Ergodické Markovské et zce

Rozměr: px
Začít zobrazení ze stránky:

Download "Ergodické Markovské et zce"

Transkript

1 1. b ezen 2013

2 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme regulárním, jestliºe P n pro n jaké n neobsahuje ºádné nulové prvky. Jednodu²eji e eno, pro n jaké n je moºné se dostat z jakéhokoliv stavu do jakéhokoliv stavu p esn po n krocích. Kaºdý regulární et zec je ergodický, ale ergodický et zec nemusí být nutn regulární.

3 P íklad 1.1: Nech matice p echodu Markovského et zce je denována následovn ( ) 0 1 P = 1 0 Obrázek: P echod mezi stavy Tento et zec je ergodický, ale není regulární.

4 P íklad 1.2: Mnohem zajímav j²í p íklad ergodického ale neregulárního et zce je Ehrenfest v urn model /4 0 3/4 0 0 P = 0 1/2 0 1/ /4 0 1/ Obrázek: Ehrenfest urn model Tento et zec je ergodický, ale není regulární.

5 Teorém 1.1 Necht matice P je matice p echodu regulárního et zce. Pak pro n se matice P n limitn blíºí k matici W, která má ve v²ech ádcích stejný vektor w. Tento vektor je striktn positivním pravd podobnostím vektorem (jeho sloºky jsou kladné a jejich sou et je roven jedné). D kaz: stejné jako ukázat, ºe P n konverguje k matici s konstantními sloupci j-tý sloupec P n je P n y, kde y je sloupcový vektor s 1 na j-té pozici a 0 jinde sta í ukázat, ºe pro jakýkoliv sloupcový vektor y, P n y konverguje ke konstantnímu vektoru Protoºe kaºdý sloupec matice P je pravd podobnostním vektorem, Py nám dá nový sloupcový vektor, jehoº sloºky si budou bliº²í neº v p vodním sloupcovém vektoru y.

6 1/2 1/4 1/4 1/3 1/3 1/3 1/2 1/ = 7/4 2 3/2 Ukáºeme, ºe ve sloupcovém vektoru P n y se bude rozdíl mezi nejv t²í a nejmen²í sloºkou blíºit k 0 pro n. ij-tá pozice v matici P n, p (n) ij, udává pravd podobnost, ºe se proces za ínající ve stavu s i bude po n krocích nacházet ve stavu s j. Teorém 1.1 nám íká, ºe pravd podobnost toho, ºe se v dlouhodob trvajícím procesu budeme nacházet ve stavu s j, je rovna w j a je tedy nezávislá na po áte ním stavu.

7 Teorém 1.2 Nech matice P je regulární maticí p echodu, pak W = lim n P n. Nech w je ádek matice W a c je sloupcový vektor, jehoº sloºky jsou rovny jedné. Pak (a) wp=w a ádkový vektor v, pro n jº platí vp=v, je násobkem vektoru w. (b) Pc=c a sloupcový vektor x, pro n jº platí Px=x, je násobkem vektoru c.

8 Denice 1.3 ádkový vektor w s vlastností wp = w se nazývá pevný ádkový vektor (také limitní vektor) matice P. Obdobn sloupcový vektor x takový, ºe Px = x, se nazývá pevný sloupcový vektor matice P. Teorém 1.2 nám ukázal, ºe jakýkoliv pevný ádkový vektor matice P je násobkem vektoru w a jakýkoliv pevný sloupcový vektor matice P je konstantním vektorem. Ukaºme si n kolik dal²ích metod, jak spo ítat pevný ádkový vektor w regulárního Markovského et zce.

9 P íklad 1.3: Díky Teorému 1.1 m ºeme nalézt limitní vektor w matice p echodu pro Land of Oz: ( w 1 w 2 w 3 ) 1/2 1/4 1/4 1/2 0 1/2 1/4 1/4 1/2 (1)... w je pravd podobnostní vektor (2)... wp = w e²ením této soustavy je w = ( ). w 1 + w 2 + w 3 = 1 (1) = ( w 1 w 2 w 3 ) (2)

10 P íklad 1.4: Jiný zp sob, jak vy e²it tento p íklad. Zvolme w 1 = 1, a pak vy e²m soustavu wp = w. (1/2) + (1/2)w 2 + (1/4)w 3 = 1 (1/4) + (1/4)w 3 = w 2 e²ením ( w 1 w 2 w 3 ) = ( 1 1/2 1 ). Vektor w pak získáme w = w 3 i=1 w i = ( w 1 w 2 w 3 ) = ( )

11 Teorém 1.3 Necht P je matice p echodu ergodického et zce. Necht A n je matice denována A n = I + P + P P n n + 1 Pak A n W, kde W je matice se stejnými ádky w. Vektor w je limitním vektorem matice P.

12 P íklad 1.5: V Land of Oz trvá rok 525 dní. Stav ƒetnost Relativní. R N S Stav ƒetnost Relativní. R N S Tabulka: ƒetnosti po 525 dnech (vlevo), po dnech (vpravo)

13 D kuji za pozornost.

Integrování jako opak derivování

Integrování jako opak derivování Integrování jako opak derivování V tomto dokumentu budete seznámeni s derivováním b ºných funkcí a budete mít moºnost vyzkou²et mnoho zp sob derivace. Jedním z nich je proces derivování v opa ném po adí.

Více

Kuželosečky a kvadriky ve škole i kolem

Kuželosečky a kvadriky ve škole i kolem Kuželosečky a kvadriky ve škole i kolem nás Bc. Aneta Mirová Kurz vznikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro nadané žáky a studenty v přírodních vědách a matematice s využitím

Více

Matice a e²ení soustav lineárních rovnic

Matice a e²ení soustav lineárních rovnic Úvod Tato sbírka úloh z lineární algebry je ur ena student m Fakulty elektrotechniky a informatiky V B - Technické univerzity Ostrava T mto student m je p edev²ím ur eno skriptum profesora Zde ka Dostála

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.

a m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem. 1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její

Více

Soustava m lineárních rovnic o n neznámých je systém

Soustava m lineárních rovnic o n neznámých je systém 1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab.

Domácí úkol 2. Obecné pokyny. Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Domácí úkol 2 Obecné pokyny Dbejte na formáln správný zápis výpo tu! Pro vy íslení výsledku pro binomické rozd lení pouºijte nap. Maple nebo Matlab. Návod pro výpo et v Matlabu Jestliºe X Bi(n, p), pak

Více

Vektory. Vektorové veli iny

Vektory. Vektorové veli iny Vektor je veli ina, která má jak velikost tak i sm r. Ob tyto vlastnosti musí být uvedeny, aby byl vektor stanoven úpln. V této ásti je návod, jak vektory zapsat, jak je s ítat a od ítat a jak je pouºívat

Více

4. Trojúhelníkový rozklad p. 1/20

4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad 4. Trojúhelníkový rozklad p. 1/20 4. Trojúhelníkový rozklad p. 2/20 Trojúhelníkový rozklad 1. Permutační matice 2. Trojúhelníkové matice 3. Trojúhelníkový (LU) rozklad 4. Výpočet

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

Matematika I Lineární závislost a nezávislost

Matematika I Lineární závislost a nezávislost Matematika I Lineární závislost a nezávislost RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace

Více

Jevy, nezávislost, Bayesova v ta

Jevy, nezávislost, Bayesova v ta Jevy, nezávislost, Bayesova v ta 17. b ezna 2015 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu rozumíte.

Více

OBSAH. 1. Základní p edstava o k ivkách a plochách

OBSAH. 1. Základní p edstava o k ivkách a plochách OBSAH 1. Základní p edstava o k ivkách a plochách 1.díl: P edstava o plo²e.... 2 I trojrozm rné objekty lze znázornit v rovin. 2.díl: Reálná ísla a p ímka.... 3 Souvislost mezi ísly a geometrií. 3.díl:

Více

P íklady k prvnímu testu - Pravd podobnost

P íklady k prvnímu testu - Pravd podobnost P íklady k prvnímu testu - Pravd podobnost 28. února 204 Instrukce: Projd te si v²echny p íklady. Kaºdý p íklad se snaºte pochopit. Pak vymyslete a vy- e²te p íklad podobný. Tím se ujistíte, ºe p íkladu

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru

Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru 1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).

Více

Denice integrálu: Od Newtona k Bendové

Denice integrálu: Od Newtona k Bendové Denice integrálu: Od Newtona k Bendové Jan MALÝ UK v Praze a UJEP v Ústí nad Labem OSMA, V B-TU Ostrava, 3. listopadu 2015 Jan MALÝ Od Newtona... 1 / 32 Toto není p edná²ka o historii matematiky. Jan MALÝ

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - základní úrove obtíºnosti MAGZD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - základní úrove obtíºnosti MAGZD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha.

Více

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.

Determinanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu. Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní

Více

Markovské metody pro modelování pravděpodobnosti

Markovské metody pro modelování pravděpodobnosti Markovské metody pro modelování pravděpodobnosti rizikových stavů 1 Markovský řetězec Budeme uvažovat náhodný proces s diskrétním časem (náhodnou posloupnost) X(t), t T {0, 1, 2,... } s konečnou množinou

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic

Více

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)

4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Teorie her. Klasikace. Pomocný text

Teorie her. Klasikace. Pomocný text Pomocný text Teorie her Milí e²itelé, první ty i úlohy kaºdé série spojuje jisté téma a vám bude poskytnut text, který vás tímto tématem mírn provede a pom ºe vám p i e²ení t chto úloh. Teorie her, jiº

Více

ízení Tvorba kritéria 2. prosince 2014

ízení Tvorba kritéria 2. prosince 2014 ízení. prosince 014 Spousta lidí má pocit, ºe by m la n co ídit. A n kdy to bývá pravda. Kdyº uº nás my²lenky na ízení napadají, m li bychom si poloºit následující t i otázky: ídit? Obrovskou zku²eností

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

Lineární a Celo íselné Programování

Lineární a Celo íselné Programování Lineární a Celo íselné Programování text k p edná²kám Obsah 1 Lineární a celo íselné programování 4 1.1 Obecná formulace.................................... 4 1.2 Algebraický model...................................

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

brmiversity: Um lá inteligence a teoretická informatika

brmiversity: Um lá inteligence a teoretická informatika brmiversity: Um lá inteligence a teoretická informatika P edná²ka. 6 Petr Baudi² pasky@ucw.cz brmlab 2011 Outline 1 Pravd podobnost 2 Um lá inteligence 3 Sloºitost 4 Datové struktury Pravd podobnost Pravd

Více

Lineární a Celo íselné Programování

Lineární a Celo íselné Programování Lineární a Celo íselné Programování text k p edná²kám Obsah 1 Lineární a celo íselné programování 4 1.1 Obecná formulace.................................... 4 1.2 Algebraický model...................................

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

11 Soustavy rovnic a nerovnic, Determinanty a Matice

11 Soustavy rovnic a nerovnic, Determinanty a Matice 11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty

Více

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.

Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. U stav matematiky a deskriptivnı geometrie Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz,

Více

1 Pracovní úkoly. 2 Vypracování. Datum m ení: 24.3.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:

1 Pracovní úkoly. 2 Vypracování. Datum m ení: 24.3.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praze Úloha #11 Termické emise elektron Datum m ení: 24.3.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: 1 Pracovní

Více

Obsah. Pouºité zna ení 1

Obsah. Pouºité zna ení 1 Obsah Pouºité zna ení 1 1 Úvod 3 1.1 Opera ní výzkum a jeho disciplíny.......................... 3 1.2 Úlohy matematického programování......................... 3 1.3 Standardní maximaliza ní úloha lineárního

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

e²ení 5. série Binární kódy autor: Vlá a

e²ení 5. série Binární kódy autor: Vlá a e²ení 5. série Binární kódy autor: Vlá a Úloha 4.1. Na zah átí si dáme snadn j²í p íklad. Ur it zná² hru Myslím si íslo a to má vlastnost, je to velice podobné. Tedy mám binární lineární kód délky 5, který

Více

ST1 - Úkol 1. [Minimáln 74 K /láhev]

ST1 - Úkol 1. [Minimáln 74 K /láhev] ST1 - Úkol 1 P íklad 1 Myslivecký spolek po ádá sv j tradi ní ples. Mimo jiné bylo nakoupeno lahvové víno podle rozpisu v Tabulce 1.1. P edpokládá se (podle historických zku²eností), ºe v²echny láhve budou

Více

1 Vektorové prostory.

1 Vektorové prostory. 1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které

Více

Matematika I Ètvercové matice - determinanty

Matematika I Ètvercové matice - determinanty Matematika I Ètvercové matice - determinanty RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

1 Spo jité náhodné veli iny

1 Spo jité náhodné veli iny Spo jité náhodné veli in. Základní pojm a e²ené p íklad Hustota pravd podobnosti U spojité náhodné veli in se pravd podobnost, ºe náhodná veli ina X padne do ur itého intervalu (a, b), po ítá jako P (X

Více

Lineární programování

Lineární programování Lineární programování Petr Tichý 19. prosince 2012 1 Outline 1 Lineární programování 2 Optimalita a dualita 3 Geometrie úlohy 4 Simplexová metoda 2 Lineární programování Lineární program (1) min f(x) za

Více

MATLB: p edná²ka 1. Prom nné, indexování a operátory. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

MATLB: p edná²ka 1. Prom nné, indexování a operátory. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií MATLB: p edná²ka 1 Prom nné, indexování a operátory Zbyn k Koldovský Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

e²ení 3. série Kombinatorická geometrie

e²ení 3. série Kombinatorická geometrie e²ení 3. série Kombinatorická geometrie Úloha 2.1. Henry vzal své dv ratolesti na výlet. Jako ostatn kaºdý jejich výlet, i tento za al u dobrého jídla. Objednali si obrovskou pizzu a neº se Henry stihl

Více

Post ehy a materiály k výuce celku Funkce

Post ehy a materiály k výuce celku Funkce Post ehy a materiály k výuce celku Funkce 1) Grafy funkcí Je p edloºeno mnoºství výukových materiál v programu Graph - tvary graf základních i posunutých funkcí, jejich vzájemné polohy, Precizní zápis

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

Lineární algebra Operace s vektory a maticemi

Lineární algebra Operace s vektory a maticemi Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a

Více

Přiřazovací problém. Přednáška č. 7

Přiřazovací problém. Přednáška č. 7 Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé

Více

e²ení 1. série Úvodní gulá²

e²ení 1. série Úvodní gulá² e²ení. série Úvodní gulá² Úloha.. Gulá²gvhevmnjdfs!!, ozvalo se uº o n co hlasit ji hladové monstrum dychtící po Lib n in specialit. Henry! Ví² moc dob e, ºe ti nedám, dokud neuhodne², na co myslím! Malinko

Více

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD10C0T01 e²ené p íklady

Státní maturita 2010 Maturitní generálka 2010 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD10C0T01 e²ené p íklady Státní maturita 00 Maturitní generálka 00 Matematika: didaktický test - vy²²í úrove obtíºnosti MAGVD0C0T0 e²ené p íklady Autor e²ení: Jitka Vachtová 6. b ezna 0 http://www.vachtova.cz/ Obsah Úloha Úloha

Více

Západo eská univerzita v Plzni. Fakulta aplikovaných v d. Katedra kybernetiky. Datová analýza ve ejn dostupných meteorologických dat.

Západo eská univerzita v Plzni. Fakulta aplikovaných v d. Katedra kybernetiky. Datová analýza ve ejn dostupných meteorologických dat. Západo eská univerzita v Plzni Fakulta aplikovaných v d Katedra kybernetiky Diplomová práce Datová analýza ve ejn dostupných meteorologických dat Plze, 2015 Michal Kubát Prohlá²ení P edkládám tímto k posouzení

Více

BAKALÁ SKÁ PRÁCE. Iterativní lokální dynamické programování pro návrh duálního ízení. Iterative local dynamic programming for dual control

BAKALÁ SKÁ PRÁCE. Iterativní lokální dynamické programování pro návrh duálního ízení. Iterative local dynamic programming for dual control ƒeské vysoké u ení technické v Praze Fakulta jaderná a fyzikáln inºenýrská Katedra matematiky Obor: Inºenýrská informatika Zam ení: Softwarové inºenýrství Iterativní lokální dynamické programování pro

Více

Základy graky. Jan Hamá ek. 13. zá í 2016

Základy graky. Jan Hamá ek. 13. zá í 2016 13. zá í 2016 Barevné systémy Jak uloºit efektivn barvu do po íta e? Barevné systémy Jak uloºit efektivn barvu do po íta e?nej ast ji pouºíváme systém RGB - Red, Green, Blue. Barva - trojice ísel (R, G,

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a Zadání A. 1. Polynom P (x) má v uspořádané bázi (x 2 + x 1, 2x 2 x 1, x 2 + x + 2) souřadnice (1, 1, 1). Najděte jeho souřadnice vzhledem k uspořádané bázi (x 2 1, x 2 + x 1, x 2 + x). Nejprve si spočítáme

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Matematická logika cvi ení 47

Matematická logika cvi ení 47 Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky

Více

Teorie kategorií. Libor B hounek Verze ke dni 12. b ezna 2013.

Teorie kategorií. Libor B hounek Verze ke dni 12. b ezna 2013. Teorie kategorií Studijní materiál pro kurs ALGV00051 na FF UK v LS 2012/13 Dal²í informace: www.cs.cas.cz/behounek/teaching/cat12 Libor B hounek behounek@cs.cas.cz Verze ke dni 12. b ezna 2013. Organiza

Více

7. přednáška Systémová analýza a modelování. Přiřazovací problém

7. přednáška Systémová analýza a modelování. Přiřazovací problém Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů

Více

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly

A0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková

Více

1 Soustavy lineárních rovnic

1 Soustavy lineárních rovnic 1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté

Více

6. Matice. Algebraické vlastnosti

6. Matice. Algebraické vlastnosti Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,

Více

Sazba zdrojových kód. Jakub Kadl ík 20. 03. 2014

Sazba zdrojových kód. Jakub Kadl ík 20. 03. 2014 Sazba zdrojových kód Jakub Kadl ík 20. 03. 2014 1 Obsah 1 Základní prost edí verbatim 3 2 Balí ek listings 3 3 Sazba kódu z externího souboru 5 4 Téma Solarized 5 4.1 Solarized light.............................

Více

IP kamerový systém Catr - uºivatelský návod k obsluze

IP kamerový systém Catr - uºivatelský návod k obsluze IP kamerový systém Catr - uºivatelský návod k obsluze Obsah P ipoj se k nám! Úvod 3 P ístup do systému 3 Po íta s Windows 3 Prvotní instalace 3 Ovládání kamerového systému na po íta i 5 šivý náhled...................................................

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0 Vzhledem k tomu, že jsem to psala ve velkém spěchu, mohou se vyskytnout nějaké chybičky. Pokud nějaké najdu, opravím je hned po prázdninách. Zadání A. 1. Vektory u, v, w jsou lineárně nezávislé. Rozhodněte,

Více

Online konstrukce deterministického zásobníkového automatu pro indexování strom. Bc. Ond ej Brynda

Online konstrukce deterministického zásobníkového automatu pro indexování strom. Bc. Ond ej Brynda ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická Katedra po íta Diplomová práce Online konstrukce deterministického zásobníkového automatu pro indexování strom Bc. Ond ej Brynda Vedoucí práce:

Více

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů

2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).

Více

Úvod do kombinatorické teorie her

Úvod do kombinatorické teorie her Úvod do kombinatorické teorie her Lucie Mohelníková Lucka.Mohelnikova@gmail.com Lucie Mohelníková Úvod do kombinatorické teorie her 1 / 21 P ehled 1 Úvod 2 Základní typy her 3 Teorie okolo pi²kvorek 4

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

Systém pro podporu výuky kuºelose ek

Systém pro podporu výuky kuºelose ek Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁ SKÁ PRÁCE Eli²ka Hejlová Systém pro podporu výuky kuºelose ek Katedra didaktiky matematiky Vedoucí bakalá ské práce: Studijní program: Studijní

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Číselné vektory, matice, determinanty

Číselné vektory, matice, determinanty Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY

KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY KIV/ZI Základy informatiky MS EXCEL MATICOVÉ FUNKCE A SOUHRNY cvičící: Tomáš Ptáček zimní semestr 2012 MS EXCEL MATICE (ÚVOD) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

1 Pracovní úkoly. 2 Vypracování. Datum m ení: 7.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:

1 Pracovní úkoly. 2 Vypracování. Datum m ení: 7.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace: FYZIKÁLNÍ PRAKTIKUM II FJFI ƒvut v Praze Úloha #1 Kondenzátor, mapování elektrostatického pole Datum m ení: 7.4.2014 Skupina: 7 Jméno: David Roesel Krouºek: ZS 7 Spolupracovala: Tereza Schönfeldová Klasikace:

Více

6. Lineární nezávislost a báze p. 1/18

6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze 6. Lineární nezávislost a báze p. 1/18 6. Lineární nezávislost a báze p. 2/18 Lineární nezávislost a báze 1. Závislé a nezávislé vektory 2. Lineární kombinace a závislost

Více