a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = = 1 7 a jeho hodnotu pro x = 2

Rozměr: px
Začít zobrazení ze stránky:

Download "a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2"

Transkript

1 Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů na součin vzorec...0 Krácení a rozšiřování zlomků... Sčítání a odčítání lomených výrazů...3 Násobení a dělení lomených výrazů...6

2 Definiční obory výrazů s proměnnou 0 minut + 5 minut; aspoň 3.Určete definiční obor výrazu 4 a jeho hodnotu pro =.Určete definiční obor výrazu 3 a jeho hodnotu pro = 6; = 3 3.Určete definiční obor výrazu 4 3 a jeho hodnotu pro = 4.Určete definiční obor výrazu a jeho hodnotu pro = - 5.Určete definiční obor výrazu. 6.Určete definiční obor výrazu. 7.Určete definiční obor výrazu Určete definiční obor výrazu 4 a jeho hodnotu pro = podmínka: 0 ; definiční obor: R {} ; pro = 4 =0 3.Určete definiční obor výrazu a jeho hodnotu pro = 6; = 3 podmínka: ; definiční obor 3; { } ; pro = = 3 4 ; pro = = 4 8 = 7 3.Určete definiční obor výrazu 4 3 a jeho hodnotu pro = podmínka ; definiční obor R { 4 3 } ; 4 3 =0 4.Určete definiční obor výrazu a jeho hodnotu pro = - podmínka: 0 ze zlomku, 0 z odmocniny, tedy ; definiční obor ; ; = 4 = 5.Určete definiční obor výrazu. podmínka: 0 a 0, druhá mocnina nikdy nebude záporná, tedy stačí podmínka ; definiční obor ; 6.Určete definiční obor výrazu. podmínka: 0, což je z povahy absolutní hodnoty; definiční obor 7.Určete definiční obor výrazu podmínka: ; definiční obor R { 4; ;3}

3 Zápisy výrazů ; 5 minut + 5 minut.součin dvojnásobku třetí mocniny proměnné a druhé mocniny proměnné y.součet třetí mocniny libovolného čísla a dvojnásobku druhé mocniny jiného libovolného čísla 3.Rozdíl čtyřnásobku druhé mocniny libovolného čísla a dvojnásobku druhé mocniny stejného čísla 4.Podíl druhé mocniny součtu dvou libovolných čísel a rozdílu druhých mocnin stejných čísel 5.Podíl druhé mocniny libovolného čísla zvětšeného o dva a druhé mocniny stejného čísla zmenšeného o tři.součin dvojnásobku třetí mocniny proměnné a druhé mocniny proměnné y 3 y.součet třetí mocniny libovolného čísla a dvojnásobku druhé mocniny jiného libovolného čísla 3 y 3.Rozdíl čtyřnásobku druhé mocniny libovolného čísla a dvojnásobku druhé mocniny stejného čísla 4 4.Podíl druhé mocniny součtu dvou libovolných čísel a rozdílu druhých mocnin stejných čísel y y 5.Podíl druhé mocniny libovolného čísla zvětšeného o dva a druhé mocniny stejného čísla zmenšeného o tři 3 3

4 Sčítání a odčítání mnohočlenů 3 příklady - 0 minut; 5 minut.sečtěte mnohočleny 4 y 3 y.sečtěte mnohočleny 4 a a 5 a 3 a 5 a 3.Sečtěte mnohočleny a [ a b 3 a b a b ] 4.Sečtěte mnohočleny y y y y 3 y 7 5.Sečtěte mnohočleny,5 y {8 5 y [ 0 5,5 6 y ]} 6.Sečtěte mnohočleny 3 a n 0 a n 7 a a 9 a n 0 a n 7.Sečtěte mnohočleny a b {3 a b b [a a b b a b ]}.Sečtěte mnohočleny 4 y 3 y 4 y 3 y = y.sečtěte mnohočleny 4 a a 5 a 3 a 5 a 4 a a 5 a 3 a 5 a 4 a a 3 a a 5 a 5 =3 a 7 a 6 3.Sečtěte mnohočleny a [ a b 3 a b a b ] a a b 3 a b a b a [ a b 3 a b a b] nebo b 3 a b a b=4 a 4 b a [ a 4 b]= a a 4 b 4.Sečtěte mnohočleny y y y y 3 y 7 y y y y 3 y 7 3 y y y y y 7 y 3 y y 7 5.Sečtěte mnohočleny,5 y {8 5 y [ 0 5,5 6 y ]},5 y 8 5 y [ 0 5,5 6 y ] 4,5 6 y 0 5,5 6 y 4,5 0 5,5 6 y 6 y =0,5 y {8 5 y 0 5,5 6 y },5 y {8 5 y 5,5 6 y } nebo,5 y {,5 y },5 y,5 y =0 6.Sečtěte mnohočleny 3 a n 0 a n 7 a a 9 a n 0 a n 3 a n 0 a n 7 a a 9 a n 0 a n 3 a n 9 a n 0 a n 0 a n 7 a a 6 a n 6 a 7.Sečtěte mnohočleny a b {3 a b b [a a b b a b ]} a b 3 a b b [a a b b a b ] a b 3 a b a a b b a b= a nebo a b {3 a b b [a a b b a b]} a b {3 a b b [a 3 a b b ]} a b {3 a b b a 3 a b b } a b { b a }=a b b a = a

5 Násobení mnohočlenů 4; minut.násobte mnohočleny 0 a b c a b 3 a c.násobte mnohočleny 3 y 5 y y 3.Násobte mnohočleny a b a b a {b 3 b a [a b 3 a b ]} 4.Vynásobte dvojčleny Vynásobte dvojčleny a 3 b 3 6.Vynásobte mnohočleny Vynásobte mnohočleny a b c a b c 8.Vynásobte mnohočleny Vynásobte mnohočleny a 4 a 3 b a b a b 3 b 4 a b 0.Vynásobte mnohočleny 3 y { y 3 y [ 3 y 4 3 y y ]}.Násobte mnohočleny 0 a b c a b 3 a c 0 3 a a a b b c c =60 a 3 b 3 c 4.Násobte mnohočleny 3 y 5 y y 3 3 y 5 y 5 y =3 8 y 5 y 3.Násobte mnohočleny a b a b a {b 3 b a [a b 3 a b ]} a b a b a {3 b a b [a 3 a b b ]}=a b a b a {3 b a b a 3 a b b } a b a b a {b a b a }=a b a b a b a b a 3 =a 3 4.Vynásobte dvojčleny =5 0 5.Vynásobte dvojčleny a 3 b 3 3 a b 3 a 3 b 3 6.Vynásobte mnohočleny = Vynásobte mnohočleny a b c a b c a a b a c a b b b c a c b c c =a b b c c 8.Vynásobte mnohočleny = = 4 9.Vynásobte mnohočleny a 4 a 3 b a b a b 3 b 4 a b a 5 a 4 b a 4 b a 3 b a 3 b a b 3 a b 3 a b 4 a b 4 b 5 =a 5 b 5 0.Vynásobte mnohočleny 3 y { y 3 y [ 3 y 4 3 y y ]}

6 3 y { y 3 y [ 3 y 4 4 y 3 y 3 y ]} 3 y { y 3 y [3 y 4 y 3 y ]} 3 y y 3 y 3 y [3 y 4 y 3 y ] 5 y 3 y 4 9 y [3 y 4 y 3 y ] 5 y 3 y 3 8 y y y 7 y 8 y 3 36 y 9 y 3 7 y 4 5 y 3 y 3 8 y y 48 y 7 y 8 y 3 9 y 3 7 y 4

7 Dělení mnohočlenů ; 5 +5 minut.dělte mnohočlen jednočlenem 8 a a a 5 :6 a 3.Dělte mnohočlen dvojčlenem 5 9 a 5 a 3 a 3 : 5 3 a 3.Dělte mnohočlen dvojčlenem m 4 m 3 n m n m n 3 : m n 4.Dělte mnohočlen mnohočlenem : Dělte mnohočlen mnohočlenem : 6.Dělte mnohočlen mnohočlenem 3 y y 4 6 y y 8 3 y : y 3 y Dělte mnohočlen dvojčlenem 00 m 4 64 n 6 : 8 n 3 0 m.dělte mnohočlen jednočlenem 8 a a a 5 :6 a 3 3 a 4 a.dělte mnohočlen dvojčlenem 5 9 a 5 a 3 a 3 : 5 3 a 3 a 3 5 a 9 a 5 : 3 a 5 =a 3 3 a 3 5 a 9 a 5 9 a Dělte mnohočlen dvojčlenem m 4 m 3 n m n m n 3 : m n m 4 m 3 n m n m n 3 : m n =m m n m 4 m n m 3 n m n 3 m 3 n m n Dělte mnohočlen mnohočlenem : : 3 7 = Dělte mnohočlen mnohočlenem : : =

8 6.Dělte mnohočlen mnohočlenem 3 y y 4 6 y y 8 3 y : y 3 y y 8 3 y 3 y 3 y 4 6 y 5 : 3 3 y 3 y 3 =3 7 y y y 9 y 3 4 y 8 3 y 4 y 3 y 4 6 y 5 4 y 4 3 y y y 4 y 3 6 y y 4 y 3 6 y Dělte mnohočlen dvojčlenem 00 m 4 64 n 6 : 8 n 3 0 m 64 n 6 00 m 4 : 8 n 3 0 m = 8 n 3 0 m 64 n 6 80 m n 3 80 m n 3 00 m 4 80 m n 3 00 m 4 0

9 Rozklad mnohočlenů na součin vytýkání 4; minut.rozložte 9 a 3 6 a b.rozložte 4 3 y 6 y 8 y 3 3.Rozložte Rozložte Rozložte 5 c m c n 5 d m 3 d n 6.Rozložte a b b 4 a y y 7.Rozložte Rozložte 5 r u 6 u s 5 r v s v.rozložte 9 a 3 6 a b 3 a 3 a b.rozložte 4 3 y 6 y 8 y 3 y 3 y 4 y 3.Rozložte = 5 5 = 5 = 5 4.Rozložte = Rozložte 5 c m c n 5 d m 3 d n c 5 m n 3 d 5 m n = 5 m n c 3 d 6.Rozložte a b b 4 a y y b a y a = a b y 7.Rozložte = 4 8.Rozložte 5 r u 6 u s 5 r v s v 3 u 5 r s v 5 r s = 5 r s 3 u v

10 Rozklad mnohočlenů na součin vzorec 3; minut.rozložte a 6 b 6 c.rozložte 5 a a b 3.Rozložte a 6 4 a 3 b 4 b 4 4.Rozložte 4 y 3 y y 4 5.Rozložte, a 0,44 0,04 a 6.Rozložte 9 a 4 b 6 a 3 b a b 7.Rozložte a 48 a 8 a 3 8.Rozložte 7 8 a 3 9.Rozložte Rozložte 4 a b 9 a b.rozložte a 6 b 6 c a 3 b 3 c = a 3 b 3 c a 3 b 3 c.rozložte 5 a a b 5 a a b = 5 a a b 5 a a b = 4 a b 6 a b 3.Rozložte a 6 4 a 3 b 4 b 4 a 3 a 3 b b = a 3 b 4.Rozložte 4 y 3 y y 4 y y 3 y 3 y = y 3 y = y 3 y 5.Rozložte, a 0,44 0,04 a, a, a 0, a 0, a 0, =, a a 6.Rozložte 9 a 4 b 6 a 3 b a b 3 a b 3 a b a b a b = 3 a b a b =a b 3 a 7.Rozložte a 48 a 8 a a 3 4 a a 3 = 4 a 3 =8 a 3 8.Rozložte 7 8 a a 3 = 3 a 9 6 a 4 a 9.Rozložte = = = 4 a Rozložte 4 a b 9 a b a b 3 a b = a b 3 a b a b 3 a b a b 3 a 3 b a b 3 a 3 b = 5 b a 5 a b

11 Krácení a rozšiřování zlomků 3; minut.zkraťte dané zlomky a udejte podmínky, kdy mají smysl: 0 a b y 5 a 4 b y 3.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: m m m n n 3.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: 3 3 y 4 y 4.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: a 4 b 4 a b 6.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: a b c a b a b c a c 7.Chybějící čitatele a jmenovatele doplňte tak, aby se zlomky rovnaly: 4 y = 8 3 y 5 8.Chybějící čitatele a jmenovatele doplňte tak, aby se zlomky rovnaly: a b b a b =3 a 9.Chybějící čitatele a jmenovatele doplňte tak, aby se zlomky rovnaly: a b a b = 4 a a b 3.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: 3 a y ; a,b 0 y.zkraťte dané zlomky a udejte podmínky, kdy mají smysl: m m n m =m n ; n 0 m 3.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: 3 y y = y y ;, y 0 y 0 a b y 5 a 4 b y 3 m m m n n 3 3 y 4 y 4.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: 3 4 = = = = ; ± a 4 b 4 5.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: a b a b a b =a b ; a b 0 a a b se nesmí rovnat nule zároveň a b

12 a b c a b 6.Zkraťte dané zlomky a udejte podmínky, kdy mají smysl: a b c a c a a b b c c a a c c b = a b a c b = a b c a b c a c b a c b =a b c a c b ; a b c 0 a c b 0 7.Chybějící čitatele a jmenovatele doplňte tak, aby se zlomky rovnaly: 4 y 5 = 4 y 5 = 8 3 y 0 ; 0 8.Chybějící čitatele a jmenovatele doplňte tak, aby se zlomky rovnaly: a b a b = 3 a b a b b a b 3 a b =3 a 6 a b ; a b 9.Chybějící čitatele a jmenovatele doplňte tak, aby se zlomky rovnaly: a b a b = a b a a b b a b a a b = a a 4 a a b 3 ; a b 4 y 5 = 8 3 y a b b a b =3 a a b a b = 4 a a b 3

13 Sčítání a odčítání lomených výrazů 3; minut. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: a a b. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 3. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 4. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 5. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 6. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 7. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 8. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: a b b c a c 9. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 0. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti:. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: a a b a a a a b a = a a b a = a a b = b a a ; podmínka. a 0 a 4 r s s r y 3 y y 3 y y a b 3 a b a 3 b 3 b a a a b b a b b b a a a. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 4 r s r s = 4 r s = 5 r s ; podmínka: r s 4 r s s r 3. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: y 3 y y 3 y y y 3 y y 3 y y y = y y y 3 y y y y 3 y y y y 3 y y 3 y = y 3 y 3 y 3 y = y y y y y y podmínky: ± y 4. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti:

14 3 3 6 = = = = podmínky: ± 3 5. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: = = 0 0 Podmínky: ± 6. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: a b 3 a b a 3 b 3 a b 3 a b a b a a b b b a a a b b a b b a b a a a b b 3 a b a b a a b b b a a a b b a b a a b b 3 a b b a b a a b b a a a b b a b a a b b a a b b a b b a = a a b b a b a a b b a b a a b b = a b a b a a b b = a b a a b b Podmínky: a b 7. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: a b b a b a = a b b a a a b a b b a b a b b a = b a Podmínky: a b b a a b b b a a 8. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: a b b c a c a b c c b c a a a c b b = c a b a c b b a c a c b Podmínky: a b c 9. Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: 3

15 Podmínky: = = Sečtěte lomené výrazy a stanovte podmínky jejich platnosti: = Podmínky: 3

16 Násobení a dělení lomených výrazů 3; minut. Násobte a stanovte podmínky platnosti lomených výrazů. Násobte a stanovte podmínky platnosti lomených výrazů 3. Násobte a stanovte podmínky platnosti lomených výrazů 4. Násobte a stanovte podmínky platnosti lomených výrazů 5. Násobte a stanovte podmínky platnosti lomených výrazů 6. Násobte a stanovte podmínky platnosti lomených výrazů 7. Násobte a stanovte podmínky platnosti lomených výrazů 8. Násobte a stanovte podmínky platnosti lomených výrazů a b a4 a a b y y y : y y [ y ] a m a n m m n n : a m a m n a n 3 m 3 n y y 3 a b 5 a b 6 a b 35 y y : y y. Násobte a stanovte podmínky platnosti lomených výrazů a b a b a4 a a b = a b a a b ; podmínky: a 0 a b. Násobte a stanovte podmínky platnosti lomených výrazů 4 4 podmínky: ± 4 4 a b a a4 a b = 4 = Násobte a stanovte podmínky platnosti lomených výrazů y y y [ y y y y y ] = podmínky: y 0 ± y y y y y : y y [ y ] 4. Násobte a stanovte podmínky platnosti lomených výrazů a m a n m m n n : a m a m n a n 3 m 3 n

17 a m n : a m m n n = a m n m n : a m n m n 3 m n m n 3 m n = a m n m n 3 m n m n a m n = 3 m n podmínky: a 0 m ±n 5. Násobte a stanovte podmínky platnosti lomených výrazů y y y = y y y y = y y Podmínky: y y, y 0 ±y 6. Násobte a stanovte podmínky platnosti lomených výrazů 3 a b 5 a b 35 6 a b a b = 7 a b Podmínky: a ±b 3 a b 5 a b 6 a b Násobte a stanovte podmínky platnosti lomených výrazů = = = = = = 3 3 Podmínky: Násobte a stanovte podmínky platnosti lomených výrazů y y : y y y y y y Podmínky:, y 0 ±y = y y : y y = y y y y y = y y y : y y y

Rozklad na součin vytýkáním

Rozklad na součin vytýkáním Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Dělení celku na části v poměru

Dělení celku na části v poměru Dělení celku na části v poměru Příklad : Rozděl číslo 12 v poměru 2 : 3. Řešení : Celek musíme rozdělit na 2 + 3 = 5 dílů. Jeden díl má velikost 12 : 5 = 2,4 První člen poměru představuje dva díly a proto

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ.1.07/1.5.00/34.0763 Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 Autor Ing. Antonín Kučera

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Anotace: Digitální učební materiály slouží k zopakování a k testování získaných znalostí a dovedností.

Anotace: Digitální učební materiály slouží k zopakování a k testování získaných znalostí a dovedností. Tematická oblast: (VY_32_INOVACE_04 1 M1) Autor: RNDr. Yvetta Bartáková, Mgr. Petra Drápelová, Mgr. Jaroslava Vrbková, Mgr. Jarmila Zelená Vytvořeno: 2013-2014 Anotace: Digitální učební materiály slouží

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647

ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 ZÁKLADNÍ ŠKOLA PŘI DĚTSKÉ LÉČEBNĚ Ostrov u Macochy, Školní 363 INOVACE VÝUKY CZ.1.07/1.4.00/21.0647 Název vzdělávacího materiálu: Anotace: Vzdělávací oblast: VY_32_INOVACE_ARITMETIKA+ALGEBRA15 Sčítání,

Více

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2

- y. 5.5 Kráceni a rozširování lomenvch výrazu. eseru: = = = x +.) Podmínkyrešitelnosti:x -:;l:o, x -:;l:3/2 48 Príklad 73: Rozložte na soucin: a)4x2-25 c)x4-16 - e) x' + 27 b} 25x2 + 30xy + 9y2 d) 8x3-36~y + 54xy2-27l Rešení: a) Použije vzorec a2 - b2 = (a - b). (a + b), v nemž platí a = 2x, b = 5. Dostaneme:

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Lomené algebraické výrazy

Lomené algebraické výrazy Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy

Více

4a) Racionální čísla a početní operace s nimi

4a) Racionální čísla a početní operace s nimi Racionální čísla a početní operace s nimi Množinu racionálních čísel získáme z množiny čísel celých, jejím rozšířením o čísla desetinná s ukončeným des. rozvojem nebo periodická a zlomky, které lze na

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 IV/2 Inovace a

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika1.ročník Operace s mnohočleny. Text a příklady. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Operace s mnohočleny. Text a příklady.

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

5 čitatel zlomková čára 13 jmenovatel

5 čitatel zlomková čára 13 jmenovatel Aritmetika sekunda 1 Zlomky Celek a jeho část Zlomek je speciální zápis čísla v podílovém tvaru. Zlomek obsahuje čitatele a jmenovatele, kteří jsou od sebe odděleni zlomkovou čarou. Zlomek pět třináctin

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální.

Kaţdé číslo, které lze vyjádřit jako podíl dvou celých čísel, je číslo racionální. . Racionální čísla. ročník -. Racionální čísla.. Vymezení pojmu Kaţdé číslo které lze vyjádřit jako podíl dvou celých čísel je číslo racionální. Při podílu dvou celých čísel a a b mohou nastat tyto situace

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

M - Lomené algebraické výrazy pro učební obory

M - Lomené algebraické výrazy pro učební obory M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.

Více

Matematická skládanka násobení a dělení výrazů s mocninami

Matematická skládanka násobení a dělení výrazů s mocninami Matematická skládanka násobení a dělení výrazů s mocninami Očekávané výstupy dle RVP ZV: matematizuje jednoduché reálné situace s využitím proměnných, určí hodnotu výrazu, sčítá a násobí mnohočleny, provádí

Více

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován:

Komisionální přezkoušení 1T (druhé pololetí) 2 x. 1) Z dané rovnice vypočtěte neznámou x:. 2) Určete, pro která x R není daný výraz definován: 1) Z dané rovnice vypočtěte neznámou :. ) Určete, pro která R není daný výraz definován: 3) Určete obor hodnot funkce Komisionální přezkoušení 1T (druhé pololetí) f : y 4 3. 4 8 5 1 4) Vyšetřete vzájemnou

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

Konstruktivistické přístupy. Mnohočleny, lomené algebraické výrazy.

Konstruktivistické přístupy. Mnohočleny, lomené algebraické výrazy. Konstruktivistické přístupy. Mnohočleny, lomené algebraické výrazy. Mgr. Irena Budínová, Ph.D. Konstruktivismus Zjednodušeně můžeme říci, že konstruktivismus představuje směr, který zdůrazňuje aktivní

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918

Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Nástin dějin vyučování v matematice (a také školy) v českých zemích do roku 1918 Jednoroční učební kurs (JUK) In: Jiří Mikulčák (author): Nástin dějin vyučování v matematice (a také školy) v českých zemích

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí.

Instrukce: Jednotlivé části nejdou přesně po sobě, jak jsme se učili, je to shrnutí. Instrukce: Vytiskněte si tenhle přehled, vybarvěte důležité části (zvýrazňovačkou, pastelkami) tak, aby jste se rychle orientovali. Při počítání příkladů jej mějte před sebou! a dívejte se do něj. Možná

Více

Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno:

Autoevaluační karta. Škola: Obchodní akademie Pelhřimov, Jirsíkova 875. obchodní akademie. ekonomika, účetnictví, daně. Školní rok: Jméno: Autoevaluační karta Škola: Obchodní akademie Pelhřimov, Jirsíkova 875 Obor: obchodní akademie Zaměření: ekonomika, účetnictví, daně Školní rok: Předmět: matematika Třída: 1. A Jméno: TEMATICKÝ CELEK: Znalosti

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Osobnostní a sociální výchova osobnostní rozvoj řešení problémů a rozhodovací dovednosti uplatní se při řešení všech problémových úloh

Osobnostní a sociální výchova osobnostní rozvoj řešení problémů a rozhodovací dovednosti uplatní se při řešení všech problémových úloh Vzdělávací oblast - Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu: Vyučovací předmět Matematika je zařazen samostatně v 6. 9. ročníku v hodinové dotaci 4,4,4,5.

Více

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku. 5. Racionální čísla 5.1. Vymezení pojmu racionální číslo Dělením dvou celých čísel nemusí vyjít vždy číslo celé, např.: 6 : 3 = 2, ale podíl 2 : 3 není celé číslo. Vznikla tedy potřeba rozšíření celých

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK2

MANUÁL. Výukových materiálů. Matematický kroužek 8.ročník MK2 MANUÁL Výukových materiálů Matematický kroužek 8.ročník MK2 Vypracovala: Mgr. Jana Kotvová 2014 Číslo hodiny: 1 Téma: Celá čísla, přednost matematických operací Očekávané výstupy: žáci počítají jednoduché

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, trojúhelníky a čtyřúhelníky, výrazy 1, hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

ROZKLAD MNOHOČLENU NA SOUČIN

ROZKLAD MNOHOČLENU NA SOUČIN ROZKLAD MNOHOČLENU NA SOUČIN Rozkladedem mnohočlenu na součin rozumíme rozklad mnohočlenu na součin jednodušších mnohočlenů, které z pravidla již nejsou dále rozložitelné. Pro rozklad mnohočlenu na součin

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Stran Stran celkem DUM 1 VY_32_INOVACE_03_01 Matematika 1. M - pololetní opakování písemná práce Word 5 4 2 VY_32_INOVACE_03_02 Matematika

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Rozšířená výuka matematiky Ročník: 7.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Rozšířená výuka matematiky Ročník: 7. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Rozšířená výuka matematiky Ročník: 7. Žák: modeluje a zapisuje zlomkem část celku převádí zlomky na des. čísla a naopak porovnává zlomky

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. úpravy a převádění zlomků METODICKÝ LIST DA Název tématu: Autor: Předmět: Zlomky smíšené číslo, složené zlomky a převod na desetinná čísla Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky:

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

Variace. Číselné výrazy

Variace. Číselné výrazy Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA

UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA UČEBNÍ OSNOVY VYUČOVACÍHO PŘEDMĚTU MATEMATIKA 1. Obsahové vymezení předmětu Matematika prolíná celým základním vzděláváním a její výuka vede žáky především předmět Matematika zahrnuje vzdělávací Matematika

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

VY_42_INOVACE_MA3_01-36

VY_42_INOVACE_MA3_01-36 Název školy Základní škola Benešov, Jiráskova 888 Číslo projektu CZ.1.07/1.4.00/21.1278 Název projektu Pojďte s námi Číslo a název šablony klíčové aktivity VY_42_INOVACE_MA3_01-36 Inovace a zkvalitnění

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Kvadratická rovnice. - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0

Kvadratická rovnice. - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0 Kvadratické rovnice Kvadratická rovnice a + b + c = 0 a, b, c R a 0 - koeficienty a, b, c jsou libovolná reálná čísla, a se nesmí rovnat 0 - pokud by koeficient a byl roven nule, jednalo by se o rovnici

Více

Početní operace se zlomky

Početní operace se zlomky Početní operace se zlomky 1. Sčítání a. zlomků - upravíme zlomky na stejného jmenovatele (rozšiřováním, v některých případech krácením) hledáme společný násobek všech jmenovatelů (nejlépe nejmenší společný

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Učební osnovy Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Průřezová témata, projekty

Více

Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy

Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRIMA Školní výstupy Učivo Průřezová témata Mezipředmětové vztahy Žák: rozlišuje pojmy násobek, dělitel definuje prvočíslo, číslo složené, sudé a liché číslo, čísla soudělná

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika

4. 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 4.2.1 Matematika 2 VZDĚLÁVACÍ OBLAST MATEMATIKA A JEJÍ APLIKACE Nižší stupeň víceletého gymnázia 1 Matematika Hodinová dotace Matematika 4 4 4 4 Realizuje obsah vzdělávacího oboru Matematika a její aplikace RVP ZV. Matematika

Více

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi:

Racionální čísla. Množinu racionálních čísel značíme Q. Zlomky můžeme při počítání s nimi: Racionální čísla Racionální číslo je číslo vyjádřené ve tvaru zlomku p kde p je celé číslo a q je q číslo přirozené. Tento zápis je jednoznačný pokud čísla p, q jsou nesoudělná, zlomek je v základním tvaru.

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1

URČI HODNOTU VÝRAZU. A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1. B) Urči hodnotu výrazu 4( x + 3) pro x = -1 URČI HODNOTU VÝRAZU Kolik to je? A) Urči hodnotu výrazu 3 2 5 VYPOČÍTEJ 3 2 5 = 6 5 = 1 určit (vy)počítat dosadit hodnota výrazu (urči) (vypočítej) (dosaď) B) Urči hodnotu výrazu 4( x + 3) pro x = -1 DOSAĎ

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy

Školní vzdělávací program - Základní škola, Nový Hrádek, okres Náchod. Část V. Osnovy Část V. Osnovy II. stupeň KAPITOLA 19. - MATEMATIKA Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor - vyučovací předmět: Matematika a její aplikace Matematika 1. CHARAKTERISTIKA VYUČOVACÍHO

Více

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A)

Že tuto definici znáte, ale stále přesně nevíte, jak funkci chápat? Ukážeme si konkrétní příklad. 1 2 3 4 5 Definiční obor (množina A) Funkce úvod Co je funkce Funkce je předpis, který číslu z množiny A přiřazuje právě jedno číslo z množiny B. Množina A je definiční obor funkce a množina B je obor hodnot funkce. Že tuto definici znáte,

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Moravské gymnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika Elementární teorie čísel Ročník 1. Datum tvorby

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

M - Matematika - třída 1DOP - celý ročník

M - Matematika - třída 1DOP - celý ročník M - Matematika - třída 1DOP - celý ročník Učebnice obsahující učivo celého 1. ročníku VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

4. Lineární nerovnice a jejich soustavy

4. Lineární nerovnice a jejich soustavy 4. Lineární nerovnice a jejich soustavy 9. ročník 4. Lineární nerovnice a jejich soustavy 5 > 0 ostrá nerovnost 5.0 50 neostrá nerovnost ( používáme pouze čísla) ZNAKY NEROVNOSTI: > je větší než < je menší

Více

MATEMATIKA - III. období (6. -9. ročník)

MATEMATIKA - III. období (6. -9. ročník) MATEMATIKA - III. období (6. -9. ročník) Charakteristika předmětu Při výuce ve III. období klademe důraz na porozumění matematickým pojmům a jejich souvislostem. Snažíme se žáky motivovat matematizací

Více

Učební osnovy oblasti

Učební osnovy oblasti školní vzdělávací program Školní vzdělávací program pro základní vzdělávání - pie Sluníčko oblasti 1 a její aplikace Charakteristika oblasti Charakteristika vzdělávací oblasti Vzdělávací oblast je založena

Více

MATEMATIKA. Charakteristika předmětu:

MATEMATIKA. Charakteristika předmětu: Vzdělávací obor: Matematika a její aplikace MATEMATIKA Charakteristika předmětu: Předmět matematika je součástí vzdělávací oblasti Matematika a její aplikace. Na naší škole je jedním z hlavních vyučovacích

Více

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace

Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace STUDIJNÍ OPORA DISTANČNÍHO VZDĚLÁVÁNÍ ZÁKLADNÍ PRAVIDLA VÝPOČTU MATEMATICKÝCH ÚLOH ROVNICE A NEROVNICE MICHAL VAVROŠ Ostrava 006 Zpracoval:

Více

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze

Souhrnná prezentace. 14. října 2015. Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Souhrnná prezentace Ondřej Pártl Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze 4. října 205 Ondřej Pártl (FJFI ČVUT) Souhrnná prezentace 4. října 205 / 70 Obsah Čísla 0 20,

Více

Pythagorova věta Pythagorova věta slovní úlohy

Pythagorova věta Pythagorova věta slovní úlohy Vyučovací předmět: Matematika Ročník: 8. Vzdělávací obsah Očekávané výstupy z RVP ZV Školní výstupy Učivo provádí početní operace v oboru celých a racionálních čísel, užívá ve výpočtech druhou mocninu

Více

I. Sekaniny1804 Matematika

I. Sekaniny1804 Matematika Matematika Charakteristika vyučovacího předmětu Obsahové, organizační a časové vymezení Vyučovací předmět Matematika je součástí vzdělávací oblasti Matematika a její aplikace. V matematickém vzdělávání

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni

Více

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky Gymnázium Rumburk (vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium v Rumburku) Předmět:Matematika Charakteristika vyučovacího předmětu 1. Obsahové, časové a organizační vymezení Předmět vzniká Matematika

Více

Sbírka úloh z matematiky. 6. - 9. ročník

Sbírka úloh z matematiky. 6. - 9. ročník Sbírka úloh z matematiky 6. - 9. ročník Pro základní školy srpen 2011 Vypracovali: Mgr. Jaromír Čihák Ing. Jan Čihák Obsah 1 Úvod 2 2 6. ročník 3 2.1 Přirozená čísla.................................. 3

Více

a ar - --... Zlomek umocnime tak, že umocnime zvlášt citatele ijmenovatele.

a ar - --... Zlomek umocnime tak, že umocnime zvlášt citatele ijmenovatele. 30 4 Mocniny a odmocniny 41 Mocninv s piozeným exponentem S mocninami s piozeným exponentem jste se již sesnámili na základní škole V této kapitole si zopakujeme definici a základní pavidla po pocítání

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň

MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň MATEMATIKA Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět Matematika se vyučuje jako samostatný předmět v 6. až 8. ročníku 4 hodiny týdně, v 9. ročníku 3

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

Ročník VIII. B. Téma: Cíl: Žák - Vazba na ŠVP Poznámky

Ročník VIII. B. Téma: Cíl: Žák - Vazba na ŠVP Poznámky Tématický plán Předmět Matematika Vyučující PhDr. Eva Bomerová Školní rok 2014/2015 Ročník VIII. B hod./týd. 4 Učebnice: Doplňkové materiály: Hejný, M., Jirotková, D. a kol.: Matematické úlohy pro druhý

Více

D O D A T E K č. 1 ŠKOLNÍHO VZDĚLÁVACÍHO PROGRAMU

D O D A T E K č. 1 ŠKOLNÍHO VZDĚLÁVACÍHO PROGRAMU D O D A T E K č. ŠKOLNÍHO VZDĚLÁVACÍHO PROGRAMU Tento dodatek č. se vydává za účelem vytvoření podmínek pro čerpání finanční podpory z Operačního programu Vzdělávání pro konkurenceschopnost, Oblast podpory.5

Více

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví

Pan Novák si vždy kupuje boty o velikosti 8,5 a každý den stráví Číselné obory Seznamte se s jistým panem Novákem z Prahy. Je mu 48 let, má 2 děti a bydlí v domě s číslem popisným 157. Vidíte, že základní informace o panu Novákovi můžeme sdělit pomocí několika čísel,

Více