitřní outicí moment (viz etoda řezu) Při namáhání

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Návrh: volba druhu vodiče pro dané prostředí pro dané podmínky. způsob ů uložení vodiče stanovení průřezu vodiče pro určitý výkon při daném uložení

Návrh: volba druhu vodiče pro dané prostředí pro dané podmínky. způsob ů uložení vodiče stanovení průřezu vodiče pro určitý výkon při daném uložení Hlavní zásady pro dimenzování Radek Procházka (xprocha1@el.cvut.cz) Elektrické instalace nízkého napětí 007/08 Obecně Návrh: volba druhu vodiče pro dané prostředí pro dané podmínky způsob ů uložení vodiče

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

i β i α ERP struktury s asynchronními motory

i β i α ERP struktury s asynchronními motory 1. Regulace otáček asynchronního motoru - vektorové řízení Oproti skalárnímu řízení zabezpečuje vektorové řízení vysokou přesnost a dynamiku veličin v ustálených i přechodných stavech. Jeho princip vychází

Více

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D.

HYDROMECHANICKÉ PROCESY. Doprava tekutin Čerpadla a kompresory (přednáška) Doc. Ing. Tomáš Jirout, Ph.D. HROMECHANICKÉ PROCES orava tekti Čeradla a komresory (ředáška) oc. Ig. Tomáš Jirot, Ph.. (e-mail: Tomas.Jirot@fs.cvt.cz, tel.: 435 68) ČERPALA Základy teorie čeradel Základí rozděleí čeradel Hydrostatická

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního

Více

Protokol o provedeném měření

Protokol o provedeném měření Fyzikální laboratoře FLM Protokol o rovedeném měření Název úlohy: Studium harmonického ohybu na ružině Číslo úlohy: A Datum měření: 8. 3. 2010 Jméno a říjmení: Viktor Dlouhý Fakulta mechatroniky TU, I.

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q1-1 Dvě úlohy z mechaniky (10 bodíků) Než se pustíte do řešení, přečtěte si obecné pokyny ve zvláštní obálce. Část A. Ukrytý disk (3,5 bodu) Uvažujeme plný dřevěný válec o poloměru podstavy r 1 a výšce

Více

PLATNOST HYDROSTATICKÉHO A HYDRODYNAMICKÉHO PARADOXONU

PLATNOST HYDROSTATICKÉHO A HYDRODYNAMICKÉHO PARADOXONU PLATNOT HYDROTATICKÉHO A HYDRODYNAMICKÉHO PARADOXONU Relevance of the hydrostatic and hydrodynamic aradox BAKALÁŘKÁ PRÁCE BACHELOR THEI AUTOR PRÁCE AUTHOR JIŘÍ VACULA VEDOUCÍ PRÁCE UPERVIOR Ing. IMONA

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla.

Obecné informace. Oběhová čerpadla. Typový identifikační klíč. Výkonové křivky GRUNDFOS ALPHA+ GRUNDFOS ALPHA+ Oběhová čerpadla. Čeradla ředstavují komletní konstrukční řadu oběhových čeradel s integrovaným systémem řízení odle diferenčního tlaku, který umožňuje řizůsobení výkonu čeradla aktuálním rovozním ožadavkům dané soustavy.

Více

Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana

Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kaplana Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor fluidního inženýrství Victora Kalana Měření růtokové, účinnostní a říkonové charakteristiky onorného čeradla Vyracovali:

Více

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti)

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti) VŠ Technická univerzita Ostrava akulta strojní Katedra ružnosti a evnosti (9) Úvod do MKP (Návod do cvičení) Cvičení (Oakování základních znalostí z ružnosti a evnosti) utor: aroslav ojíček Verze: Ostrava

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3.

Fyzikální parametry oleje: dynamická viskozita je 8 mpa s a hustota 850 kg m 3. Ocelová deska o ploše 0,2 m 2 se pohybuje rovnoměrným přímočarým pohybem na tenkém olejovém filmu rychlostí 0,1 m s 1. Tloušt ka filmu je 2 mm. Vypočtěte sílu F, kterou musíte působit na desku, abyste

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Druhy fréz a jejich upínání Upínání obrobků Síly a výkony při frézování

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Druhy fréz a jejich upínání Upínání obrobků Síly a výkony při frézování Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor obrábění Téma: 6. cvičení - Frézování Okruhy: Druhy frézek Druhy fréz a jejich upínání Upínání obrobků Síly

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

2 Odvození pomocí rovnováhy sil

2 Odvození pomocí rovnováhy sil Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy

Více