FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrostatického pole. Abstrakt

Rozměr: px
Začít zobrazení ze stránky:

Download "FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrostatického pole. Abstrakt"

Transkript

1 FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha : Kondenzátor, mapování elektrostatického pole Datum měření:.. Jméno: Jiří Slabý Pracovní skupina: Ročník a kroužek:. ročník,. kroužek, pondělí : Spolupracovala: Eliška Greplová Hodnocení: Abstrakt Měřili jsme průrazné napětí na deskovém kondenzátoru a kulovém jiskřišti. V případě deskového kondenzátoru jsme srovnali hodnoty průrazného napětí s hodnotami odhadnutými za základě dielektrické pevnosti vzduchu. Hodnoty naměřené byly výrazně menší. Chyba pravděpodobně tkví v okrajových efektech kondenzátoru. V případě kulového jiskřiště jsme určili rovnici pro napětí na kulovém jiskřišti vyjádřením neznámé části f. Mapovali jsme elektrostatické pole pro tři různé uspořádání elektrod umístěných v elektrolytu. Úvod V této úloze se budeme nejprve zabývat kondenzátorem. První záměrně zkonstruovaný kondenzátor byla tzv. leydenská láhev a zasloužili se o ni německý kanovník Ewald Jurgen von Keist a holandský matematik a fyzik Pieter van Musschenbroek ve. letech. století []. Tyto leydenské láhve dnes použijeme v rámci tzv. influenční elektriky elektrostatického generátoru. Tento generátor Wimshurstova elektrika nese jméno po britském inženýru Jamesi Wimshurstovi. My budeme s touto indukční elektrikou nabíjet kondenzátor na vysoké napětí. V druhé části úlohy se pokusíme zmapovat elektrostatické pole vytvořené pomocí různých konfigurací elektrod.. Pracovní úkoly. DÚ: Připomeňte si odvození kapacity deskového kondenzátoru.. DÚ: Bezpečnostní normy připouštějí maximální náboj μc na deskách kondenzátoru. Stanovte jednu náhodnou geometrii deskového kondenzátoru, který by překročil tuto normu při napětí kv.. Změřte přitažlivé síly mezi deskami kondenzátoru pro různé vzdálenosti desek. Náboj přivádějte až do průrazu mezi deskami kondenzátoru. Napětí odhadněte z dielektrické pevnosti vzduchu. Naměřené hodnoty silového působení změřené na vahách porovnejte s předpovědí ze vztahu ().. Změřte přitažlivé síly mezi deskami kondenzátoru pro tři různé vzdálenosti desek (dle distancí). Náboj přivádějte až do průrazu na kulovém jiskřišti Wimshurstovy elektriky. Ze silového působení spočtěte napětí () a ze vztahu () se pokuste určit neznámou funkci f(s/d). Experimentální data a nalezenou funkci zpracujte do grafu.. Zvolte si různé konfigurace elektrod, nastavte na nich napětí cca V a zmapujte potenciál v síti bodů. Vyhodnoťte pomocí příslušného software v systému Linux (odečítání dat voltmetru, gnuplot). Data si zazálohujte a proveďte důkladné vyhodnocení v domácím zpracování.

2 Základní pojmy a experimentální uspořádání Pomůcky: Wimshurstova elektrika, váhy, deskový kondenzátor, podstavec, vodiče, sada distancí, zkratovač, regulovatelný zdroj V, souprava pro mapování elektrostatického pole, voltmetr PASPORT, PC.. Kondenzátor Soustavu dvou vodivých oddělených elektrod, které jsou schopné na sobě uchovat elektrický náboj, nazýváme kondenzátorem. Jeho základní vlastností je tzv. kapacita. Označujeme ji C a zavádíme ji jako poměr velikosti náboje na každé z elektrod Q a přivedeným napětím U, neboli C = Q U, () obecně závisí na geometrii kondenzátoru (velikost, tvar a vzájemná poloha elektrod) a permitivitě ε prostředí mezi elektrodami. Máme-li deskový kondenzátor s napětím U mezi deskami o ploše S ve vzdálenosti d mezi nimiž je prostředí o permitivitě ε, pak přitažlivá síla F mezi deskami je F = ε U S d. () Pokud však budeme nabíjet kondenzátor stále více, může se při určitém napětí stát, že dojde k průrazu dielektrikum mezi deskami začne vést proud. Tuto vlastnost dielektrika nazýváme dielektrickou pevností a udává se např. v kilovoltech na centimetr. My budeme používát vzduchový kondenzátor, dielektrická pevnost vzduchu je kv/cm. V pracovník úkolu použijeme kulové jiskřiště, pro průrazné napětí U a platí rovnice ( U a =, +. ) δ s δd f, () kde δ = b + + t a U a je napětí v kv, s doskok, tedy vzdálenost mezi koulemi jiskřiště v cm, D průměr koulí v cm, δ relativní hustota vzduchu, b barometrický tlak v mmhg, t teplota v místnosti ve C a funkce f je závislá na poměru s/d a na poloze jiskřiště proti zemi a platí pro s/d = je f =.. Mapování elektrostatického pole Elektrostatické pole vytvoříme pomocí elektrod připojených na zdroj stejnosměrného napětí V. Doporučené uspořádání elektrod naleznete na obr.. Elektrody byly vložené do vodní lázně v Petriho misce, pod níž byla na papíře nakreslena souřadná síť. Obr. : Jednotlivá uspořádání pro mapování elektrostatického pole konfigurace kondenzátor; dva body opačného znaménka; dva body stejného znaménka

3 Výsledky. Pracovní úkoly z domácí přípravy. Pro kondenzátor tvořený dvěma rovnoběžnými deskami o ploše S ve vzájemné vzdálenosti d ve vzduchu, kde ε ε, na nichž je potenciálový rozdíl U a mezi nimiž je elektrické pole o velikosti E, můžeme kapacitu C najít využitím Gaussova zákona U = E d Gauss = σd ε = d Q εs C = εs d, () /C kde Q je náboj na každé z desek, C je hledaná kapacita, σ je hustota náboje na desce.. Pokud vezmeme v úvahu maximální bezpečný náboj μc a napětí na deskách kv a následně si určíme plochu deskového kondenzátoru jako např., m (což se blíží námi použitému kondenzátoru), dostaneme pro vzdálenost desek. Kondenzátor d = εs U Q =, mm. Působící síly jsme měřili váhami, pro přepočet na sílu používáme tíhové zrychlení g =, m/s. Jako permitivitu používáme ε =, F/m... Průraz v kondenzátoru Poloměr kruhových desek kondenzátoru byl, cm. Naměřená data jsou uvedena v tab.. d [cm] F [N] U F [kv] U d [kv] F d [N],,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tab. : Průraz v kondenzátoru d vzdálenost desek, F naměřená síla mezi deskami, U F dopočtené napětí ze síly a vztahu (), U d je napětí odhadnuté z dielektrické pevnosti vzduchu, F d je hodnota dopočtená podle () z U d.. Průraz na kulovém jiskřišti Měřili jsme za teploty t =, C a tlaku b = mmhg. Průměr koulí jiskřiště byl D =, cm. Protože D bylo u nás konstantní můžeme funkci f brát jen od proměnné s. Naměřená data pro jednotlivé vzdálenosti můžete nalézt v tab. a. Na obr. můžete vidět, že funkce f by měla mít pravděpodobně tvar f(s) = + a s, takže touto závislostí jsme data prokládali. Získali jsme hodnoty pro jednotlivé měření viz tab., jelikož by neměla funkce f záviset na d můžeme uvést jednu výslednou hodnotu pro f a to f(s) = +, s, kde s je v cm. Případně bychom mohli ještě konstantu a vynásobit faktorem D, který by se pak přiřadil i k proměnné s a to ( s ) ( s ) f = +, D D kde jak s, tak D jsou v cm.

4 d = cm s [cm] F [N] U [kv] f(s/d),,,,,,,,,,,,,,,,,,,,,,,, d =, cm s [cm] F [N] U [kv] f(s/d),,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Tab. : Průraz na kulovém jiskřišti při vzdálenosti desek kondenzátoru d = cm vlevo; d =, cm vpravo s dosah (vzdálenost koulí na kulovém jiskřišti), F naměřená síla mezi deskami, U dopočtené napětí ze síly a vztahu (), f(s/d) hodnota neznámé funkce d = cm s [cm] F [N] U [kv] f(s/d),,,,,,,,,,,,,,,,,,,,,,,,,,,, d =, cm s [cm] F [N] U [kv] f(s/d),,,,,,,,,,,,,,,,,,,,,,,,,,,, Tab. : Průraz na kulovém jiskřišti při vzdálenosti desek kondenzátoru d = cm vlevo; d =, cm vpravo s dosah (vzdálenost koulí na kulovém jiskřišti), F naměřená síla mezi deskami, U dopočtené napětí ze síly a vztahu (), f(s/d) hodnota neznámé funkce d [cm] a [cm ],,,,,,,, výsledná, Tab. : Určování konstanty a v rovnici pro funkci f(s) = + a s

5 ,,, d = cm d =, cm d = cm d =, cm, F [N],,,,,,,,,,, s [cm] Obr. : Naměřené hodnoty přitažlivé síly F v závislosti na dosahu s při různých ale konstantních vzdálenostech desek kondenzátoru d f(s) [ ],,,,, cm, cm cm, cm f(s) = +, s,,,,,,,, s [cm] Obr. : Hodnoty funkce f z naměřených dat v závislosti na dosahu s

6 Up [kv/cm] Obr. : Závislost dielektrické pevnosti U p na pořadí měření n, tj. od začátku měření do konce, při měření průrazu na kulovém jiskřišti n [ ]. Mapování elektrostatického pole Mapovali jsme pro všechny tři konfigurace elektrod. Pro uspořádání kondenzátor naleznete na obr., pro uspořádání bodů stejných znamének obr. a bodů opačných znamének obr.. U [V] x [ ] y [ ] Obr. : Mapování elektrostatického pole uspořádání kondenzátor

7 U [V] x [ ] y [ ] Obr. : Mapování elektrostatického pole uspořádání bodů stejných znamének U [V] x [ ] y [ ] Obr. : Mapování elektrostatického pole uspořádání bodů opačných znamének

8 Diskuze. Kondenzátor Při měření průrazu na deskách kondenzátoru bylo námi zjištěné napětí menší (a to v desítkách procent) než napětí odhadnuté z dielektrické pevnosti vzduchu. Hlavní příčinu můžeme hledat v okrajových efektech. Námi odvozené vztahy platí pro ideální nekonečný deskový kondenzátor, avšak reálný kondenzátor je jiný. Už v dávno před rozvojem moderní fyziky bylo pozorováno sršení náboje na ostrých hranách či hrotech se nahromadí největší náboj a kolem je velká intenzita elektrického pole. Přesně to se pravděpodobně stalo na našem kondenzátoru na hraně došlo k naakmulování náboje a intenzita zde byla daleko vyšší než je odhad z modelu ideálního deskového kondenzátoru, a tudíž jsme výpočtem dostali špatné hodnoty napětí. Tuto variantu potvrzuje naše pozorování desek při průrazu, kdy k průrazu docházelo právě na kraji kondenzátoru. Dalším zdrojem chyb by mohla být změna vzájemné polohy desek při nabíjení, kdy docházelo k pohybu horní desky pravděpodobně vlivem přeuspořádávání náboje. Při měření průrazu na kulovém jiskřišti jsme získali různé hodnoty pro funkci f. Jak je ale vidět z grafu na obr., funkce by měla nějakým způsobem záviset i na vzdálenosti kondenzátorových desek d, což vzhledem k zavedení funkce f pouze v souvislosti s kulovým jiskřištěm nedává dost dobře smysl. Musí se tedy jednat o naměřený efekt něčeho jiného. Náš kondenzátor jsme měli paralelně připojen k jiskřišti, a pak ke Wimshurstově elektrice. Předpokládali jsme, že potenciálový rozdíl mezi deskami byl stejný jako mezi koulemi v jiskřišti. Vytvořili jsme graf závislosti dielektrické pevnosti U p na pořadí n, ve kterém jsme dané hodnoty naměřili, viz obr.. Předpokládali jsme, že by se mohl vzduch v okolí jiskřiště postupně ionizovat a dielektrická pevnost by mohla klesat, z této závislosti se však spíše zdá, že dochází k opaku, což je velmi zvláštní a popravdě se tomu skoro nechce věřit. Ještě musíme zmínit odečítání síly z vah. Na ramínku váhy je totiž zavěšena jedna deska kondenzátoru a po vyrovnání tíhové síly společně s elektrickou silou a reakční síly vyvolané váhami, odečítáme z stupnice vah ekvivalent hmotnosti, který po přenásobení g dá kýženou sílu. Vše se ovšem uskutečňuje velmi rychle, protože při přidávání náboje na kondenzátor těsně před průrazem dochází k prudkým změnám sil, a tudíž musí oko experimentátora nejvyšší hmotnost (sílu) spíše odhadnout (s přesností, g to lze poměrně slušně).. Mapování elektrostatického pole Mapovali jsme elektrostatické pole a výsledky na obr., a odpovídají našim představám. Na obr. je struktura v uspořádání kondenzátor a je vidět, že pole mezi deskami odpovídá předpokládané symetrii, desky byly umístěny až za krajem souřadnicové mřížky. Na obr. je výsledek při měření pole dvou bodů stejného znaménka potenciálu, přičemž body byly umístěny na kraj pro cca x = a y = a y =. Na obr. je vidět výsledek při měření v uspořádání dvou bodů opačných znamének, přičemž elektrody byly umístěny těstně za hranici souřadnicové mřížky a to na cca na ose x =. V grafech na obr. a můžeme vidět několik prudkých poklesů až k nule. Zde se jedná o chybu měřícího zařízení, které nám pod danou polohou uložilo V. To se netýká části obr., konkrétně kolem polohy x =, y =, kde mohlo dojít k dotyku s elektrodou, na kterou byl přiložen druhý měřící hrot. Závěr Měřili jsme průrazné napětí na deskovém kondenzátoru. Námi změřené hodnoty se neshodují s hodnotami odhadnutými na základě dielektrické pevnosti vzduchu. Chyba je pravděpodobně v okrajových efektech našeho deskového kondenzátoru, díky nimž není při průrazu mezi deskami homogenní pole, tak jak jsme předpokládali pro výpočet. Měřili jsme průrazné napětí na kulovém jiskřišti. Z naměřených dat jsme určili hodnotu funkce ( f s D ) ( = +, s D ). Mapovali jsme elektrostatického pole pro tři různé uspořádání elektrod a naše výsledky se shodují s našimi představami. Literatura [] ŠTOLL, I., Dějiny fyziky,.vyd., Praha, s, Prometheus, [] Kolektiv katedry fyziky, Úlohy fyzikálních praktik KONDENZÁTOR, MAPOVÁNÍ ELEK- TROSTATICKÉHO POLE,[cit. --], URL:

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 1: Kondenzátor, mapování elektrického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 5.5.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 1: Kondenzátor, mapování

Více

Úloha 1: Kondenzátor, mapování elektrostatického pole

Úloha 1: Kondenzátor, mapování elektrostatického pole Úloha 1: Kondenzátor, mapování elektrostatického pole FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.4.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp.

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 8: Kondenzátor, mapování elektrostatického pole atum měření: 8. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. Ú: Odvoďte

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 7: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 7: Rozšíření rozsahu miliampérmetru a voltmetru Datum měření: 13. 11. 2009 Cejchování kompenzátorem Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2.

Více

Elektrostatické pole. Vznik a zobrazení elektrostatického pole

Elektrostatické pole. Vznik a zobrazení elektrostatického pole Elektrostatické pole Vznik a zobrazení elektrostatického pole Elektrostatické pole vzniká kolem nepohyblivých těles, které mají elektrický náboj. Tento náboj mohl vzniknout například přivedením elektrického

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Vodič a izolant

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 6: Geometrická optika. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 8. 3. 2010 Úloha 6: Geometrická optika Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala: Eliška

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Geometrická optika Datum měření: 8. 4. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D12_Z_OPAK_E_Elektricky_naboj_a_elektricke_ pole_t Člověk a příroda Fyzika Elektrický

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 18 Název úlohy: Přechodové jevy v RLC obvodu Jméno: Ondřej Skácel Obor: FOF Datum měření: 2.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Studium ultrazvukových vln

Studium ultrazvukových vln Číslo úlohy: 8 Jméno: Vojtěch HORNÝ Spolupracoval: Jaroslav Zeman Datum měření: 12. 10. 2009 Číslo kroužku: pondělí 13:30 Číslo skupiny: 6 Klasifikace: Fyzikální praktikum FJFI ČVUT v Praze Studium ultrazvukových

Více

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek

1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek 1 Pracovní úkoly 1. Změřte průběh intenzity magnetického pole na ose souosých kruhových magnetizačních cívek (a) v zapojení s nesouhlasným směrem proudu při vzdálenostech 1, 16, 0 cm (b) v zapojení se

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.10 Název: Hallův jev. Pracoval: Lukáš Ledvina

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úlohač.10 Název: Hallův jev. Pracoval: Lukáš Ledvina Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úlohač.10 Název: Hallův jev Pracoval: Lukáš Ledvina stud.skup.14 dne:16.10.2009 Odevzdaldne: Možný počet bodů Udělený

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj

Více

Experimentální realizace Buquoyovy úlohy

Experimentální realizace Buquoyovy úlohy Experimentální realizace Buquoyovy úlohy ČENĚK KODEJŠKA, JAN ŘÍHA Přírodovědecká fakulta Univerzity Palackého, Olomouc Abstrakt Tato práce se zabývá experimentální realizací Buquoyovy úlohy. Jedná se o

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

11 Termická emise elektronů

11 Termická emise elektronů 11 Termická emise elektronů 1. května 2010 Fyzikální praktikum FJFI ČVUT v Praze Jméno: Vojtěch Horný Datum měření: 26.dubna 2010 Pracovní skupina: 2 Ročník a kroužek: 2. ročník, pondělí 13:30 Spolupracoval

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 12. 4. 2010 Úloha 11: Termická emise elektronů Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek: 2. ročník, 1. kroužek, pondělí 13:30 Spolupracovala:

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:...

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Posuzoval:... dne:... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum 1 Úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jan Kotek stud.sk.: 17 dne: 2.3.2012 Odevzdal dne:... možný počet bodů

Více

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy:

1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: 1 Pracovní úkoly 1. Změřte závislost indukčnosti cívky na procházejícím proudu pro tyto případy: (a) cívka bez jádra (b) cívka s otevřeným jádrem (c) cívka s uzavřeným jádrem 2. Přímou metodou změřte odpor

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XVIII Název: Přechodové jevy v RLC obvodu Pracoval: Pavel Brožek stud. skup. 12 dne 24.10.2008

Více

Fyzikální praktikum...

Fyzikální praktikum... Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum... Úloha č.... Název úlohy:... Jméno:...Datum měření:... Datum odevzdání:... Připomínky opravujícího: Možný počet bodů Udělený počet bodů Práce při

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XI Název: Charakteristiky diody Pracoval: Pavel Brožek stud. skup. 12 dne 9.1.2009 Odevzdal

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jiří Kozlík dne: 17.10.2013 Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum II Úloha č. 5 Název: Měření osciloskopem Pracoval: Jiří Kozlík dne: 17.10.2013 Odevzdal dne: 24.10.2013 Pracovní úkol 1. Pomocí

Více

Elektrický náboj a elektrické pole

Elektrický náboj a elektrické pole I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Elektrický náboj a elektrické

Více

Tabulka I Měření tloušťky tenké vrstvy

Tabulka I Měření tloušťky tenké vrstvy Pracovní úkol 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A]

Graf I - Závislost magnetické indukce na proudu protékajícím magnetem. naměřené hodnoty kvadratické proložení. B [m T ] I[A] Pracovní úkol 1. Proměřte závislost magnetické indukce na proudu magnetu. 2. Pomocí kamery změřte ve směru kolmém k magnetickému poli rozštěpení červené spektrální čáry kadmia pro 8-10 hodnot magnetické

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY Jméno: Petr Česák Datum měření: 30.3.2000 Studijní rok: 1999-2000, Ročník:1 Datum odevzdání: 13.4.2000 Studijní skupina:

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 0520 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Geometrická optika - Ohniskové vzdálenosti

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Úloha 3: Mřížkový spektrometr

Úloha 3: Mřížkový spektrometr Petra Suková, 2.ročník, F-14 1 Úloha 3: Mřížkový spektrometr 1 Zadání 1. Seřiďte spektrometr pro kolmý dopad světla(rovina optické mřížky je kolmá k ose kolimátoru) pomocí bočního osvětlení nitkového kříže.

Více

PRAKTIKUM IV Jaderná a subjaderná fyzika

PRAKTIKUM IV Jaderná a subjaderná fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Jaderná a subjaderná fyzika Úloha č. A15 Název: Studium atomových emisních spekter Pracoval: Radim Pechal dne 19. listopadu

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 4: Balmerova série vodíku. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření:.. 00 Úloha 4: Balmerova série vodíku Jméno: Jiří Slabý Pracovní skupina: 4 Ročník a kroužek:. ročník,. kroužek, pondělí 3:30 Spolupracovala: Eliška Greplová

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro

Více

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592

Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Téma 1: Elektrostatika I - Elektrický náboj Kapitola 22, str. 577 592 Shrnutí: Náboj a síla = Coulombova síla: - Síla jíž na sebe náboje Q působí je stejná - Pozn.: hledám-li velikost, tak jen dosadím,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Mikrovlny FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 25.3.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Mikrovlny Abstrakt V úloze je

Více

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE

STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE DANIEL TUREČEK 2005 / 2006 1. 412 5. 14.3.2006 28.3.2006 5. STANOVENÍ TÍHOVÉHO ZRYCHLENÍ REVERZNÍM KYVADLEM A STUDIUM GRAVITAČNÍHO POLE 1. Úkol měření 1. Určete velikost tíhového zrychlení pro Prahu reverzním

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 3: Mechanické pokusy na vzduchové dráze. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 3: Mechanické pokusy na vzduchové dráze. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3: Mechanické pokusy na vzduchové dráze Datum měření: 16. 10. 2009 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:30

Více

4.1.7 Rozložení náboje na vodiči

4.1.7 Rozložení náboje na vodiči 4.1.7 Rozložení náboje na vodiči Předpoklady: 4101, 4102, 4104, 4105, 4106 Opakování: vodič látka, ve které se mohou volně pohybovat nosiče náboje (většinou elektrony), nemohou ji však opustit (bez doteku

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 3. GAUSSŮV ZÁKON 3.1 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ POMOCÍ GAUSSOVA ZÁKONA ÚLOHA

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů tyristoru, část 3-5-4

MĚŘENÍ Laboratorní cvičení z měření. Měření parametrů tyristoru, část 3-5-4 MĚŘENÍ Laboratorní cvičení z měření Měření parametrů tyristoru, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického

2. Pro každou naměřenou charakteristiku (při daném magnetickém poli) určete hodnotu kritického 1 Pracovní úkol 1. Změřte V-A charakteristiky magnetronu při konstantním magnetickém poli. Rozsah napětí na magnetronu volte 0-200 V (s minimálním krokem 0.1-0.3 V v oblasti skoku). Proměřte 10-15 charakteristik

Více

Fyzikální praktikum III

Fyzikální praktikum III Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum III Úloha č. 19 Název úlohy: Měření indexu lomu Jaminovým interferometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 24.2.2016 Datum odevzdání:...

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: II Název: Měření odporů Pracoval: Pavel Brožek stud. skup. 12 dne 28.11.2008 Odevzdal

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úlohač.III. Název: Mřížkový spektrometr Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úlohač.III Název: Mřížkový spektrometr Vypracoval: Petr Škoda Stud. skup.: F14 Dne: 17.4.2006 Odevzdaldne: Hodnocení:

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:

Více

Fyzikální praktikum I

Fyzikální praktikum I Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum I Úloha č. XIX Název úlohy: Volný pád koule ve viskózní kapalině Jméno: Ondřej Skácel Obor: FOF Datum měření: 9.3.2015 Datum odevzdání:... Připomínky

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Balrmerova série Datum měření: 13. 5. 016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.3.2011 Jméno: Jakub Kákona Pracovní skupina: 2 Hodina: Po 7:30 Spolupracovníci: Viktor Polák Hodnocení: Ohniskové vzdálenosti a vady čoček a zvětšení

Více

Obvod střídavého proudu s kapacitou

Obvod střídavého proudu s kapacitou Obvod střídavého proudu s kapacitou Na obrázku můžete vidět zapojení obvodu střídavého proudu s kapacitou. Pomocí programů Nové přístroje 2012 a Dvoukanálový osciloskop pro SB Audigy 2012 proveďte daná

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE

3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE 3.3. ANALYTICKÁ GEOMETRIE KRUŽNICE A KOULE V této kapitole se dozvíte: jak popsat kružnici a kruh v rovině; jak určit vzájemnou polohu bodu nebo a kružnice, resp. bodu a kruhu; jakými metodami určit vzájemnou

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 8 Název úlohy: Měření malých odporů Jméno: Ondřej Skácel Obor: FOF Datum měření: 30.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Kapacita. Gaussův zákon elektrostatiky

Kapacita. Gaussův zákon elektrostatiky Kapacita Dosud jsme se zabývali vztahy mezi náboji ve vakuu. Prostředí mezi náboji jsme charakterizovali permitivitou ε a uvedli jsme, že ve vakuu je ε = 8,854.1-1 C.V -1.m -1. V této kapitole se budeme

Více

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku.

1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 1 Pracovní úkoly 1. Změřte modul pružnosti v tahu E oceli z protažení drátu. 2. Změřte modul pružnosti v tahu E oceli a duralu nebo mosazi z průhybu trámku. 3. Výsledky měření graficky znázorněte, modul

Více

PŘECHODOVÝ JEV V RC OBVODU

PŘECHODOVÝ JEV V RC OBVODU PŘEHODOVÝ JEV V OBVOD Pracovní úkoly:. Odvoďte vztah popisující časovou závislost elektrického napětí na kondenzátoru při vybíjení. 2. Měřením určete nabíjecí a vybíjecí křivku kondenzátoru. 3. rčete nabíjecí

Více

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V.

1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 1 Pracovní úkoly 1. Změřit metodou přímou závislost odporu vlákna žárovky na proudu, který jím protéká. K měření použijte stejnosměrné napětí v rozsahu do 24 V. 2. Změřte substituční metodou vnitřní odpor

Více

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity RIEDL 3.EB-6-1/8 1.ZADÁNÍ a) Změřte indukčnosti předložených cívek ohmovou metodou při obou možných způsobech zapojení měřících přístrojů. b) Měření proveďte při kmitočtech měřeného proudu 50, 100, 400

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A13 Určení měrného náboje elektronu z charakteristik magnetronu Název: Pracoval: Martin Dlask. stud. sk.: 11 dne:

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Základním praktikum z laserové techniky

Základním praktikum z laserové techniky Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr

Více

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona. 1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření

Více

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16.

PRAKTIKUM II. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 6. Název: Měření účiníku. dne: 16. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II. úloha č. 6 Název: Měření účiníku Pracoval: Jakub Michálek stud. skup. 12 dne: 16.října 2009 Odevzdal dne: Možný počet

Více

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru:

2 (3) kde S je plocha zdroje. Protože jas zdroje není závislý na směru, lze vztah (5) přepsat do tvaru: Pracovní úkol 1. Pomocí fotometrického luxmetru okalibrujte normální žárovku (stanovte její svítivost). Pro určení svítivosti normální žárovky (a její chyby) vyneste do grafu závislost osvětlení na převrácené

Více

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení

Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Laboratorní úloha č. 5 Faradayovy zákony, tíhové zrychlení Úkoly měření: 1. Měření na digitálním osciloskopu a přenosném dataloggeru LabQuest 2. 2. Ověřte Faradayovy zákony pomocí pádu magnetu skrz trubici

Více

Jméno a příjmení. Ročník

Jméno a příjmení. Ročník FYZIKÁLNÍ PRAKTIK FEKT VT BRNO Jméno a příjmení Ročník 1 Obor Stud. skupina Kroužek Spolupracoval ěřeno dne Odevzdáno dne ID Lab. skup. Příprava Opravy čitel Hodnocení Název úlohy Číslo úlohy zs015 1.

Více

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.

1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. 1 Pracovní úkoly 1. Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti.. Určete složky jednotkového vektoru ve směru zadané obecné osy rotace kvádru v souřadné soustavě dané hlavními

Více

MĚŘ, POČÍTEJ A MĚŘ ZNOVU

MĚŘ, POČÍTEJ A MĚŘ ZNOVU MĚŘ, POČÍTEJ A MĚŘ ZNOVU Václav Piskač Gymnázium tř.kpt.jaroše, Brno Abstrakt: Příspěvek ukazuje možnost, jak ve vyučovací hodině propojit fyzikální experiment a početní úlohu způsobem, který výrazně zvyšuje

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí

PŘECHODOVÝ DĚJ VE STEJNOSMĚRNÉM EL. OBVODU zapnutí a vypnutí sériového RC členu ke zdroji stejnosměrného napětí Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB -TU Ostrava PŘEHODOVÝ DĚJ VE STEJNOSMĚNÉM EL. OBVODU zapnutí a vypnutí sériového členu ke zdroji stejnosměrného napětí Návod do

Více

Měření permitivity a permeability vakua

Měření permitivity a permeability vakua Měření permitivity a permeability vakua Online: http://www.sclpx.eu/lab3r.php?exp=2 Permitivita i permeabilita vakua patří svojí hodnotou měřenou v základních jednotkách SI mezi poměrně malé fyzikální

Více

Zadání. Pracovní úkol. Pomůcky

Zadání. Pracovní úkol. Pomůcky Pracovní úkol Zadání 1. Změřte ohniskovou vzdálenost tenké ploskovypuklé (plankonvexní) čočky jednak Besselovou metodou, jednak metodou dvojího zvětšení. 2. Z následujících možností vyberte jednu: a. Změřte

Více

Buffonova jehla. Jiří Zelenka. Gymnázium Zikmunda Wintra Rakovník

Buffonova jehla. Jiří Zelenka. Gymnázium Zikmunda Wintra Rakovník Buffonova jehla Jiří Zelenka Gymnázium Zikmunda Wintra Rakovník jirka-zelenka@centrum.cz Abstrakt Zaměřil jsem se na konstantu π. K určení hodnoty jsem použil matematický experiment nazývaný Buffonova

Více

Měření měrné tepelné kapacity látek kalorimetrem

Měření měrné tepelné kapacity látek kalorimetrem Měření měrné tepelné kapacity látek kalorimetrem Problém A. Změření kapacity kalorimetru (tzv. vodní hodnota) pomocí elektrického ohřevu s měřeným příkonem. B. Změření měrné tepelné kapacity hliníku směšovací

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 19 Název úlohy: Měření s torzním magnetometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 12.10.2015 Datum odevzdání:... Připomínky

Více

HUSTOTA PEVNÝCH LÁTEK

HUSTOTA PEVNÝCH LÁTEK HUSTOTA PEVNÝCH LÁTEK Hustota látek je základní informací o studované látce. V případě homogenní látky lze i odhadnout druh materiálu s pomocí známých tabulkovaných údajů (s ohledem na barvu a vzhled materiálu

Více