13 Barvy a úpravy rastrového

Rozměr: px
Začít zobrazení ze stránky:

Download "13 Barvy a úpravy rastrového"

Transkript

1 13 Barvy a úpravy rastrového Studijní cíl Tento blok je věnován základním metodám pro úpravu rastrového obrazu, jako je např. otočení, horizontální a vertikální překlopení. Dále budo vysvětleny různé metody interpolace, které se používají při změně velikosti rastrového obrázku. Mezi základní práce s rastrovým obrázkem patří vytvoření a zobrazení jeho histogramu, úprava jasu, kontrastu, vytvoření negativu, aplikování vybraného filtru, převod na odstíny šedé a další. Tento blok se rovněž bude zabývat barvami a jejich jednotlivými kanály, barevným modelem a prostorem, vytvořením a použitím základních standardních i adaptivních palet. Doba nutná k nastudování 4-5 hodin Průvodce studiem Při studiu tohoto bloku se předpokládá, že student je seznámen se základy reprezentace rastrového obrazu, zná základní možnosti pro popis barev (barevný model), umí přistupovat k jednotlivým pixelům rastrového obrázku a je schopen pracovat s barvami jednotlivých pixelů stejně tak i s barevnými kanály Pixel a jeho barva Jak bylo uvedeno v předchozích blocích, jednotlivé barvy použité v konkrétním rastrovém obrázku jsou součástí určitého barevného prostoru. Samotný barevný prostor je popsán vybraným barevným modelem. Ten umožňuje definovat pomocí jednotlivých proměnných daného modelu (tzv. kanály) všechny barvy daného barevného prostoru. Jak již bylo rovněž uvedeno, rastrový obrázek je tvořen jednotlivými pixely, které jsou uspořádány do řádků a sloupců. To znamená, že celý rastrový obraz je tvořen jakousi maticí pixelů. Každý pixel nese informaci o barvě daného obrazového bodu. A vzhledem k úvodní informaci o barevném prostoru je zřejmé, že barva každého KST/IPOGR 1-1 Petr Veselý

2 jednotlivého pixelu může nabývat libovolnou hodnotu z barevného prostoru, který je rastrovému obrázku přiřazen. Veškeré úpravy rastrového obrazu jsou ve svém principu založeny a změně barevné informace u jednotlivých pixelů obrázku. Tento princip je jistě zřejmý u úprav, jako je převod na odstíny šedé, změna jasu, změna kontrastu, atd. Všechny vyjmenované úpravy mají jedno společné. Během těchto úprav se nemění počet obrazových bodů, jen se upravuje jejich barva. Nicméně popsaný princip platí i pro úpravy, kde dochází ke změně počtu pixelů, např. otočení změna velikosti pomocí interpolace atd. Zde ovšem samotné změně barev předchází vytvoření co do velikosti příslušně upravené kopii původního obrázku a následně je jednotlivých pixelů vytvořené kopie nastavována odpovídající barva, v závislosti na použitém algoritmu Přístup k barvě pixelu V následující ukázce je naznačen přístup k jednotlivým barevným složkám barvy pixelu. Barva pixelu je instance třídy Color. Pomocí jejích metod případně pomocí přístupu k jednotlivým bajtům pomocí operátoru SHR je možné získat hodnotu jednotlivých barevných kanálů R, G, B a A. Kanál A představuje průhlednost dané barvy. Obrázek 1: Kódování jednotlivých barev v proměnné typu int Color c = new Color (255, 0, 128); int r = c.getred(); int g = c.getgreen(); int b = c.getblue(); String rgb = Integer.toHexString(c.getRGB()); rgb = rgb.substring(2, rgb.length()); int i = c.getrgb();// v hexa AARRGGB r = (i & 0xFF0000) >> 16; g = (i & 0xFF00) >> 8; b = i & 0xFF; // AA standardně nastaveno na 0xFF KST/IPOGR 1-2 Petr Veselý

3 Důležité upozornění: Grafické knihovny některých vývojových nástrojů skládají RGB kanály opačně (např. Delphi) Geometrické transformace Geometrické transformace u rastrového obrázku představují především jeho otočení. V případě otáčení dochází v podstatě k transformacím souřadnic jednotlivých pixelů. V případě otočení o úhel, který je násobkem 90, se jedná o bezeztrátový celočíselný algoritmus. To znamená, že originální i transformované souřadnice jsou celá čísla a operace je vratná beze ztráty jakékoliv informace. V případě otočení o volný reálný úhel se jedná o operaci, při které dochází k přepočítávání polohy pixelu pomocí vztahů pro transformace otočení, jejímž výsledkem je reálná hodnota, kterou je třeba před použitím zaokrouhlit. Dochází ke změně rozměrů obrázku (v ojedinělých případech zůstává rozměr stejný) Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha pixelu ve výsledném rastru zpětné pro pixely výsledného rastru se hledají odpovídající pixely v původním rastru (většinou reálná hodnota). Vybranou metodou (volba se promítne do kvality) se určí barva výsledného pixel dle sousedů původním rastru. Při dopředném mapování mohou vznikat prázdná místa ve výsledném rastru, které je potřeba nalézt a určit jejich barvu z vyplněných sousedů. KST/IPOGR 1-3 Petr Veselý

4 Obrázek 2: Vznik děr v závislosti na úhlu otočení Rovněž je třeba správě určit rozměry výsledného obrázku jako pravoúhelníkové ohraničení. Vztah pro novou velikost lse obecně zapsat jako: ( š', v' ) f ( š, v, ) Obrázek 3: Otočení obrázku 13.3 Změna velikosti Změna velikosti je jednou z nejčastěji používaných operací. KST/IPOGR 1-4 Petr Veselý

5 Princip: převzorkování převedení diskrétního signálu na spojitý a provedení nového vzorkování Interpolace nejbližším sousedem novyrozmer = staryrozmer * koefzmeny Pokud je koeficient zvětšení (zmenšení) k celé číslo, potom každý pixel zopakuji k-krát (kreslí se pouze každý k-tý řádek). Pro reálný poměr se určí nový rozměr a pro každý pixel v novém rozměru určím nejbližšího souseda v původním obrázku Obrázek 4: Porovnání dvou principů interpolace nejbližším sousedem při poměru 12/5 Lineární interpolace (bilineární) určí hodnoty f(x), pokud znám f(x0) a f(x1) pro x0 < x < x1. Bilineární interpolaci získáme postupnou aplikací lineární interpolace v obou směrech f x x 0 x) f X 0 ( f X1 f X ) x1 x0 ( 0 Obrázek 5: Princip lineární interpolace KST/IPOGR 1-5 Petr Veselý

6 Kubická interpolace (bikubická) využívá vytvoření splajnové kubické křivky jako závislosti pro výpočet interpolované hodnoty. Umožňuje výpočet libovolného bodu na křivce. Více viz blok 8 křivky. Obrázek 6: Princip kubické interpolace Následující příklad demonstruje interpolaci v ploše. Výpočet lze provádět postupně (dvě interpolace v řádku a následně z vypočítaných hodnot provést interpolaci ve sloupci) nebo jediným výpočtem Barva= (1-n)*((1-m)*Barva1 + m*barva2) + (n)*((1-m)*barva3 + m*barva4) Požadované zvětšení ve směru x-ové osy je 3, ve směru y-ové osy je 2. Pixel [7; 3] v novém rastru je mapován do originálního rastru na pozici [2.33; 1.5] m = 0,333; n = 0.5 Barva se určuje z barev pixelů [2; 1], [3; 1], [2; 2], [3; 2] Barva1 (224, 255, 255) Barva2 (44, 255, 255) BarvaA (164, 255, 255) Barva3 (255, 220, 150) Barva4 (255, 190, 50) BarvaB (255, 210, 100) Výsledek: Barva interpolovaného pixelu (210, 232, 177) KST/IPOGR 1-6 Petr Veselý

7 Obrázek 7: Ukázka výpočtu lineární interpolace 13.4 Převod na odstíny šedé Převod na odstíny šedé představuje nejjednodušší způsob redukce barev v obraze. Realizuje se postupným přepočtem jasu všech pixelů. Jas pixelu lze vypočítat zprůměrováním hodnot v jednotlivých kanálech. Ovšem vzhledem k tomu, že lidské oko je různě citlivé na jednotlivé barvy (nejvíce na zelenou) je mnohem vhodnější upravit váhy hodnot v jednotlivých kanálech. Jeden z doporučených vztahů je: jas = 0,299*r + 0,587*g + 0,114*b Pojmy k zapamatování Rastrový obraz, barva pixelu, barevný kanál, interpolace, lineární a kubická interpolace, interpolace nejbližším sousedem, mapování pixelů, dopředné a zpětné mapování Otázky na procvičení 1. Jak je definován rastrový obraz? 2. Co je to pixel a jakou nese informaci? 3. Jaký je přístup k jednotlivým barevným kanálům v barvě? 4. Jak se realizují geometrické úpravy rastrového obrázku? 5. Jaký je rozdíl mezi dopředným a zpětným mapováním? KST/IPOGR 1-7 Petr Veselý

8 6. Jakým způsobem se řeší vzniklé díry při geometrických transformacích? 7. Jaké metody znáte pro úpravu velikosti rastrového obrázku?. 8. Co je to histogram? 9. Jaký je rozdíl mezi histogramem barevného obrázku a obrázku v odstínech šedé? 10. Jak se převádí barva na její jas? Odkazy a další studijní prameny Žára, J., Beneš, B., Felkel, P. Moderní počítačová grafika. Computer Press, Brno, ISBN Foley, Van D. Computer Graphics. Principles and Practice. Addison-Wesley,1991. KST/IPOGR 1-8 Petr Veselý

Úpravy rastrového obrazu

Úpravy rastrového obrazu Přednáška 11 Úpravy rastrového obrazu Geometrické trasformace Pro geometrické transformace rastrového obrazu se používá mapování dopředné prochází se pixely původního rastru a určuje se barva a poloha

Více

12 Metody snižování barevného prostoru

12 Metody snižování barevného prostoru 12 Metody snižování barevného prostoru Studijní cíl Tento blok je věnován základním metodám pro snižování barevného rozsahu pro rastrové obrázky. Postupně zde jsou vysvětleny důvody k použití těchto algoritmů

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Omezení barevného prostoru

Omezení barevného prostoru Úpravy obrazu Omezení barevného prostoru Omezení počtu barev v obraze při zachování obrazového vjemu z obrazu Vytváření barevné palety v některých souborových formátech Různé filtry v grafických programech

Více

Deformace rastrových obrázků

Deformace rastrových obrázků Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků

Více

11 Zobrazování objektů 3D grafiky

11 Zobrazování objektů 3D grafiky 11 Zobrazování objektů 3D grafiky Studijní cíl Tento blok je věnován základním algoritmům zobrazení 3D grafiky. Postupně budou probrány základní metody projekce kolmé promítání, rovnoběžné promítání a

Více

Geometrické transformace obrazu

Geometrické transformace obrazu Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů

Geometrické transformace obrazu a související témata. 9. přednáška předmětu Zpracování obrazů Geometrické transformace obrazu a související témata 9. přednáška předmětu Zpracování obrazů Martina Mudrová 2004 Téma přednášk O čem bude tato přednáška? Geometrické transformace obrazu Interpolace v

Více

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: Grafická data jsou u 2D vektorové grafiky uložena ve voxelech. Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

5 Algoritmy vyplňování 2D oblastí

5 Algoritmy vyplňování 2D oblastí 5 Algoritmy vyplňování 2D oblastí Studijní cíl Tento blok je věnován základním algoritmům pro vyplňování plošných objektů. V textu bude vysvětlen rozdíl mezi vyplňováním oblastí, které jsou definovány

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Úlohy nad rastrovými daty Daniela

Více

Grafika na počítači. Bc. Veronika Tomsová

Grafika na počítači. Bc. Veronika Tomsová Grafika na počítači Bc. Veronika Tomsová Proces zpracování obrazu Proces zpracování obrazu 1. Snímání obrazu 2. Digitalizace obrazu převod spojitého signálu na matici čísel reprezentující obraz 3. Předzpracování

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Rastrový obraz Barevný prostor a paleta Zmenšení barevného prostoru Základní rastrové formáty

Rastrový obraz Barevný prostor a paleta Zmenšení barevného prostoru Základní rastrové formáty Přednáška Rastrový obraz Barevný prostor a paleta Zmenšení barevného prostoru Základní rastrové formáty etody zmenšení barevného prostoru. Cíl: snížení počtu barev etody: rozptylování, půltónování, prahování,

Více

Text úlohy. Kolik je automaticky generovaných barev ve standardní paletě 3-3-2?

Text úlohy. Kolik je automaticky generovaných barev ve standardní paletě 3-3-2? Úloha 1 Kolik je automaticky generovaných barev ve standardní paletě 3-3-2? a. 256 b. 128 c. 216 d. cca 16,7 milionu Úloha 2 Jaká je výhoda adaptivní palety oproti standardní? a. Menší velikost adaptivní

Více

2 Grafický výstup s využitím knihovny

2 Grafický výstup s využitím knihovny 2 Grafický výstup s využitím knihovny Studijní cíl Tento blok je věnován základním principům při vytváření grafického výstupu pomocí standardních metod, které poskytuje grafické rozhraní. V textu budou

Více

Práce na počítači. Bc. Veronika Tomsová

Práce na počítači. Bc. Veronika Tomsová Práce na počítači Bc. Veronika Tomsová Barvy Barvy v počítačové grafice I. nejčastější reprezentace barev: 1-bitová informace rozlišující černou a bílou barvu 0... bílá, 1... černá 8-bitové číslo určující

Více

Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 15 VY 32 INOVACE 0101 0215

Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace. Šablona 15 VY 32 INOVACE 0101 0215 Vyšší odborná škola a Střední škola,varnsdorf, příspěvková organizace Šablona 15 VY 32 INOVACE 0101 0215 VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Autor

Více

Počítačová grafika 1 (POGR 1)

Počítačová grafika 1 (POGR 1) Počítačová grafika 1 (POGR 1) Pavel Strachota FJFI ČVUT v Praze 8. října 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: WWW: pavel.strachota@fjfi.cvut.cz

Více

VY_32_INOVACE_INF.10. Grafika v IT

VY_32_INOVACE_INF.10. Grafika v IT VY_32_INOVACE_INF.10 Grafika v IT Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 GRAFIKA Grafika ve smyslu umělecké grafiky

Více

Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/

Zobrazování barev. 1995-2015 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Zobrazování barev 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ ColorRep 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 18 Barevné schopnosti HW True-color

Více

Text úlohy. Vyberte jednu z nabízených možností:

Text úlohy. Vyberte jednu z nabízených možností: 2. pokus 76% Úloha 1 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu A má (po vynechání vodorovných hran a rozpojení zbývajících hran) celkově 4 průsečíky

Více

Programátorská dokumentace

Programátorská dokumentace Programátorská dokumentace Požadavky Cílem tohoto programu bylo představit barevné systémy, zejména převody mezi nejpoužívanějšími z nich. Zároveň bylo úkolem naprogramovat jejich demonstraci. Pro realizaci

Více

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO

Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO Počítačová grafika SZŠ A VOŠZ MERHAUTOVA 15, BRNO 1 Základní dělení 3D grafika 2D grafika vektorová rastrová grafika 2/29 Vektorová grafika Jednotlivé objekty jsou tvořeny křivkami Využití: tvorba diagramů,

Více

01_Grafické rozhraní

01_Grafické rozhraní 01_Grafické rozhraní Jaké jsou základní rozdíly mezi konzolovou aplikací a aplikací s grafickým uživatelským rozhraním? Hlavní rozdíly mezi běžnou konzolovou aplikací a aplikací s GUI lze shrnout do dvou

Více

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7

Více

IVT. Rastrová grafika. 8. ročník

IVT. Rastrová grafika. 8. ročník IVT Rastrová grafika 8. ročník listopad, prosinec 2013 Autor: Mgr. Dana Kaprálová Zpracováno v rámci projektu Krok za krokem na ZŠ Želatovská ve 21. století registrační číslo projektu: CZ.1.07/1.4.00/21.3443

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Výpočet framu na základě 3 změřených bodů v prostoru (MEAFRAME)

Výpočet framu na základě 3 změřených bodů v prostoru (MEAFRAME) Funkce Příkaz MEAFRAME je rozšířením jazyka systému 840 pro podporu měřicích cyklů. Funkce MEAFREAME vypočítává frame na základě tří ideálních a vzájemně korespondujících změřených bodů. Když je obrobek

Více

Transformace obrazu. Pavel Strachota. 16. listopadu FJFI ČVUT v Praze

Transformace obrazu. Pavel Strachota. 16. listopadu FJFI ČVUT v Praze Transformace obrazu Pavel Strachota FJFI ČVUT v Praze 16. listopadu 2012 Obsah 1 Interpolace 2 Geometrické transformace obrazu 3 Alpha-blending, warping, morphing Obsah 1 Interpolace 2 Geometrické transformace

Více

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data

Grafická data jsou u 2D vektorové grafiky uložena ve voxelech NEPRAVDA Grafická data jsou u rastrové grafiky uložena v pixelech PRAVDA Grafická data Grafická data jsou u 2D vektorové grafiky uložena ve voxelech Grafická data jsou u rastrové grafiky uložena v pixelech Grafická data jsou u vektorové grafiky uložena v pixelech Na rozdíl od rastrové grafiky

Více

Rastrová grafika. Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou

Rastrová grafika. Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou Rastrová grafika Grafický objekt je zaznamenán jednotlivými souřadnicemi bodů v mřížce. pixel ( picture element ) s definovanou barvou Kvalita je určena rozlišením mřížky a barevnou hloubkou (počet bitů

Více

Předpoklady Instalace programu Obnovení výchozích předvoleb Další zdroje informací

Předpoklady Instalace programu Obnovení výchozích předvoleb Další zdroje informací ZAČÍNÁME Předpoklady Instalace programu Obnovení výchozích předvoleb Další zdroje informací CO JE NOVÉHO V ADOBE ILLUSTRATORU CS4 Vylepšený pracovní prostor Více kreslicích pláten Automatická vodítka (Smart

Více

Kde se používá počítačová grafika

Kde se používá počítačová grafika POČÍTAČOVÁ GRAFIKA Kde se používá počítačová grafika Tiskoviny Reklama Média, televize, film Multimédia Internetové stránky 3D grafika Virtuální realita CAD / CAM projektování Hry Základní pojmy Rastrová

Více

Přednáška kurzu MPOV. Barevné modely

Přednáška kurzu MPOV. Barevné modely Přednáška kurzu MPOV Barevné modely Ing. P. Petyovský (email: petyovsky@feec.vutbr.cz), kancelář E512, tel. 1194, Integrovaný objekt - 1/11 - Barvy v počítačové grafice Barevné modely Aditivní modely RGB,

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Monochromatické zobrazování

Monochromatické zobrazování Monochromatické zobrazování 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Mono 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 27 Vnímání šedých odstínů

Více

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)

VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu

Počítače a grafika. Ing. Radek Poliščuk, Ph.D. Přednáška č.7. z předmětu Ústav automatizace a informatiky Fakulta strojního inženýrství Vysoké učení technické v Brně Přednáška č.7. z předmětu Počítače a grafika Ing. Radek Poliščuk, Ph.D. 1/14 Obsahy přednášek Přednáška 7 Zpracování

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Fakulta elektrotechniky a informatiky Počítačová grafika. Zkouška ústní

Fakulta elektrotechniky a informatiky Počítačová grafika. Zkouška ústní Zkouška ústní (Anti)aliasing Aliasing je jev, ke kterému může docházet v situacích, kdy se spojitá (analogová) informace převádí na nespojitou (digitální signály). Postup, jak docílit lepší ostrosti obrazu

Více

Digitalizace dat metodika

Digitalizace dat metodika Digitalizace dat metodika Digitalizace Jak počítač získá jedničky a nuly, se kterými potom počítá a které je schopen si pamatovat? Pomocí různých přístrojů a zařízení (mikrofon, fotoaparát, skener, kamera,

Více

Lineární transformace

Lineární transformace Lineární transformace 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.c http://cgg.mff.cuni.c/~pepca/ 1 / 28 Požadavk běžně používané transformace posunutí, otočení, většení/menšení, kosení,..

Více

Počítačová grafika 2 (POGR2)

Počítačová grafika 2 (POGR2) Počítačová grafika 2 (POGR2) Pavel Strachota FJFI ČVUT v Praze 19. února 2015 Kontakt Ing. Pavel Strachota, Ph.D. Katedra matematiky Trojanova 13, místnost 033a E-mail: pavel.strachota@fjfi.cvut.cz WWW:

Více

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky

Metodické listy pro kombinované studium předmětu. B_PPG Principy počítačové grafiky Metodické listy pro kombinované studium předmětu B_PPG Principy počítačové grafiky Metodický list č. l Název tématického celku: BARVY V POČÍTAČOVÉ GRAFICE Cíl: Základním cílem tohoto tematického celku

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel

scale n_width width center scale left center range right center range value weight_sum left right weight value weight value weight_sum weight pixel Změna velikosti obrázku Převzorkování pomocí filtrů Ačkoliv jsou výše uvedené metody mnohdy dostačující pro běžné aplikace, občas je zapotřebí dosáhnout lepších výsledků. Pokud chceme obrázky zvětšovat

Více

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha

Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha Barevné systémy 1995-2015 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Colors 2015 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 21 Rozklad spektrálních barev

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10

GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY GEOGRAFICKÉ INFORMAČNÍ SYSTÉMY 10 Lubomír Vašek Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního fondu (ESF)

Více

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15

1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 Úvodní poznámky... 11 1. Vlastnosti diskretních a číslicových metod zpracování signálů... 15 1.1 Základní pojmy... 15 1.2 Aplikační oblasti a etapy zpracování signálů... 17 1.3 Klasifikace diskretních

Více

Kompresní algoritmy grafiky. Jan Janoušek F11125

Kompresní algoritmy grafiky. Jan Janoušek F11125 Kompresní algoritmy grafiky Jan Janoušek F11125 K čemu je komprese dobrá? Pokud je třeba skladovat datově náročné soubory. Např. pro záznam obrazu, hudby a hlavně videa je třeba skladovat překvapivě mnoho

Více

Využití ICT techniky především v uměleckém vzdělávání. Akademie - VOŠ, Gymn. a SOŠUP Světlá nad Sázavou

Využití ICT techniky především v uměleckém vzdělávání. Akademie - VOŠ, Gymn. a SOŠUP Světlá nad Sázavou Datum: 1. 12. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Obor: Časová dotace: Vzdělávací cíl: Pomůcky: Využití ICT techniky především v uměleckém

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

4. blok část A Logické operátory

4. blok část A Logické operátory 4. blok část A Logické operátory Studijní cíl Tento blok je věnován představení logických operátorů AND, OR, NOT v jazyce SQL a práce s nimi. Doba nutná k nastudování 1-2 hodiny Průvodce studiem Při studiu

Více

2 Tvorba interaktivních grafických programů

2 Tvorba interaktivních grafických programů 2 Tvorba interaktivních grafických programů Studijní cíl Tento blok je věnován vytváření interaktivních grafických programů. Podrobně bude vysvětleno, jakým způsobem je možno programově reagovat na události

Více

Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E

Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E Š E D O T Ó N O V Á A B A R E V N Á K A L I B R A C E Z O B R A Z O V A C Í C H Z A Ř Í Z E NÍ CÍLE LABORATORNÍ ÚLOHY 1. Seznámení se s metodami šedotónové a barevné kalibrace fotoaparátů, kamer, snímků

Více

B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY

B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY B_PPG PRINCIPY POČÍTAČOVÉ GRAFIKY RNDr. Jana Štanclová, Ph.D. jana.stanclova@ruk.cuni.cz ZS 2/0 Z Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK Obsah seminářů 03.10.2011 [1]

Více

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika 1. Definice oblasti souvisí: a) s definováním množiny všech bodů, které náleží do hranice a zároveň do jejího vnitřku b) s popisem její hranice c) s definováním množiny všech bodů, které

Více

ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE

ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE ÚROVNĚ, KŘIVKY, ČERNOBÍLÁ FOTOGRAFIE U057 Zoner Photo Studio editace fotografie 2 LS 2014 Ing. Martin Seko JAK NA ČERNOBÍLOU FOTOGRAFII DESATURACE Úrovně, křivky, černobílá fotografie 3 DESATURACE Úrovně,

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

SkiJo podpora pro vytyčování, řez terénem a kreslení situací

SkiJo podpora pro vytyčování, řez terénem a kreslení situací SkiJo podpora pro vytyčování, řez terénem a kreslení situací Koncepce: Pro podporu vytyčování, řezu terénem a kreslení situací byla vytvořena samostatná aplikace SkiJo GEOdeti. Obsahuje funkce pro odečítání

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se

zdroj světla). Z metod transformace obrázku uvedeme warping a morfing, které se Kapitola 3 Úpravy obrazu V následující kapitole se seznámíme se základními typy úpravy obrazu. První z nich je transformace barev pro výstupní zařízení, dále práce s barvami a expozicí pomocí histogramu

Více

Počítačová grafika. Studijní text. Karel Novotný

Počítačová grafika. Studijní text. Karel Novotný Počítačová grafika Studijní text Karel Novotný P 1 Počítačová grafika očítačová grafika je z technického hlediska obor informatiky 1, který používá počítače k tvorbě umělých grafických objektů a dále také

Více

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D

Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Volba zobrazení (Direct Current, Scaling) - FFT 1D, FFT 2D Jiří Stančík Fakulta chemická, Vysoké učení technické v Brně Purkyňova 118, 61200 Brno e-mail: HTUxcstancik@fch.vutbr.czUTH Úkolem této práce

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

ZPRACOVÁNÍ OBRAZU přednáška 4

ZPRACOVÁNÍ OBRAZU přednáška 4 ZPRACOVÁNÍ OBRAZU přednáška 4 Vít Lédl vit.ledl@tul.cz TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Digitální fotoaparáty

Digitální fotoaparáty Digitální fotoaparáty Ing. Tomáš Kratochvíl Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Digitální fotografie snímání jasu a skládání barev. Digitální fotoaparát princip

Více

Digitální fotoaparáty

Digitální fotoaparáty Digitální fotoaparáty Ing. Tomáš Kratochvíl Současná televizní technika a videotechnika kurz U3V Program semináře a cvičení Digitální fotografie snímání jasu a skládání barev. Digitální fotoaparát princip

Více

GEOMETRICKÉ TRANSFORMACE OBRAZU GEOMETRICAL IMAGE TRANSFORMS

GEOMETRICKÉ TRANSFORMACE OBRAZU GEOMETRICAL IMAGE TRANSFORMS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS GEOMETRICKÉ TRANSFORMACE

Více

Obsah. Úvod... 9. Barevná kompozice... 16 Světlo... 18 Chromatická teplota světla... 19 Vyvážení bílé barvy... 20

Obsah. Úvod... 9. Barevná kompozice... 16 Světlo... 18 Chromatická teplota světla... 19 Vyvážení bílé barvy... 20 Obsah Úvod.............................................................................................. 9 Historie grafického designu a tisku..................................... 10 Od zadání k návrhu..............................................................

Více

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527

Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM

KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM KAPITOLA 9 - POKROČILÁ PRÁCE S TABULKOVÝM PROCESOREM CÍLE KAPITOLY Využívat pokročilé možnosti formátování, jako je podmíněné formátování, používat vlastní formát čísel a umět pracovat s listy. Používat

Více

Stanovení nejistot při výpočtu kontaminace zasaženého území

Stanovení nejistot při výpočtu kontaminace zasaženého území Stanovení nejistot při výpočtu kontaminace zasaženého území Michal Balatka Abstrakt Hodnocení ekologického rizika kontaminovaných území představuje komplexní úlohu, která vyžaduje celou řadu vstupních

Více

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH

DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH DETEKCE HRAN V BIOMEDICÍNSKÝCH OBRAZECH Viktor Haškovec, Martina Mudrová Vysoká škola chemicko-technologická v Praze, Ústav počítačové a řídicí techniky Abstrakt Příspěvek je věnován zpracování biomedicínských

Více

Barvy a barevné systémy Formáty obrázků pro WWW

Barvy a barevné systémy Formáty obrázků pro WWW Barvy a barevné systémy Formáty obrázků pro WWW Viditelné světlo. Elektromagnetické záření o vlnové délce 390 760 nanometrů. Jsou-li v konkrétním světle zastoupeny složky všech vlnových délek, vnímáme

Více

Rastrové digitální modely terénu

Rastrové digitální modely terénu Rastrové digitální modely terénu Rastr je tvořen maticí buněk (pixelů), které obsahují určitou informaci. Stejně, jako mohou touto informací být typ vegetace, poloha sídel nebo kvalita ovzduší, může každá

Více

Základy práce v programovém balíku Corel

Základy práce v programovém balíku Corel Základy práce v programovém balíku Corel Mgr. Tomáš Pešina Výukový text vytvořený v rámci projektu DOPLNIT První jazyková základní škola v Praze 4, Horáčkova 1100, 140 00 Praha 4 - Krč Základy počítačové

Více

VYUŽITÍ POČÍTAČOVÉ GRAFIKY

VYUŽITÍ POČÍTAČOVÉ GRAFIKY POČÍTAČOVÁ GRAFIKA VYUŽITÍ POČÍTAČOVÉ GRAFIKY ÚPRAVA FOTOGRAFIÍ NAFOCENÉ FOTOGRAFIE Z DIGITÁLNÍHO FOTOAPARÁTU MŮŽEME NEJEN PROHLÍŽET, ALE TAKÉ UPRAVOVAT JAS KONTRAST BAREVNOST OŘÍZNUTÍ ODSTRANĚNÍ ČERVENÝCH

Více

Úvod do počítačové grafiky

Úvod do počítačové grafiky Úvod do počítačové grafiky elmag. záření s určitou vlnovou délkou dopadající na sítnici našeho oka vnímáme jako barvu v rámci viditelné části spektra je člověk schopen rozlišit přibližně 10 milionů barev

Více

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Autor Jakub Dostál Tematický celek Základy práce v Adobe Photoshop Cílová skupina Žáci 3. ročníku oboru Fotograf Anotace Materiál má podobu prezentace, v níž je pomocí obrázků ukázáno, co vše lze nastavit

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

GIS Geografické informační systémy

GIS Geografické informační systémy GIS Geografické informační systémy Obsah přednášky Prostorové vektorové modely Špagetový model Topologický model Převody geometrií Vektorový model Reprezentuje reálný svět po jednotlivých složkách popisu

Více

5 Přehled operátorů, příkazy, přetypování

5 Přehled operátorů, příkazy, přetypování 5 Přehled operátorů, příkazy, přetypování Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně budou uvedeny detaily týkající se operátorů. Doba nutná k nastudování

Více

GRAFICKÉ FORMÁTY V BITMAPOVÉ GRAFICE

GRAFICKÉ FORMÁTY V BITMAPOVÉ GRAFICE GRAFICKÉ FORMÁTY V BITMAPOVÉ GRAFICE U057 Zoner Photo Studio editace fotografie 2 BAREVNÁ HLOUBKA pixel základní jednotka obrazu bit: ve výpočetní technice nejmenší jednotka informace hodnota 0 nebo 1

Více

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16

Hierarchický model. 1995-2013 Josef Pelikán CGG MFF UK Praha. pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchický model 1995-2013 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ 1 / 16 Hierarchie v 3D modelování kompozice zdola-nahoru složitější objekty se sestavují

Více

BALISTICKÝ MĚŘICÍ SYSTÉM

BALISTICKÝ MĚŘICÍ SYSTÉM BALISTICKÝ MĚŘICÍ SYSTÉM UŽIVATELSKÁ PŘÍRUČKA Verze 2.3 2007 OBSAH 1. ÚVOD... 5 2. HLAVNÍ OKNO... 6 3. MENU... 7 3.1 Soubor... 7 3.2 Měření...11 3.3 Zařízení...16 3.4 Graf...17 3.5 Pohled...17 1. ÚVOD

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických

Více

Počítačová grafika 1. Úvod do grafiky, základní pojmy. Rastrová grafika.

Počítačová grafika 1. Úvod do grafiky, základní pojmy. Rastrová grafika. Počítačová grafika 1 Úvod do grafiky, základní pojmy. Rastrová grafika. Proč vůbec grafika? Zmrzlinový pohár s převažující červenou barvou. Základem je jahodová zmrzlina, která se nachází ve spodní části

Více

Moderní multimediální elektronika (U3V)

Moderní multimediální elektronika (U3V) Moderní multimediální elektronika (U3V) Prezentace č. 7 Digitální fotografie a digitální fotoaparáty Ing. Tomáš Kratochvíl, Ph.D. Ústav radioelektroniky, FEKT VUT v Brně Program prezentace Digitální fotografie

Více

Rastrová grafika. body uspořádané do pravidelné matice

Rastrová grafika. body uspořádané do pravidelné matice J. Vrzal, 1.0 Rastrová grafika body uspořádané do pravidelné matice rastr pixelů (ppi, Pixel Per Inch) monitor 90 ppi rastr tiskových bodů (dpi, Dot Per Inch) kvalitní tisk 300 dpi 2 Rastrová grafika 3

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více