Obsah. Pouºité zna ení 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Obsah. Pouºité zna ení 1"

Transkript

1 Obsah Pouºité zna ení 1 1 Úvod Opera ní výzkum a jeho disciplíny Úlohy matematického programování Standardní maximaliza ní úloha lineárního programování Gracké e²ení úloh se dv ma prom nnými Geometrický a algebraický popis mnoºiny p ípustných e²ení ÚLP i

2

3 Pouºité zna ení Typogracké rozli²ení názv podle typu objektu a, f, x, i (malá písmena) skaláry ( ísla), funkce, prom nné, indexy X, N, B (velká písmena) mnoºiny (krom speciálních, viz níºe) x, b (malá tu ná písmena) vektory (vºdy sloupcové), reálné n-tice A, B (velká tu ná písmena) matice Speciální mnoºiny N p irozená ísla Z celá ísla Z + nezáporná celá ísla R reálná ísla R + nezáporná reálná ísla R ++ kladná reálná ísla R n mnoºina v²ech reálných n-tic (tj. n-rozm rný euklidovský prostor) Matice, vektory A m n matice A typu m n (pouºito v p ípad, ºe je t eba zd raznit typ matice) 0 m n nulová matice typu m n (tj. matice tvo ená samými nulami) I n jednotková matice typu n n A transpozice matice A A determinant matice A Zkratky Zkratky jsou vºdy zavedeny ve vlastním textu, tento seznam pouze slouºí pro rychlej²í orientaci. DP ESR LP MILP O P ÚLP Z dopravní problém ekvivalentní soustava rovnic lineární programování smí²ené celo íselné programování (mixed integer linear programming) optimální e²ení p ípustné e²ení úloha linaárního programování základní e²ení

4

5 Kapitola 1 Úvod 1.1 Opera ní výzkum a jeho disciplíny Nástroje studované a vyuºívané v rámci opera ního výzkumu: optimalizace, pravd podobnost a statistika, teorie graf, teorie front, simula ní modely. N které typické aplika ní oblasti: optimalizace produk ních systém, optimalizace v logistice, podpora rozhodování p i ízení projekt, modely ízení zásob, modely hromadné obsluhy. 1.2 Úlohy matematického programování Denice 1.1 (úloha matematického programování). Nech jsou dány: mnoºina X, ozna ovaná jako mnoºina p ípustných e²ení, funkce f : X R, ozna ovaná jako ú elová funkce. Úlohou matematického programování (ÚMP) pak ozna ujeme problém nalezení bu minima nebo maxima funkce f na mnoºin X. Mluvíme pak o minimaliza ní, resp. maximaliza ní ÚMP. P edchozí denice je trochu moc obecná, jako úlohu matematického programování lze v této podob formulovat i problémy, které jsou zavedeny velmi podivným zp sobem. Nap íklad úloha hledání královny krásy. V tomto p ípad máme mnoºinu X = ºeny, a funkci f : ºena krása R. Zpravidla proto vyºadujeme, aby X byla... podmnoºina n-rozm rného euklidovského prostoru, tj. X R n, vymezená pomocí soustavy rovnic a/nebo nerovností. P íklad 1.2 (koktejly). Cílem je namíchat co nejvíce koktejl podle recept z tabulky níºe. Záleºí pouze na celkovém po tu namíchaných koktejl, je nám zcela lhostejné, kolik z nich bude Mojito a kolik Cuba Libre.

6 4 Úvod Mojito Cuba libre 4 cl kubánského rumu 8 cl kubánského rumu 1 dl vody 2 dl Coca-coly 8 kostek ledu (t í² ) 2 kostky ledu 1 /2 limetky 1 /4 limetky 1 lºi ka cukru (t tinového) 3 lístky erstvé máty Disponibilní mnoºství surovin jsou následující: 100 cl kubánského rumu, 20 dl Coca-coly, 120 kostek ledu a 8 limetek; vody, cukru a máty je dostatek (nehrozí, ºe dojdou). Celkem vzato, m ºeme úlohu popsat následujícím zp sobem: maximalizovat Mojito + Cuba Libre za podmínek 4 Mojito + 8 Cuba Libre 100, 2 Cuba Libre 20, 8 Mojito + 2 Cuba Libre 120, 1 /2 Mojito + 1 /4 Cuba Libre 8, Mojito, Cuba Libre 0. V tomto p ípad je X mnoºina v²ech kombinací po t koktejl Mojito a Cuba Libre, které jsme schopni p i daných zásobách namíchat ( ili kombinací hodnot prom nných Mojito a Cuba Libre, které sou asn spl ují v²echny vý²e uvedené omezující podmínky). Formáln je tedy X R 2, vymezená pomocí soustavy lineárních nerovnic o dvou prom nných. Denice 1.3 (standardní ÚMP). Nech jsou dána reálná ísla b 1,..., b m a reálné funkce f, g 1,..., g m : R n R. Standardní úlohou matematického programování rozumíme úlohu ve tvaru maximalizovat f(x 1,..., x n ) za podmínek g 1 (x 1,..., x n ) b 1, g 2 (x 1,..., x n ) b 2,. g m (x 1,..., x n ) b m, (x 1,..., x n ) R n, kde p edstavuje zástupný symbol za jedno z rela ních znamének, = nebo. Poznámka (ke zna ení). Matematik m zpravidla p ipadá obecný zápis ÚMP v podob (1.1) p íli² upovídaný. Nabízí se psát: maximalizovat f(x 1,..., x n ) za podmínek g i (x 1,..., x n ) b i, i = 1,..., m, (x 1,..., x n ) R n. Lze také zavést vektor ( i chcete-li, n-tici) x = (x 1,..., x n ) a psát maximalizovat f(x) za podmínek g i (x) b i, i = 1,..., m, x R n. nebo nejstru n ji (ale pon kud mén p ehledn ) max{f(x) x R n, g i (x) b i, i = 1,..., m}. Poznámka (klasikace ÚMP). Podle toho, jaké dodate né poºadavky klademe na funkce f a g i, rozli²ujeme r zné t ídy ÚMP, které se zna n li²í co do sloºitosti pouºívaných výpo etních technik: lineární programování, (1.1)

7 1.3 Standardní maximaliza ní úloha lineárního programování 5 kvadratické programování, konvexní programování, nelineární programování,... a dal²í. Zdaleka nejjednodu²²í t ídou je lineární programování; spadá sem nap. matematický model pro p íklad Koktejly. Denice 1.4 (lineární reálná funkce). M jme reálnou funkci f : R n R. ekneme, ºe f je lineární, pokud lze f vyjád it na R n p edpisem pro n jaká reálná ísla c 1,..., c n. f(x 1,..., x n ) = c 1 x c n x n Denice 1.5 (úloha lineárního programování). Úlohu ve tvaru (1.1), ve které jsou navíc v²echny funkce f, g 1,..., g m lineární, nazveme (maximaliza ní) úlohou lineárního programování (ÚLP). 1.3 Standardní maximaliza ní úloha lineárního programování Denice 1.6 (standardní maximaliza ní ÚLP). M jme dány reálné koecienty a ij, b i a c j a prom nné x j pro i = 1,..., m a j = 1,..., n, které budeme p ípadn zapisovat do matice A a vektor b, c a x ve tvaru a 11 a 12 a 1n b 1 c 1 x 1 a 21 a 22 a 2n A =......, b = b 2., c = c 2., x = x 2.. a m1 a m2 a mn b m c n x n Standardní maximaliza ní úlohou lineárního programování rozumíme problém maximalizovat c 1 x 1 + c 2 x c n x n za podmínek a 11 x 1 + a 12 x a 1n x n b 1, a 21 x 1 + a 22 x a 2n x n b 2,. a m1 x 1 + a m2 x a mn x n b m, x j 0, j = 1,..., n, (1.2) kde x 1, x 2,..., x n jsou reálné prom nné. Za pouºití suma ního operátoru a indexace omezení lze (1.2) vyjád it ekvivalentn jako maximalizovat za podmínek n j=1 c j x j n j=1 a ij x j b i, i = 1,..., m, x j 0, j = 1,..., n, (1.3) p ípadn v maticovém zápisu je²t úsporn ji jako p íp. zcela krátce jako problém nalezení maximalizovat c x za podmínek Ax b, x 0, (1.4) max{c x Ax b, x 0}.

8 6 Úvod P íklad 1.7. V p íkladu Koktejly bychom zapsali [ ] A = , b = , c =, x = 1 1/2 1/4 8 [ ] Mojito. Cuba Libre P íklad 1.8. K úloze minimalizovat 2u + v 4w za podmínek 5(u v) 2(v w) 6v + 1, 2u + v 2w 2, 3u v + 2w = 3, u, v 0, w R najdeme ekvivalentní ÚLP ve standardním maximaliza ním tvaru. Jedno z moºných e²ení vypadá následovn : maximalizovat 2x 1 x 2 + 4x 3 4x 4 za podmínek 5x 1 x 2 + 2x 3 2x 4 1, 2x 1 x 2 + 2x 3 2x 4 2, 3x 1 x 2 + 2x 3 2x 4 3, 3x 1 + x 2 2x 3 + 2x 4 3, x j 0 pro j = 1,..., 4, p i emº mezi prom nnými obou model je následující vztah: u = x 1, v = x 2 a w = x 3 x 4. Lemma 1.9 (o univerzálnosti standardní maximaliza ní ÚLP). Ke kaºdé ÚLP lze najít ekvivalentní úlohu ve tvaru standardní maximaliza ní ÚLP, tj. úlohu, která je maximaliza ní, má v²echna omezení typu a v²echny její prom nné jsou nezáporné. 1.4 Gracké e²ení úloh se dv ma prom nnými Viz p edná²ky. 1.5 Geometrický a algebraický popis mnoºiny p ípustných e²ení ÚLP Denice 1.10 (konvexní kombinace v R n ). který lze vyjád it ve tvaru Konvexní kombinací bod x 1,..., x k v R n je bod, α 1 x α k x k, kde α 1,..., α k jsou nezáporná reálná ísla spl ující α α k = 1. P íklad Konvexní kombinaci dvou bod x, y m ºeme zapsat ve tvaru αx + (1 α)y pro n jaké α [0, 1]. Geometricky vzato, konvexní kombinace dvou bod v euklidovském prostoru je bod na úse ce mezi nimi. Obrázek 1.1 ilustruje výsledek r zné hodnoty α. Denice 1.12 (konvexní mnoºina). ekneme, ºe mnoºina X R n je konvexní, je-li uzav ená na konvexní kombinace, tj. pokud libovolná konvexní kombinace libovolných bod x 1,..., x k X leºí v X. P íklad P íkladem konvexních mnoºin v rovin jsou nap íklad tverec, kruh, nebo úse ka. P íklady nekonvexních mnoºin ukazuje obrázek 1.2.

9 1.5 Geometrický a algebraický popis mnoºiny p ípustných e²ení ÚLP 7 α = 1 x α = 0.75 α = 0.5 α = 0.25 α = 0 y Obrázek 1.1 R zné konvexní kombinace bod x, y. x 1 x 2 X Y Z Obrázek 1.2 P íklady nekonvexních mnoºin X, Y, Z. Úse ka mezi body x 1, x 2 X není obsaºena v mnoºin X, tedy existuje konvexní kombinace t chto bod, která nenáleºí X. Mnoºina Z je tvo ena p ti izolovanými body. Denice 1.14 (konvexní obal). Konvexním obalem mnoºiny X R n rozumíme mnoºinu v²ech konvexních kombinací kone ných podmnoºin X, neboli mnoºinu conv(x) = { k i=1 α ix i xi X, α i 0 pro i = 1,..., k, k i=1 α i = 1, k N }. Poznámka. Snadno nahlédneme, ºe konvexní obal mnoºiny X je nejmen²í konvexní mnoºina, která obsahuje X. (D kaz tohoto tvrzení p enechávám tená i jako cvi ení.) V p ípad, ºe X je konvexní mnoºina, je z ejm conv(x) = X. P íklady konvexních obal nekonvexních mnoºin zachycuje obrázek 1.3. conv(y ) conv(z) Obrázek 1.3 Konvexní obaly mnoºin X, Y, Z z obrázku 1.2. Denice 1.15 (konvexní polyedr, omezený). ekneme, ºe mnoºina X R n je omezený konvexní polyedr (nebo téº polytop), lze-li X vyjád it jako konvexní obal kone né mnoºiny bod z R. Denice 1.16 (krajní bod). Bod x X R n nazveme krajním bodem mnoºiny X, pokud x není konvexní kombinací dvou jiných bod z X, tj. pokud neexistují y 1, y 2 X a α (0, 1) takové, ºe y 1 x y 2 a αy 1 + (1 α)y 2 = x. P íklad Ur ete krajní body p ticípé hv zdy, tverce a kruhu. Které z t chto mnoºin jsou omezené konvexní polyedry?

10 8 Úvod Lemma 1.18 (o extrému lineární funkce na omezeném konvexním polyedru). Lineární funkce nabývá svého extrému na omezeném konvexním polyedru v n kterém z jeho krajních bod. Denice 1.19 (uzav ený poloprostor v R n ). ekneme, ºe mnoºina X R n je uzav ený poloprostor v R n, lze-li X vyjád it jako mnoºinu v²ech e²ení n jaké (netriviální) lineární nerovnice, tj. existují-li reálná ísla a 1,..., a n, ne v²echna nulová, a íslo b, pro n º platí X = { (x 1,..., x n ) R n a1 x a n x n b }. Denice 1.20 (konvexní polyedr, ne nutn omezený). ekneme, ºe mnoºina X R n je konvexní polyedr, lze-li X vyjád it jako pr nik kone n mnoha uzav ených poloprostor. Zdánliv se tato denice velmi li²í od denice omezeného konvexního polyedru uvedené vý²e. Jak ale postupn ukáºeme, mezi ob ma denicemi je t sná souvislost. Zatímco omezený konvexní polyedr lze vyjád it jako konvexní obal jeho vrchol, neomezený kovexní polyedr m ºeme podobn popsat pomocí jeho vrchol a p ípustných sm r (viz níºe). Budeme k tomu ale pot ebovat je²t n kolik pojm. Poznámka (o geometrické interpretaci reálných n-tic). Reálnou n-tici m ºeme chápat bu jako bod v euklidovském prostoru, který pro nás zachycuje n jaký údaj o poloze, nebo jako sm r, který nese informaci o posunu; viz obrázek 1.4. (0, 0) y x y (0, 0) x Obrázek 1.4 Reálné dvojice x = (3, 1) a y = (1, 2) interpretovány jako body (vlevo) a sm ry (vpravo). Denice 1.21 (kónická kombinace, kónický obal). sm r, který lze vyjád it ve tvaru β 1 x β k x k, Kónickou kombinací sm r x 1,..., x k v R n je kde β 1,..., β k jsou nezáporná reálná ísla. Kónickým obalem mnoºiny X R n rozumíme mno- ºinu v²ech kónických kombinací kone ných podmnoºin X, neboli mnoºinu con(x) = { k i=1 β ix i xi X, β i 0 pro i = 1,..., k, k N }. P íklad Obrázek 1.5 ilustruje pojem kónického obalu na p íkladu t í sm r v R 2. x 2 x 3 (0, 0) x 1 (0, 0) Obrázek 1.5 T i sm ry x 1, x 1, x 3 R 2 (vlevo) a jejich kónický obal (vpravo).

11 1.5 Geometrický a algebraický popis mnoºiny p ípustných e²ení ÚLP 9 V ta 1.23 (o reprezentaci konvexního polyedru pomocí vrchol a krajních p ípustných sm r ). Konvexní polyedr X R n lze reprezentovat pomocí kone né mnoºiny bod V = {v 1,..., v k } R n a mnoºiny sm r S = {s 1,..., s l } R n v tom smyslu, ºe libovolný bod z X lze vyjád it jako sou et konvexní kombinace prvk V a kónické kombinace prvk S, tj. X = { k i=1 α iv i + l j=1 β j s j αi 0, β j 0, k i=1 α i = 1 }. Navíc platí, ºe za V lze volit mnoºinu krajních bod (vrchol ) X, a podobn kaºdá mnoºina V spl ující vý²e uvedené tvrzení nutn obsahuje mnoºinu vrchol. Dále, z kaºdé mnoºiny S spl ující vý²e uvedené tvrzení lze vybrat mnoºinu s nejmen²ím po tem prvk (krajní p ípustné sm ry), která je ur ena jednozna n aº na kladné násobky.

Matematická logika cvi ení 47

Matematická logika cvi ení 47 Matematická logika cvi ení 47 Libor B hounek www.cs.cas.cz/behounek/teaching/malog12 LS 2012/13, P F OU, 4.25. 3. 2013 Cvi ení 1. Posu te následující výroky z hlediska adekvátnosti dvojhodnotové sémantiky

Více

Ergodické Markovské et zce

Ergodické Markovské et zce 1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme

Více

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY

Statistika pro geografy. Rozd lení etností DEPARTMENT OF GEOGRAPHY Statistika pro geografy Rozd lení etností DEPARTMENT OF GEOGRAPHY Faculty of Science Palacký University Olomouc t. 17. listopadu 1192/12, 771 46 Olomouc Pojmy etnost = po et prvk se stejnou hodnotou statistického

Více

Specifikace systému ESHOP

Specifikace systému ESHOP Nabídka: Specifikace systému ESHOP březen 2009 Obsah 1 Strana zákazníka 1 1.1 Nabídka produkt, strom kategorií..................... 1 1.2 Objednávka a ko²ík.............................. 1 1.3 Registrace

Více

Prezentace. Ing. Petr V elák 6. b ezna 2009

Prezentace. Ing. Petr V elák 6. b ezna 2009 Prezentace Ing. Petr V elák 6. b ezna 2009 1 OBSAH OBSAH Obsah 1 Úvodní slovo 3 2 P íprava prezentace 4 2.1 Jak prezentace ned lat........................ 4 2.1.1 Kontrast písma a pozadí...................

Více

Aplika ní doložka KA R Ov ování výro ní zprávy

Aplika ní doložka KA R Ov ování výro ní zprávy Aplika ní doložka KA R Ov ování výro ní zprávy ke standardu ISA 720 ODPOV DNOST AUDITORA VE VZTAHU K OSTATNÍM INFORMACÍM V DOKUMENTECH OBSAHUJÍCÍCH AUDITOVANOU Ú ETNÍ ZÁV RKU Aplika ní doložku mezinárodního

Více

IPCorder KNR-100 Instala ní p íru ka

IPCorder KNR-100 Instala ní p íru ka IPCorder KNR-100 Instala ní p íru ka 12. srpna 2007 2 Obsah 1 Instalace 5 1.1 Obsah balení....................................... 5 1.2 Instalace pevného disku................................. 5 1.3 Zapojení

Více

OBECN ZÁVAZNÁ VYHLÁ KA. Obce Plavsko. O fondu rozvoje bydlení

OBECN ZÁVAZNÁ VYHLÁ KA. Obce Plavsko. O fondu rozvoje bydlení OBECN ZÁVAZNÁ VYHLÁ KA Obce Plavsko O fondu rozvoje bydlení. 7/2000 V Y H L Á K A.7/2000 Obce Plavsko O fondu rozvoje bydlení Obecní zastupitelstvo v Plavsku schválilo dne 21.7.2000 tuto obecn závaznou

Více

Platební styk (mezibankovní, klientský) Jitka Vachtová 28. íjna 2011

Platební styk (mezibankovní, klientský) Jitka Vachtová 28. íjna 2011 Platební styk (mezibankovní, klientský) Jitka Vachtová 28. íjna 2011 1 Úvod P i platebním styku obvykle dochází k p esun m pen ºních prost edk mezi plátcem a p íjemcem platby. Banka p i této transakci

Více

KEA 2009/2010. pr m rný percentil ADGHV. sekunda Analýza dovedností a tematických ástí - matematika. T_G3_MA Po et respondent : 31/278

KEA 2009/2010. pr m rný percentil ADGHV. sekunda Analýza dovedností a tematických ástí - matematika. T_G3_MA Po et respondent : 31/278 KEA 29/21 sekunda Analýza dovedností a tematických ástí - matematika t ída 7. ro níky gymnázií 1 9 8 86 83 78 79 77 83 pr m rný percentil 7 6 5 4 63 3 2 1 81 78 59 75 72 78 74 Celek aritmetika geometrie

Více

Nastavení vestav ného p evodníku Ethernet -> sériová linka ES01

Nastavení vestav ného p evodníku Ethernet -> sériová linka ES01 KMB systems, s. r. o. Dr. M. Horákové 559, 460 06 Liberec 7, Czech Republic tel. +420 485 130 314, fax +420 482 736 896 E-mail: kmb@kmb.cz, Web: www.kmb.cz Nastavení vestav ného p evodníku Ethernet ->

Více

l. 1 Úvodní ustanovení

l. 1 Úvodní ustanovení OBEC V EMYSLICE Obecn závazná vyhlá ka. 1 / 2015 o stanovení systému shroma ování, sb ru, p epravy, t íd ní, vyu ívání a odstra ování komunálních odpad a nakládání se stavebním odpadem na území obce V

Více

Interaktivní nástroj pro kreslení schémat logických obvod. Robert korpil. ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická

Interaktivní nástroj pro kreslení schémat logických obvod. Robert korpil. ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická ČVUT FEL katedra počítačů Bakalá ská práce Interaktivní nástroj pro kreslení schémat logických obvod Robert korpil Vedoucí práce: Ing. Petr

Více

B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2

B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: (a j b k a k b j ) 2 1. A, e²te rekurenci Q 0 = 2 Q n = 2Q n 1 + (n + 2) 2, pro n > 0. B, e²te následující rekurenci n kterou z metod z kapitoly o sumách: Q 0 = 1 Q n = nq n 1 + n!, pro n > 0. 2. A, e²te následující rekurenci

Více

Centrum digitální optiky

Centrum digitální optiky Centrum digitální optiky Software pro ízení PMS a digitální rekonstrukci obrazu Interní i.. RC201301 Rok vydání: 2013 Interní identika ní íslo: RC201301 Autor: Mgr. Radek ƒelechovský, Ph.D. Vlastník: Univerzita

Více

ENÝCH K PRODEJI PODLE 7 ZÁKONA

ENÝCH K PRODEJI PODLE 7 ZÁKONA VE EJNÁ NABÍDKA POZEMK UR ENÝCH K PRODEJI PODLE 7 ZÁKONA. 95/1999 Sb., O PODMÍNKÁCH P EVODU ZEM D LSKÝCH A LESNÍCH POZEMK Z VLASTNICTVÍ STÁTU NA JINÉ OSOBY, VE ZN NÍ POZD JŠÍCH P EDPIS (DÁLE JEN ZÁKON

Více

Online komunikace a videokonference

Online komunikace a videokonference Online komunikace a videokonference Vít Rus ák PROJEKT nancovaný z Opera ního programu Vzd lávání pro konkurenceschopnost ZVY OVÁNÍ IT GRAMOTNOSTI ZAM STNANC VYBRANÝCH FAKULT MU Registra ní íslo: CZ.1.07/2.2.00/15.0224

Více

P ÍPRAVY NA HODINU MATEMATIKA

P ÍPRAVY NA HODINU MATEMATIKA Modernizace výuky v rámci odborných a všeobecných p edm t st ední školy. íslo projektu: CZ.1.07/1.1.10/01.0021 P ÍPRAVY NA HODINU MATEMATIKA Tyto p ípravy na hodinu jsou spolufinancovány Evropským sociálním

Více

MANUÁL PRO PRÁCI S POČÍTAČOVÝM PROGRAMEM SLUNÍČKO

MANUÁL PRO PRÁCI S POČÍTAČOVÝM PROGRAMEM SLUNÍČKO UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra speciální pedagogiky RADKA BENEŠOVÁ III. roč ník prezenč ní studium obor: speciální pedagogika př edškolního vě ku MANUÁL PRO PRÁCI S POČÍTAČOVÝM

Více

Finan ní ízení projekt

Finan ní ízení projekt Finan ní ízení projekt Jaká témata budou probrána v rámci prezentace: Jak pracovat s rozpo tem projektu Jak sledovat harmonogram projektu Jak na finan ní plán projektu Zdroje informací P íru ka pro adatele

Více

- 1 - Statut pro ud lení ocen ní "TOP VÍNO SLOVÁCKA"

- 1 - Statut pro ud lení ocen ní TOP VÍNO SLOVÁCKA - 1 - Statut pro ud lení ocen ní "TOP VÍNO SLOVÁCKA" VIII. ro ník 2015 - Slovácko, Zlínský kraj Ocen ní výrobku z odv tví zem d lství a potraviná ství Okresní agrární komora pro okres Uh. Hradi t a Zem

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

STONOŽKA 2010/2011, modul KEA

STONOŽKA 2010/2011, modul KEA STONOŽKA 21/211, modul KEA Analýza dovedností a tematických ástí - matematika t ída základní školy 1 9 8 7 pr m rný percentil 6 5 4 32 35 39 32 2 1 47 46 43 46 43 46 46 Celek aritmetika funkce, rovnice,

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Pokyny k vypln ní formulá e pro podání návrhu na zápis nebo zápis zm ny zapsaných údaj do obchodního rejst íku u spole nosti s ru ením omezeným.

Pokyny k vypln ní formulá e pro podání návrhu na zápis nebo zápis zm ny zapsaných údaj do obchodního rejst íku u spole nosti s ru ením omezeným. Pokyny k vypln ní formulá e pro podání návrhu na zápis nebo zápis zm ny zapsaných údaj do obchodního rejst íku u spole nosti s ru ením omezeným. I. Rejst íkový soud 1 Adresa rejst íkového soudu, jemuž

Více

Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. ) Po et p íloh II. oddílu P IZNÁNÍ. k dani z p íjm právnických osob

Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. ) Po et p íloh II. oddílu P IZNÁNÍ. k dani z p íjm právnických osob Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. Finan nímu ú adu pro / Specializovanému nan nímu ú adu Hlavní mesto ˇ Prahu Územnímu pracovišti v, ve, pro Prahu Da ové identi ka ní íslo C

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

edm t a p sobnost vyhlášky

edm t a p sobnost vyhlášky O b e c S v i t á v k a Obecn závazná vyhláška. 2/2004 kterou se stanoví provoz systému shromaž ování, sb ru, p epravy, íd ní, využívání a odstra ování komunálních odpad a místní poplatek za provoz tohoto

Více

Metodika zp sobilých výdaj Monitorovací zprávy. Finan ní ízení

Metodika zp sobilých výdaj Monitorovací zprávy. Finan ní ízení Metodika zp sobilých výdaj Monitorovací zprávy Finan ní ízení OBSAH 1. Metodika zp sobilých výdaj Zdroj informací: P íloha. 8 PP P Metodika zp sobilých výdaj pro ROP SV 2. Monitorovací zprávy Zdroj informací:

Více

Finalizace model ve Virtuální Staré Praze

Finalizace model ve Virtuální Staré Praze ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická Katedra po íta Semestrální projekt Finalizace model ve Virtuální Staré Praze Vojt ch šoha Vedoucí práce: prof. Ing. Ji í šára, CSc. Studijní

Více

GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346

GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346 GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346 Dolní B ežany email: geopraha@geopraha.cz, web: www.geopraha.cz Projekt m ení posun

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

Co je L Y X? Vlastnosti a nástroje Instalace Zdroje. Adam Farnik. V B - TU Ostrava. Elektronické publikování, 2008

Co je L Y X? Vlastnosti a nástroje Instalace Zdroje. Adam Farnik. V B - TU Ostrava. Elektronické publikování, 2008 LYX Adam Farnik V B - TU Ostrava Elektronické publikování, 2008 Osnova 1 Co je LYX? 2 Vlastnosti a nástroje Formatování textu Matematický reºim Dal²í moºnosti 3 Instalace 4 Zdroje WYSIWYM WYSIWYG prost

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. P IZNÁNÍ. k dani z p íjm právnických osob

Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. P IZNÁNÍ. k dani z p íjm právnických osob dz_dppo0_.pdf Než za te vypl ovat tiskopis, p e t te si, prosím, pokyny. Finan nímu ú adu v, ve, pro 0 Da ové identi ka ní íslo 0 Identi ka ní íslo 0 Da ové p iznání ádné dodate né D vody pro podání dodate

Více

Line rn algebra II podle p edn ek prof. Franti ka ika Sazbu v L A TEXu p ipravil Du an Dobe Obsah Diagonalizovatelnost matic 2 Symetrick transformace 4 3 Hermitovsk matice a kongruentnost 5 4 Pozitivn

Více

Sazba zdrojových kód. Jakub Kadl ík 20. 03. 2014

Sazba zdrojových kód. Jakub Kadl ík 20. 03. 2014 Sazba zdrojových kód Jakub Kadl ík 20. 03. 2014 1 Obsah 1 Základní prost edí verbatim 3 2 Balí ek listings 3 3 Sazba kódu z externího souboru 5 4 Téma Solarized 5 4.1 Solarized light.............................

Více

kolní ád Mate ské koly, sou ásti Základní koly Bílá 1, Praha 6 (dále jen mate ská kola )

kolní ád Mate ské koly, sou ásti Základní koly Bílá 1, Praha 6 (dále jen mate ská kola ) kolní ád Mate ské koly, sou ásti Základní koly Bílá 1, Praha 6 (dále jen mate ská kola ) kolní ád d sledn vychází ze zákona. 561/2004 Sb., o p ed kolním, základním, st edním, vy ím odborné a jiném vzd

Více

Inovace (praxe) 1 Úvod, p edstavení rmy, omezení práce. 16. listopadu 2010, Organizace a informace. Karel Kohout

Inovace (praxe) 1 Úvod, p edstavení rmy, omezení práce. 16. listopadu 2010, Organizace a informace. Karel Kohout Inovace (praxe) 1 Úvod, p edstavení rmy, omezení práce V rámci seminární práce jsou rozebrány t i inovace, realizované záºitkovou agenturou FAN MOTION 1. Dv z nich jsou spí²e technického rázu (sb r údaj

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

V²eobecné podmínky poskytování ve ejn dostupných sluºeb elektronických komunikací

V²eobecné podmínky poskytování ve ejn dostupných sluºeb elektronických komunikací V²eobecné podmínky poskytování ve ejn dostupných sluºeb elektronických komunikací spole nosti SAT - AN CableNet & Multimedia s.r.o. 1. P edm t V²eobecných podmínek 1.1. V²eobecné podmínky poskytování ve

Více

Obsah: 3. Tematický plán pro 3. ro ník

Obsah: 3. Tematický plán pro 3. ro ník Obsah: 3. Tematický plán pro 3. ro ník 3. 1. Tematický plán pro 3. ro ník 3. 2. Tematický plán - Nám ty 3. 3. Seznam doporu ených inovativních pom cek 3. 4. Doporu ená odborná literatura 3. 5. erpáno z

Více

Znalecký posudek. Záv re né zprávy firmy SaNo CB s.r.o.

Znalecký posudek. Záv re né zprávy firmy SaNo CB s.r.o. Znalecký posudek Záv re né zprávy firmy SaNo CB s.r.o. Monitoring obsahu As, Cr, Ni v zeminách a podzemní vod v prostoru pískovny H rka u Plané nad Lu nicí Brno, duben 2011 ZNALECKÝ POSUDEK. 044 02/2011

Více

IPCorder Uºivatelský manuál

IPCorder Uºivatelský manuál IPCorder Uºivatelský manuál 12. srpna 2007 2 Obsah 1 Úvod 5 1.1 Popis systému....................................... 5 1.2 Systémové poºadavky.................................. 6 2 Kongurace 7 2.1 Nastavení

Více

Zpracování dokumentací p írodních limit využití území Jihomoravského kraje

Zpracování dokumentací p írodních limit využití území Jihomoravského kraje Zpracování dokumentací p írodních limit využití území Jihomoravského kraje Úvod RNDr. Josef Glos, RNDr. Ji í Kocián AGERIS. s.r.o. Je ábkova 5, 602 00 Brno Tel., fax.: +420 545241842-3, e-mail: josef.glos@ageris.cz,jiri.kocian@ageris.cz

Více

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý

FINANČNÍ MODELY. Koncepty, metody, aplikace. Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý FINANČNÍ MODELY Koncepty, metody, aplikace Zdeněk Zmeškal, Dana Dluhošová, Tomáš Tichý Recenzenti: Jan Frait, ČNB Jaroslav Ramík, SU v Opavě Autorský kolektiv: Zdeněk Zmeškal vedoucí autorského kolektivu,

Více

GRAFICKÝ MANUÁL POVINNÉ PUBLICITY

GRAFICKÝ MANUÁL POVINNÉ PUBLICITY GRAFICKÝ MANUÁL POVINNÉ PUBLICITY pro Opera ní program ivotní prost edí MINISTERSTVO IVOTNÍHO PROST EDÍ STÁTNÍ FOND IVOTNÍHO PROST EDÍ R wwww.opzp.cz zelená linka pro adatele o dotace: 800 260 500 www.sfzp.cz

Více

Sm rnice o pracovní dob

Sm rnice o pracovní dob Sm rnice o pracovní dob Pracovní doba je op t na po adu jednání a Evropská komise pravd podobn zve ejní nové návrhy na související sm rnici za átkem roku 2015. Dopady na EPSU a její lenské organizace budou

Více

PO ÁRNÍ ÁD OBCE BLUDOV

PO ÁRNÍ ÁD OBCE BLUDOV Obecn závazná vyhlá ka obce Bludov íslo 3 /2003 Obec Bludov na základ usnesení zastupitelstva obce ze dne 29.9.2003, podle 29 odst. 1 písm. O) bod 1. zákona. 133/1985 Sb. o po ární ochran, ve zn ní pozd

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

ZÁPADOƒESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH V D KATEDRA MATEMATIKY. P edpov kurz akcií na krátké období. Bakalá ská práce

ZÁPADOƒESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH V D KATEDRA MATEMATIKY. P edpov kurz akcií na krátké období. Bakalá ská práce ZÁPADOƒESKÁ UNIVERZITA V PLZNI FAKULTA APLIKOVANÝCH V D KATEDRA MATEMATIKY P edpov kurz akcií na krátké období Bakalá ská práce Plze, 213 Pavel Brom Prohlá²ení Prohla²uji, ºe jsem bakalá skou práci vypracoval

Více

stránka 1 celkem 40 - ob anská sdružení po 1. 1. 2014

stránka 1 celkem 40 - ob anská sdružení po 1. 1. 2014 stránka 1 celkem 40 - ob anská sdružení po 1. 1. 2014 stránka 2 celkem 40 zákon. 83/1990 Sb. o sdružování ob an ve zn ní pozd jších p edpis - zvláštní zákon (má p ednost p ed OZ) zákon. 40/1964 Sb. ob

Více

Základy informatiky I

Základy informatiky I 1 Základy informatiky I Jste p ihlášeni jako Testovácí Student (Odhlásit se) Titulní stránka Moje kurzy Základy informatiky I ZI1 Základy informatiky I Novinky Osnova p edm tu Seznam použitých zkratek

Více

Výzva k podání nabídek (pro ú ely uve ejn ní na www.msmt.cz nebo www stránkách kraj )

Výzva k podání nabídek (pro ú ely uve ejn ní na www.msmt.cz nebo www stránkách kraj ) Výzva k podání nabídek (pro ú ely uve ejn ní na www.msmt.cz nebo www stránkách kraj ) íslo zakázky (bude dopln no M MT v p ípad IP, v p ípad GP ZS) 1 Název opera ního OP Vzd lávání pro konkurenceschopnost

Více

Odpov di na dotazy uchaze e k ve ejné zakázce. 29/2014-53-28. SSZ Datový katalog

Odpov di na dotazy uchaze e k ve ejné zakázce. 29/2014-53-28. SSZ Datový katalog Odpov di na dotazy uchaze e k ve ejné zakázce. 29/2014-53-28 SSZ Datový katalog 1. Up es ující dotaz k odpov di Zadavatele k d íve položenému dotazu: V rámci kap. 2.2.8 Požadované sou innosti Zadávací

Více

Odpov di na dotazy uchaze k ve ejné zakázce. 59/2012-17-27. Digitalizace dokumentace Léka ské posudkové služby SSZ, vyt žování a konsolidace dat

Odpov di na dotazy uchaze k ve ejné zakázce. 59/2012-17-27. Digitalizace dokumentace Léka ské posudkové služby SSZ, vyt žování a konsolidace dat Kde nalezneme barevn rozlišené druhy dokument ke zpracování, ovšem k dispozici máme pouze b dokumenty p ílohy.1. Myslíte si, že bych Vás mohl poprosit o barevnou p ílohu.1.? edm tem pln ní je pouze ernobílé

Více

2 Rozvahové zm ny nevýsledkové a jejich zaú tování

2 Rozvahové zm ny nevýsledkové a jejich zaú tování 2 Rozvahové zm ny nevýsledkové a jejich zaú tování Cíl kapitoly Cílem p edkládané kapitoly je: pochopení podstaty základních ú etních transakcí a jejich promítnutí do rozvahy; pochopení základních pravidel

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. P IZNÁNÍ

Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. P IZNÁNÍ Finan nímu ú adu v, ve, pro Sumperku ˇ Než za nete vypl ovat tiskopis, p e t te si, prosím, pokyny. Da ové identi ka ní íslo C Z 7 3 Rodné íslo 7 3 / 3 DAP ) ádné opravné 4 Kód rozlišení typu DAP ) dodate

Více

Digital Signage Informa ní systém pro centrální ízení a správu obsahu digitálních billboard ON-LINE

Digital Signage Informa ní systém pro centrální ízení a správu obsahu digitálních billboard ON-LINE 1 Digital Signage Informa ní systém pro centrální ízení a správu obsahu digitálních billboard ON-LINE ÚVOD V záplav informací, které se na nás valí ze všech stran, je p edpokladem úsp chu atraktivní forma,

Více

U ivatelská p íru ka

U ivatelská p íru ka U ivatelská p íru ka k eearth aplikaci pro prohlí ení vrt a dal ích geologicky dokumentovanýc h objekt z databáze GDO v informa ním systému GS-Geofondu ( íjen 2008) eearth systém umo uje u ivatel m prohlí

Více

Sm rnice rady m sta. 2 /2014 Metodika zadávání ve ejných zakázek malého rozsahu

Sm rnice rady m sta. 2 /2014 Metodika zadávání ve ejných zakázek malého rozsahu Sm rnice rady m sta. 2 /2014 Metodika zadávání ve ejných zakázek malého rozsahu Zpracoval Vydal Ji í Rangl Rada m sta Planá nad Lu nicí Po et stran 12 Po et p íloh 8 Schválil Originál ulo en Elektronická

Více

AGERIS s.r.o. Výzva k podání nabídky

AGERIS s.r.o. Výzva k podání nabídky AGERIS s.r.o. Je ábkova 5 602 00 BRNO Výzva k podání nabídky do výb rového ízení na dodavatele interních kurz ve firm AGERIS s.r.o. Registra ní íslo projektu: CZ.1.04/1.1.02/35.01529-1 - 1.0 Název zakázky

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Co postrádají absolventi eských vysokých škol v praxi aneb co nám škola nedala

Co postrádají absolventi eských vysokých škol v praxi aneb co nám škola nedala Co postrádají absolventi eských vysokých škol v praxi aneb co nám škola nedala Pr zkumy a ankety provedené v posledních letech jak mezi zam stnavateli, tak mezi absolventy vysokých škol shodn ukazují,

Více

E-chef server a desktopový klient. Ladislav Záruba. ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická Katedra po íta.

E-chef server a desktopový klient. Ladislav Záruba. ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická Katedra po íta. ƒeské vysoké u ení technické v Praze Fakulta elektrotechnická Katedra po íta Bakalá ská práce E-chef server a desktopový klient Ladislav Záruba Vedoucí práce: Ing. Tomá² Kadlec Studijní program: Softwarové

Více

MANDÁTNÍ SMLOUVU dle 566 a násl. obchodního zákoníku (dále jen smlouva )

MANDÁTNÍ SMLOUVU dle 566 a násl. obchodního zákoníku (dále jen smlouva ) Ní e uvedeného dne, m síce a roku uzav ely svazek obcí Povodí Berounky se sídlem Nám. Republiky 1, Plze, 306 32 I : 75042860 zaps. v registru svazku obcí vedeném Krajským ú adem Plze ského kraje zast.

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Barvy v (X)HTML jsou sou ástí W3C standard HTML jazyka ve tvaru technické specifikace implementovaného modelu barev ve WWW dokumentech.

Barvy v (X)HTML jsou sou ástí W3C standard HTML jazyka ve tvaru technické specifikace implementovaného modelu barev ve WWW dokumentech. 167 Barvy v (X)HTML Standardy: Barvy v (X)HTML jsou sou ástí W3C standard HTML jazyka ve tvaru technické specifikace implementovaného modelu barev ve WWW dokumentech. 168 Barvy v (X)HTML dokumentu BARVY

Více

1 Aktiva, pasiva, rozvaha

1 Aktiva, pasiva, rozvaha 1 Aktiva, pasiva, rozvaha Cíl kapitoly Cílem p edkládané kapitoly je: pochopení bilancování aktiv a pasiv; osvojení si základních pravidel pro sestavení ú etního výkazu rozvaha ve vazb na vypovídací schopnost

Více

Smlouvy o poskytnutí ve ejné finan ní podpory z rozpo tu m sta. 29/23/4405/14

Smlouvy o poskytnutí ve ejné finan ní podpory z rozpo tu m sta. 29/23/4405/14 Smluvní strany: Smlouva o poskytnutí ve ejné finan ní podpory z rozpo tu m sta 29/23/4405/14 1. Poskytovatel m sto Uherský Brod Masarykovo nám. 100, 688 17 Uherský Brod, zastoupeno: Patrikem Kun arem,

Více

O B E C D R Á C H O V

O B E C D R Á C H O V O B E C D R Á C H O V Zápis. 05/2008 ze sch ze obecního zastupitelstva ze dne 24.04.2008 ítomni: izváni: Ur ení ov ovatelé zápisu : p.paták, p.fousek, ing. Kopá ek, pí,podhrádská, p.peroutka, p.kolá, p.ivanšík

Více

PRAVIDLA PRO PRODEJ BYTOVÝCH DOM

PRAVIDLA PRO PRODEJ BYTOVÝCH DOM PRAVIDLA PRO PRODEJ BYTOVÝCH DOM ve vlastnictví eské republiky - p íslušnosti hospoda ení Ministerstva obrany eské republiky a p ísp vkové organizace Správa vojenského bytového fondu Praha (dále jen Pravidla

Více

POKYNY. k vypln ní p iznání k dani silni ní (zákon. 16/1993 Sb., o dani silni ní, ve zn ní pozd jších p edpis )

POKYNY. k vypln ní p iznání k dani silni ní (zákon. 16/1993 Sb., o dani silni ní, ve zn ní pozd jších p edpis ) 5408_13.pdf POKYNY k vypln ní p iznání k dani silni ní (zákon. 16/1993 Sb., o dani silni ní, ve zn ní pozd jších p edpis ) Všeobecn Poplatníkem dan silni ní je fyzická nebo právnická osoba, která - je

Více

EHLED OSV za rok 2013 vykonávajících pouze hlavní SV

EHLED OSV za rok 2013 vykonávajících pouze hlavní SV Zadání pro programátory ehled o p íjmech a výdajích OSV za rok 2013, i nasazení verze zpracující p ehled o p íjmech a výdajích za rok 2013 upozornit na projetí dávkového programu v N_UDRZBA pro vy len

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

ádost o vystavení krycího listu

ádost o vystavení krycího listu ádost o vystavení krycího listu Vypl uje KPaCHP o.s. Do lo dne: íslo KL: Podpis OPCH: KL vystaven dne: Platný do: Velký: St ední: Toy: Trpasli í: Bílý: erný: Hn dý: ervený: Aprikot: St íbrný: erný s pálením:

Více

Elektronické tiskárny M-1

Elektronické tiskárny M-1 Elektronické tiskárny M-1 Základní údaje M-1 Std. M-1 Pro II Zp sob tisku Rychlost tisku tepelný p enos (300 dpi) tepelný p enos (300dpi) 12,5 mm/s standardn 18,5 mm/s, bužírky a štítky 25 mm/s Bužírky

Více

VNIT NÍ SM RNICE 1)PRO ZADÁVÁNÍ NABÍDKOVÝCH ÍZENÍ 2)PRO EVIDENCI A ZADÁVÁNÍ VE EJNÝCH ZAKÁZEK MALÉHO ROZSAHU

VNIT NÍ SM RNICE 1)PRO ZADÁVÁNÍ NABÍDKOVÝCH ÍZENÍ 2)PRO EVIDENCI A ZADÁVÁNÍ VE EJNÝCH ZAKÁZEK MALÉHO ROZSAHU VNIT NÍ SM RNICE 1)PRO ZADÁVÁNÍ NABÍDKOVÝCH ÍZENÍ 2)PRO EVIDENCI A ZADÁVÁNÍ VE EJNÝCH ZAKÁZEK MALÉHO ROZSAHU OBEC TY KOLY ÁST I Úvodní ustanovení LÁNEK 1 edm t úpravy Tato sm rnice upravuje zp sob a postup

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

Vzory ve vzd lávacích procesech

Vzory ve vzd lávacích procesech Masarykova Univerzita Fakulta informatiky Vzory ve vzd lávacích procesech Diplomová práce Patrícia Eibenová Brno, jaro 2012 Prohlá²ení Prohla²uji, ºe tato práce je mým p vodním autorským dílem, které jsem

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Matematické nástroje na e²ení pohybu a kolizí objekt ve virtuální realit

Matematické nástroje na e²ení pohybu a kolizí objekt ve virtuální realit St edo²kolská odborná ƒinnost 2006/2007 Obor 10 - elektrotechnika, elektronika, telekomunikace a technická informatika Matematické nástroje na e²ení pohybu a kolizí objekt ve virtuální realit Auto i: Vladimír

Více

Archivní fond eského horolezeckého svazu

Archivní fond eského horolezeckého svazu Archivní fond eského horolezeckého svazu I. ízení fondu, správa a umíst ní Archivní fond HS je založen rozhodnutím Výkonného výboru eského horolezeckého svazu, o.s., v souladu s ustanovením 3 odst. 2 písmeno

Více

Pro rozbalení menu klikn te na znaménko + 1 P EHLEDY starších aktualizací

Pro rozbalení menu klikn te na znaménko + 1 P EHLEDY starších aktualizací Stránka. 1 z 9 Pro rozbalení menu klikn te na znaménko + Aktualizace 3.Q.2007 obsah 1 P EHLEDY starších aktualizací Nejd ležit jší zm ny obecn závazných p edpis Co možná nevíte..zajímavosti..problémy a

Více

Návod pro vzdálené p ipojení do sít UP pomocí VPN pro MS Windows 7

Návod pro vzdálené p ipojení do sít UP pomocí VPN pro MS Windows 7 Návod pro vzdálené p ipojení do sít UP pomocí VPN pro MS Windows 7 1. Úvod nezbytné kroky ne se p ipojíte 2. Jak si vytvo it heslo 3. Nastavení VPN p ipojení pro Windows 7 1. Úvod Slu ba VPN umo uje vstoupit

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INFORMAČNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INFORMATION SYSTEMS CERTIFIKACE CMMI

Více

Sociální pojišt ní migrujících ob an EU

Sociální pojišt ní migrujících ob an EU ESKÁ ESKÁ SPRÁVA SPRÁVA SOCIÁLNÍHO ZABEZPE ENÍ Sociální pojišt ní migrujících ob an EU Milan Novotný metodik SSZ HK Hradec Králové, 28.2.2012 Lidé na prvním míst ESKÁ ESKÁ SPRÁVA SOCIÁLNÍHO ZABEZPE ENÍ

Více

ZNALECKÝ POSUDEK . 3254/08. O cen nemovitostí zapsaných na LV. 552 pro katastrální území Podskalí II, obec Klu enice, okres P íbram.

ZNALECKÝ POSUDEK . 3254/08. O cen nemovitostí zapsaných na LV. 552 pro katastrální území Podskalí II, obec Klu enice, okres P íbram. ZNALECKÝ POSUDEK. 3254/08 O cen nemovitostí zapsaných na LV. 552 pro katastrální území Podskalí II, obec Klu enice, okres P íbram. Objednatel posudku: Ú el posudku: Mgr. Martin Slavata soudní exekutor

Více

o místním poplatku za provoz systému shromaž ování, sb ru, p epravy, t íd ní, využívání a odstra ování komunálních odpad

o místním poplatku za provoz systému shromaž ování, sb ru, p epravy, t íd ní, využívání a odstra ování komunálních odpad OBEC ÚSTÍ Obecn závazná vyhláška. 1/ 2012 o místním poplatku za provoz systému shromaž ování, sb ru, p epravy, t íd ní, využívání a odstra ování komunálních odpad Zastupitelstvo obce Ústí se na svém zasedání

Více

a) Je p ípustné požadovat jako podmínku prvního erpání úv ru p edložení smlouvy o dílo na daný projekt?

a) Je p ípustné požadovat jako podmínku prvního erpání úv ru p edložení smlouvy o dílo na daný projekt? STATUTÁRNÍ M STO OPAVA Horní nám. 69, 746 26 Opava Odd lení ve ejných zakázek Magistrátu m sta Opavy Odd lení ve ejných zakázek MMOPX014Q2QX Váš dopis zn: Ze dne: Naše zna ka: MMOP 38094/2015 / 9420/2015/VERZ

Více

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S Øe¹ení 5. série IV. roèníku kategorie JUNIOR RS-IV-5-1 Pro na¹e úvahy bude vhodné upravit si na¹í rovnici do tvaru 3 jx 1 4 j+2 = 5 + 4 sin 2x: Budeme uva¾ovat o funkci na pravé stranì na¹í rovnice, tj.

Více

Pravidla lezení ve skalních oblastech eské republiky

Pravidla lezení ve skalních oblastech eské republiky Pravidla lezení ve skalních oblastech eské republiky lánek 1 Úvod (1) Pravidla lezení ve skalních oblastech eské republiky (dále jen Pravidla ) se vztahují na horolezeckou innost provozovanou na lezeckých

Více

Všeobecné obchodní podmínky pro předplatné Literárních novin vydavatelství Litmedia, a.s.

Všeobecné obchodní podmínky pro předplatné Literárních novin vydavatelství Litmedia, a.s. Všeobecné obchodní podmínky pro předplatné Literárních novin vydavatelství Litmedia, a.s. 1. Obecná ujednání 1.1. Tyto V eobecné obchodní podmínky pro dodávku ti t ných periodik formou p edplatného upravují

Více

Zakázka bude pln na b hem roku 2014 a v následujících 48 sících od uzav ení smlouvy.

Zakázka bude pln na b hem roku 2014 a v následujících 48 sících od uzav ení smlouvy. OD VODN NÍ VE EJNÉ ZAKÁZKY Služba na zajišt ní provozu a expertní podpory datové sít Od vodn ní ve ejné zakázky pro ú ely p edb žného oznámení Od vodn ní ú elnosti ve ejné zakázky obsahuje alespo Popis

Více