4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE"

Transkript

1 FBI VŠB-TUO 28. března 2014

2 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.

3 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.

4 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.

5 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y = f (x) a jejími derivacemi do řádu n. Definice 4.2. Řádem diferenciální rovnice nazýváme řád nejvyšší derivace hledané funkce v dané rovnici. Definice 4.3. Řešením diferenciální rovnice nazýváme každou funkci, která vyhovuje dané rovnici. Definice 4.4. Graf konkrétního řešení se nazývá integrální křivka.

6 Druhy řešení diferenciální rovnice n-tého řádu Mějme obyčejnou diferenciální rovnici n-tého řádu ve tvaru F (x, y, y, y,..., y (n) ) = 0. 1 Obecným řešením diferenciální rovnice nazýváme funkci, která může být v implicitním tvaru φ(x, y, C 1, C 2,..., C n) = 0 nebo explicitním tvaru y = ϕ(x, C 1, C 2,..., C n). Čísla C 1, C 2,..., C n jsou obecné integrační konstanty. 2 Partikulárním řešením diferenciální rovnice nazýváme řešení, které dostaneme z obecného, jestliže za konstanty dosadíme určitá reálná čísla nebo když všechny konstanty vypočteme z daných podmínek, tzv. počáteční (Cauchyho) úlohy. 3 Singulárním řešením diferenciální rovnice nazýváme takové řešení rovnice, které není obsaženo v obecném řešení, i když za konstanty C 1, C 2,..., C n dosadíme jakákoli čísla.

7 Druhy řešení diferenciální rovnice n-tého řádu Mějme obyčejnou diferenciální rovnici n-tého řádu ve tvaru F (x, y, y, y,..., y (n) ) = 0. 1 Obecným řešením diferenciální rovnice nazýváme funkci, která může být v implicitním tvaru φ(x, y, C 1, C 2,..., C n) = 0 nebo explicitním tvaru y = ϕ(x, C 1, C 2,..., C n). Čísla C 1, C 2,..., C n jsou obecné integrační konstanty. 2 Partikulárním řešením diferenciální rovnice nazýváme řešení, které dostaneme z obecného, jestliže za konstanty dosadíme určitá reálná čísla nebo když všechny konstanty vypočteme z daných podmínek, tzv. počáteční (Cauchyho) úlohy. 3 Singulárním řešením diferenciální rovnice nazýváme takové řešení rovnice, které není obsaženo v obecném řešení, i když za konstanty C 1, C 2,..., C n dosadíme jakákoli čísla.

8 Druhy řešení diferenciální rovnice n-tého řádu Mějme obyčejnou diferenciální rovnici n-tého řádu ve tvaru F (x, y, y, y,..., y (n) ) = 0. 1 Obecným řešením diferenciální rovnice nazýváme funkci, která může být v implicitním tvaru φ(x, y, C 1, C 2,..., C n) = 0 nebo explicitním tvaru y = ϕ(x, C 1, C 2,..., C n). Čísla C 1, C 2,..., C n jsou obecné integrační konstanty. 2 Partikulárním řešením diferenciální rovnice nazýváme řešení, které dostaneme z obecného, jestliže za konstanty dosadíme určitá reálná čísla nebo když všechny konstanty vypočteme z daných podmínek, tzv. počáteční (Cauchyho) úlohy. 3 Singulárním řešením diferenciální rovnice nazýváme takové řešení rovnice, které není obsaženo v obecném řešení, i když za konstanty C 1, C 2,..., C n dosadíme jakákoli čísla.

9 Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.

10 Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.

11 Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.

12 Druhy řešení diferenciální rovnice n-tého řádu Příklad 4.1. Určete obecné řešení diferenciální rovnice y = x. Určete partikulární řešení diferenciální rovnice y = x za podmínky y(0) = 0, y (0) = 10. Řešte diferenciální rovnici (y x)y = (y x) sin x. V našem kurzu se budeme zabývat pouze obecným a partikulárním řešením diferenciálních rovnic.

13 4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.

14 4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.

15 4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.

16 4.2. Diferenciální rovnice prvního řádu Diferenciální rovnice prvního řádu má tvar F (x, y, y ) = 0 nebo y = f (x, y). Obecné řešení: funkce jedné proměnné v explicitním tvaru y = φ(x, C) nebo implicitně φ(x, y, C) = 0. Graficky je řešením systém integrálních křivek. Volbou za konstantu C dostáváme konkrétní integrální křivku. Příklad 4.2. Určete systém integrálních křivek diferenciální rovnice y = 2x a partikulární řešení při počáteční podmínce y(1) = 2.

17 4.3. Separovatelná diferenciální rovnice Definice 4.5. Diferenciální rovnice ve tvaru P(x) + Q(y)y = 0 se nazývá separovatelná diferenciální rovnice. Separovatelná diferenciální rovnice se často píše ve tvaru P(x)dx + Q(y)dy = 0. Věta 4.1. Necht P(x), Q(y) jsou spojité funkce. Potom každé řešení separovatelné rovnice má tvar P(x)dx + Q(y)dy = C. Poznámka Vypočítané obecné řešení někdy upravujeme, zejména když integrací vznikla logaritmická funkce. Integrační konstantu často uvažujeme ve tvaru ln C.

18 4.3. Separovatelná diferenciální rovnice Definice 4.5. Diferenciální rovnice ve tvaru P(x) + Q(y)y = 0 se nazývá separovatelná diferenciální rovnice. Separovatelná diferenciální rovnice se často píše ve tvaru P(x)dx + Q(y)dy = 0. Věta 4.1. Necht P(x), Q(y) jsou spojité funkce. Potom každé řešení separovatelné rovnice má tvar P(x)dx + Q(y)dy = C. Poznámka Vypočítané obecné řešení někdy upravujeme, zejména když integrací vznikla logaritmická funkce. Integrační konstantu často uvažujeme ve tvaru ln C.

19 4.3. Separovatelná diferenciální rovnice Příklad 4.3. Určete obecné řešení diferenciální rovnice x y cos y = 0. Určete obecné řešení diferenciální rovnice 1 y 2 2xyy = 0. Určete partikulární řešení diferenciální rovnice y + y cotg x = 0 za podmínky y( π 2 ) = 1.

20 4.3. Separovatelná diferenciální rovnice Příklad 4.3. Určete obecné řešení diferenciální rovnice x y cos y = 0. Určete obecné řešení diferenciální rovnice 1 y 2 2xyy = 0. Určete partikulární řešení diferenciální rovnice y + y cotg x = 0 za podmínky y( π 2 ) = 1.

21 4.3. Separovatelná diferenciální rovnice Příklad 4.3. Určete obecné řešení diferenciální rovnice x y cos y = 0. Určete obecné řešení diferenciální rovnice 1 y 2 2xyy = 0. Určete partikulární řešení diferenciální rovnice y + y cotg x = 0 za podmínky y( π 2 ) = 1.

22 4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).

23 4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).

24 4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).

25 4.4. Homogenní diferenciální rovnice Definice 4.6. Necht je dána funkce dvou proměnných f (x, y). Tuto funkci nazýváme homogenní funkcí k-tého stupně, jestliže pro ni platí f (tx, ty) = t k f (x, y). Příklad 4.4. Zjistěte, zda jsou homogenní funkce: f (x, y) = x 3 + xy 2, f (x, y) = x 2 + y. Definice 4.7. Diferenciální rovnici ve tvaru M(x, y)dx + N(x, y)dy = 0 nazýváme homogenní diferenciální rovnicí, jestliže M(x, y), N(x, y) jsou homogenní funkce stejného stupně. Poznámka Homogenní rovnici můžeme vidět i ve tvaru y = F (x,y) G(x,y), kde F (x, y), G(x, y) jsou homogenní funkce, nebo y = f ( y x ).

26 4.4. Homogenní diferenciální rovnice Řešení: Homogenní diferenciální rovnici řešíme substitucí. Zavádíme novou funkci z = y x y = zx y = z x + z. Po dosazení dostaneme rovnici pro neznámou funkci z(x), která je separovatelná. Po vyřešení rovnice a nalezení obecného řešení separovatelné rovnice dosadíme zpět podíl z = y x a dopočítáme. Příklad 4.5. Určete obecné řešení diferenciálních rovnic: xy = y ln y x, y = 2xy x 2 y 2.

27 4.4. Homogenní diferenciální rovnice Řešení: Homogenní diferenciální rovnici řešíme substitucí. Zavádíme novou funkci z = y x y = zx y = z x + z. Po dosazení dostaneme rovnici pro neznámou funkci z(x), která je separovatelná. Po vyřešení rovnice a nalezení obecného řešení separovatelné rovnice dosadíme zpět podíl z = y x a dopočítáme. Příklad 4.5. Určete obecné řešení diferenciálních rovnic: xy = y ln y x, y = 2xy x 2 y 2.

28 4.4. Homogenní diferenciální rovnice Řešení: Homogenní diferenciální rovnici řešíme substitucí. Zavádíme novou funkci z = y x y = zx y = z x + z. Po dosazení dostaneme rovnici pro neznámou funkci z(x), která je separovatelná. Po vyřešení rovnice a nalezení obecného řešení separovatelné rovnice dosadíme zpět podíl z = y x a dopočítáme. Příklad 4.5. Určete obecné řešení diferenciálních rovnic: xy = y ln y x, y = 2xy x 2 y 2.

29 4.5. Lineární diferenciální rovnice 1. řádu Definice 4.8. Lineární diferenciální rovnicí 1. řádu nazýváme rovnici tvaru y + p(x)y = q(x), kde p(x), q(x) jsou spojité funkce proměnné x na intervalu I. Je-li q(x) = 0, pak rovnici y + p(x)y = 0 nazýváme zkrácenou lineární diferenciální rovnicí 1. řádu.

30 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

31 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

32 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

33 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

34 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

35 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

36 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

37 Postup řešení - metoda variace konstanty 1 Řešíme zkrácenou rovnici, která je vždy rovnicí separovatelnou a řešení napíšeme ve tvaru y = Cu(x), kde u(x) = e p(x)dx. 2 Ve funkci y = Cu(x) provedeme změnu (variaci) konstanty C na funkci C(x) proměnné x a obecné řešení hledáme ve tvaru y = C(x)u(x). 3 Dosazením funkce y = C(x)u(x) a její derivace y = C (x)u(x) + C(x)u (x) do zadané lineární diferenciální rovnice získáme rovnici pro derivaci neznámé funkce C (x). Členy obsahující C(x) se vzájemně odečtou. 4 Integrujeme a vypočítanou funkci C(x) dosadíme do řešení zkrácené rovnice. Výsledkem je obecné řešení lineární diferenciální rovnice. Příklad 4.6. Určete obecné řešení rovnice (1 + x 2 )y 2xy = (1 + x 2 ) 2. Určete obecné řešení rovnice xy 3y = x 2. Určete partikulární řešení rovnice 1 y xy = x při počáteční podmínce 2 y(0) = 7. Určete partikulární řešení rovnice y y tg x = 1 při počáteční cos x podmínce y(0) = 0.

38 4.6. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty Definice 4.9. Lineární diferenciální rovnicí 2. řádu s konstantními koeficienty nazýváme rovnici ve tvaru a 2 y + a 1 y + a 0 y = f (x), kde a 2, a 1, a 0 jsou konstanty a funkce f (x) je spojitá na intervalu I. Je-li f (x) = 0, mluvíme o zkrácené lineární diferenciální rovnicí 2. řádu s konstantními koeficienty.

39 4.6. Lineární diferenciální rovnice 2. řádu s konstantními koeficienty Definice 4.9. Lineární diferenciální rovnicí 2. řádu s konstantními koeficienty nazýváme rovnici ve tvaru a 2 y + a 1 y + a 0 y = f (x), kde a 2, a 1, a 0 jsou konstanty a funkce f (x) je spojitá na intervalu I. Je-li f (x) = 0, mluvíme o zkrácené lineární diferenciální rovnicí 2. řádu s konstantními koeficienty.

40 Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.

41 Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.

42 Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.

43 Řešení zkrácené lineární diferenciální rovnice 2. řádu Definice Algebraickou rovnici a 2 k 2 + a 1 k + a 0 = 0 nazýváme charakteristickou rovnicí zkrácené lineární diferenciální rovnice. Věta 4.2. Necht zkrácená lineární diferenciální rovnice a 2 y + a 1 y + a 0 y = 0 má charakteristickou rovnici a 2 k 2 + a 1 k + a 0 = 0, jejíž kořeny jsou k 1, k 2. Pak obecné řešení zkrácené diferenciální rovnice je ve tvaru: 1 y = C 1 e k 1x + C 2 e k 2x, jestliže k 1, k 2 jsou reálné různé kořeny, 2 y = C 1 e kx + C 2 xe kx, jestliže k = k 1 = k 2 je dvojnásobný reálný kořen, 3 y = e ax (C 1 cos bx + C 2 sin bx), jestliže k 1, k 2 jsou komplexně sdružená čísla k 1,2 = a ± ib. Příklad 4.7. Určete obecné řešení rovnice y y 6y = 0, y 4y + 4y = 0, y + 6y + 13y = 0.

44 Řešení úplné lineární diferenciální rovnice 2. řádu Věta 4.3. Obecné řešení rovnice a 2 y + a 1 y + a 0 y = f (x) lze psát ve tvaru y = y 0 + ŷ, kde y 0 je obecné řešení zkrácené rovnice a ŷ(x) je partikulární řešení úplné rovnice příslušné pravé straně f (x). Poznámka Tvar partikulárního řešení ŷ(x) závisí na funkci f (x) a na kořenech charakteristické rovnice.

45 Řešení úplné lineární diferenciální rovnice 2. řádu Věta 4.3. Obecné řešení rovnice a 2 y + a 1 y + a 0 y = f (x) lze psát ve tvaru y = y 0 + ŷ, kde y 0 je obecné řešení zkrácené rovnice a ŷ(x) je partikulární řešení úplné rovnice příslušné pravé straně f (x). Poznámka Tvar partikulárního řešení ŷ(x) závisí na funkci f (x) a na kořenech charakteristické rovnice.

46 Speciální případy: 1. funkce f (x) = P(x) je polynom n-tého stupně 1 Pokud číslo p = 0 není kořenem charakteristické rovnice, pak partikulární řešení je ŷ = Q(x). 2 Je-li číslo p = 0 r-násobným (r = 1, 2) kořenem charakteristické rovnice, pak partikulární řešení je ŷ = x r Q(x). Funkce Q(x) = A 0 x n + A 1 x n 1 + A 2 x n A n je polynom n-tého stupně. Koeficienty A 0, A 1, A 2,..., A n vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice a porovnáním koeficientů u mocnin x. Příklad 4.8. Určete obecné řešení rovnice y + y 2y = 6x 2, y + 3y = 9x.

47 Speciální případy: 1. funkce f (x) = P(x) je polynom n-tého stupně 1 Pokud číslo p = 0 není kořenem charakteristické rovnice, pak partikulární řešení je ŷ = Q(x). 2 Je-li číslo p = 0 r-násobným (r = 1, 2) kořenem charakteristické rovnice, pak partikulární řešení je ŷ = x r Q(x). Funkce Q(x) = A 0 x n + A 1 x n 1 + A 2 x n A n je polynom n-tého stupně. Koeficienty A 0, A 1, A 2,..., A n vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice a porovnáním koeficientů u mocnin x. Příklad 4.8. Určete obecné řešení rovnice y + y 2y = 6x 2, y + 3y = 9x.

48 Speciální případy: 2. funkce f (x) = me px, kde m, p jsou konstanty 1 Není-li číslo p kořenem charakteristické rovnice, pak partikulární řešení má tvar ŷ = Ae px. 2 Je-li číslo p kořenem charakteristické rovnice s násobností r = 1, 2, pak partikulární řešení má tvar ŷ = Ax r e px. Konstantu A vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice. Příklad 4.9. Určete obecné řešení rovnice y 2y + y = e x, y y = e x.

49 Speciální případy: 2. funkce f (x) = me px, kde m, p jsou konstanty 1 Není-li číslo p kořenem charakteristické rovnice, pak partikulární řešení má tvar ŷ = Ae px. 2 Je-li číslo p kořenem charakteristické rovnice s násobností r = 1, 2, pak partikulární řešení má tvar ŷ = Ax r e px. Konstantu A vypočteme po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice. Příklad 4.9. Určete obecné řešení rovnice y 2y + y = e x, y y = e x.

50 Speciální případy: 3. funkce f (x) = m cos qx + n sin qx, kde m, n, q jsou konstanty 1 Není-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = A cos qx + B sin qx. 2 Je-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = x(a cos qx + B sin qx). Podobně jako v předchozích situacích určíme konstanty A, B po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice porovnáním koeficientů u členů cos qx, sin qx. Příklad Určete obecné řešení rovnice y 3y + 2y = 5 sin 2x, y + y = 4 cos x 2 sin x.

51 Speciální případy: 3. funkce f (x) = m cos qx + n sin qx, kde m, n, q jsou konstanty 1 Není-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = A cos qx + B sin qx. 2 Je-li číslo qi komplexním kořenem charakteristické rovnice, pak ŷ = x(a cos qx + B sin qx). Podobně jako v předchozích situacích určíme konstanty A, B po dosazení partikulárního řešení ŷ a jeho derivací ŷ, ŷ do dané rovnice porovnáním koeficientů u členů cos qx, sin qx. Příklad Určete obecné řešení rovnice y 3y + 2y = 5 sin 2x, y + y = 4 cos x 2 sin x.

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na

pouze u některých typů rovnic a v tomto textu se jím nebudeme až na Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)

Více

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22

LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22 Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Více

Diferenciální rovnice

Diferenciální rovnice Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

9.5. Soustavy diferenciálních rovnic

9.5. Soustavy diferenciálních rovnic Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

9.4. Rovnice se speciální pravou stranou

9.4. Rovnice se speciální pravou stranou Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta

Více

6. Lineární ODR n-tého řádu

6. Lineární ODR n-tého řádu 6. Lineární ODR n-tého řádu A. Obecná homogenní LODRn V předcházející kapitole jsme diferenciální rovnici (libovolného řádu) nazvali lineární, je-li tato rovnice lineární vzhledem ke hledané funkci y a

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.

Více

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "

Nyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Matematika II: Pracovní listy do cvičení

Matematika II: Pracovní listy do cvičení Matematika II: Pracovní listy do cvičení Radomír Paláček, Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Příklady Integrální počet funkcí

Více

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2

Matematika 2 LS 2012/13. Prezentace vznikla na základě učebního textu, jehož autorem je doc. RNDr. Mirko Rokyta, CSc. J. Stebel Matematika 2 Matematika 2 13. přednáška Obyčejné diferenciální rovnice Jan Stebel Fakulta mechatroniky, informatiky a mezioborových studíı Technická univerzita v Liberci jan.stebel@tul.cz http://bacula.nti.tul.cz/~jan.stebel

Více

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2

Lineární rovnice prvního řádu. Máme řešit nehomogenní lineární diferenciální rovnici prvního řádu. Funkce h(t) = 2 Cvičení Lineární rovnice prvního řádu. Najděte řešení Cauchyovy úlohy x + x tg t = cos t, které vyhovuje podmínce xπ =. Máme nehomogenní lineární diferenciální rovnici prvního řádu. Funkce ht = tg t a

Více

8.1. Separovatelné rovnice

8.1. Separovatelné rovnice 8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

diferenciální rovnice verze 1.1

diferenciální rovnice verze 1.1 Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování

Více

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU

OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE DIFERENCIÁLNÍ ROVNICE 1.ŘÁDU OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice patří mezi nejužívanější nástroje matematiky v aplikacích. Jsou to rovnice, kde neznámou je funkce a rovnice obsahuje i derivace této funkce. Lze očekávat,

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský

Užití nekonečných řad při řešení obyčejných diferenciálních rovnic. Michal Ostřanský Užití nekonečných řad při řešení obyčejných diferenciálních rovnic Michal Ostřanský Bakalářská práce 2017 ABSTRAKT Cílem bakalářské práce je ukázat možnosti použití nekonečných řad při řešení obyčejných

Více

0.1 Obyčejné diferenciální rovnice prvního řádu

0.1 Obyčejné diferenciální rovnice prvního řádu 0.1 Obyčejné diferenciální rovnice prvního řádu 1 0.1 Obyčejné diferenciální rovnice prvního řádu Obyčejná diferenciální rovnice je rovnice, ve které se vyskytují derivace nebo diferenciály neznámé funkce

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty

Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava

Více

Matematická analýza ve Vesmíru. Jiří Bouchala

Matematická analýza ve Vesmíru. Jiří Bouchala Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

7.3. Diferenciální rovnice II. řádu

7.3. Diferenciální rovnice II. řádu Diferenciální rovnice 7 Diferenciální rovnice II řádu Ve stručném přehledu se budeme zabývat výhradně řešením lineárních diferenciálních rovnic II řádu s konstantními koeficienty Obecný tvar: ay + ay +

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

7. Soustavy ODR1 Studijní text. 7. Soustavy ODR1. A. Základní poznatky o soustavách ODR1

7. Soustavy ODR1 Studijní text. 7. Soustavy ODR1. A. Základní poznatky o soustavách ODR1 7 Soustavy ODR1 A Základní poznatky o soustavách ODR1 V inženýrské praxi se se soustavami diferenciálních rovnic setkáváme především v úlohách souvisejících s mechanikou Příkladem může být úloha popsat

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz www.mendelu.cz/user/marik c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod

Více

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0. Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY

MATEMATIKA 2. Sbírka úloh. RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh RNDr. Edita Kolářová ÚSTAV MATEMATIKY MATEMATIKA Sbírka úloh Úvod Dostali jste do rukou sbírku příkladů k přednášce Matematika. Tato sbírka je doplněním textu Matematika. Navazuje

Více

Diferenciální rovnice separace proměnných verze 1.1

Diferenciální rovnice separace proměnných verze 1.1 Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

4. Diferenciál a Taylorova věta

4. Diferenciál a Taylorova věta 4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde

Homogenní rovnice. Uvažujme rovnici. y = f(x, y), (4) kde Homogenní rovnice Uvažujme rovnici kde y = f(, y), (4) f(λ, λy) = f(, y), λ. Tato rovnice se nazývá homogenní rovnice 1. řádu. Ukážeme, že tuto rovnici lze převést substitucí na rovnici se separovanými

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule

8.2. Exaktní rovnice. F(x, y) x. dy. df = dx + y. Nyní budeme hledat odpověd na otázku, zda a jak lze od této diferenciální formule Cíle Ve výkladu o funkcích dvou proměnných jsme se seznámili také s jejich diferenciálem prvního řádu, který je pro funkci F(x, y) vyjádřen výrazem df dx + dy. Nyní budeme hledat odpověd na otázku, zda

Více

Základní pojmy teorie ODR a speciální typy ODR1

Základní pojmy teorie ODR a speciální typy ODR1 ODR1 1 Základní pojmy teorie ODR a speciální typy ODR1 A. Diferenciální rovnice a související pojmy Mnohé fyzikální a jiné zákony lze popsat pomocí rovnic, v nichž jako neznámá vystupuje funkce, přičemž

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

a a

a a 1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)

Více

Matematická analýza 2 1

Matematická analýza 2 1 Matematická analýza 2 Obsah Diferenciální rovnice 3. Motivace....................... 3.2 Diferenciální rovnice. řádu............ 3.3 Metody řešení diferenciálních rovnic. řádu... 7.3. Ortogonální systémy

Více

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika vzorce. Ing. Petr Šídlo. verze Matematika vzorce Ing. Petr Šídlo verze 0050409 Obsah Jazyk matematiky 3. Výrokový počet.......................... 3.. Logické spojky...................... 3.. Tautologie výrokového počtu...............

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE října 2009

INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE října 2009 INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 1 Robert Mařík 2. října 2009 c Robert Mařík, 2009 Obsah 1 Diferenciální rovnice úvod 4 2 DR se separovanými proměnnými 9 DR se sep. proměnnými.........................

Více

Matematická analýza 1b. 9. Primitivní funkce

Matematická analýza 1b. 9. Primitivní funkce Matematická analýza 1b 9. Primitivní funkce 9.1 Základní vlastnosti Definice Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

Diferenciální rovnice a dynamické modely

Diferenciální rovnice a dynamické modely Diferenciální rovnice a namické modely Robert Mařík 31. srpna 2009 c Robert Mařík, 2009 G. Galilei: Velkou knihu příro mohou číst jen ti, kteří znají jazyk, jímž je tato kniha napsána. A tímto jazykem

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Příklady ke zkoušce z Aplikované matematiky

Příklady ke zkoušce z Aplikované matematiky Příklady ke zkoušce z Aplikované matematiky Robert Mařík 2. února 205 Odpovědi nechápejte prosím jako vzorové odpovědi na jedničku. Často nejsou úplné, neodpovídají na všechny části otázky a slouží spíše

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Lineární diferenciální rovnice n tého řádu

Lineární diferenciální rovnice n tého řádu Kapitola 2 Lineární diferenciální rovnice n tého řádu 2.1 Cauchyova úloha pro lineární rovnici n tého řádu Klíčová slova: obyčejná lineární diferenciální rovnice n tého řádu, rovnice s konstantními koeficienty,

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim

3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim 3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Jan Kotůlek. verze 3 ze dne 25. února 2011

Jan Kotůlek. verze 3 ze dne 25. února 2011 Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

2.3 Aplikace v geometrii a fyzice... 16

2.3 Aplikace v geometrii a fyzice... 16 Obsah Derivace 3 Integrály 7. Neurčité integrály.................. 7. Určité integrály................... 3.3 Aplikace v geometrii a fyzice............ 6 3 Diferenciální rovnice 8 3. Motivace.......................

Více

Lineární diferenciální rovnice 1. řádu verze 1.1

Lineární diferenciální rovnice 1. řádu verze 1.1 Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové

Více

Matematika IV 9. týden Vytvořující funkce

Matematika IV 9. týden Vytvořující funkce Matematika IV 9. týden Vytvořující funkce Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Vytvořující funkce a Fibonacciho čísla 2 Vytvořující funkce - připomenutí 3 Řešení

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

ELEMENTÁRNÍ KOMPLEXNÍ FUNKCE SPECIÁLNÍ ELEMENTÁRNÍ FUNKCE

ELEMENTÁRNÍ KOMPLEXNÍ FUNKCE SPECIÁLNÍ ELEMENTÁRNÍ FUNKCE ELEMENTÁRNÍ KOMPLEXNÍ FUNKCE Všechny základní reálné funkce reálné proměnné, s kterými jste se seznámili na začátku tohoto kurzu, lze rozšířit i na komplexní funkce komplexní proměnné. U některých je rozšíření

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216.

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/ Anotace. Diferenciální počet VY_32_INOVACE_M0216. Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek

Více

Diferenciální rovnice II

Diferenciální rovnice II Diferenciální rovnice II Cílem tohoto kurzu je ukázat si různé příklady použití počítačového algebraického systému Maple při řešení obyčejných diferenciálních rovnic. řádu a soustav obyčejných diferenciálních

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních

Více

4.3.1 Goniometrické rovnice

4.3.1 Goniometrické rovnice .. Goniometrické rovnice Předpoklady: 6, 7 Názvosloví: Goniometrické rovnice: rovnice, ve kterých se neznámá objevuje uvnitř goniometrických funkcí. g x = a, kde Základní goniometrická rovnice: každá rovnice

Více

Věta o dělení polynomů se zbytkem

Věta o dělení polynomů se zbytkem Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)

Více

I. 7. Diferenciál funkce a Taylorova věta

I. 7. Diferenciál funkce a Taylorova věta I. 7. Diferenciál funkce a Taylorova věta 343 I. 7. Diferenciál funkce a Taylorova věta Věta 26. Funkce f má v bodě x 0 diferenciál (je diferencovatelná v x 0 ) právě tehdy, když existuje vlastní derivace

Více

METODICKÝ NÁVOD MODULU

METODICKÝ NÁVOD MODULU Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

dx se nazývá diferenciál funkce f ( x )

dx se nazývá diferenciál funkce f ( x ) 6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí

Více

Matematika I (KMI/5MAT1)

Matematika I (KMI/5MAT1) Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Přírodovědecká fakulta Masarykovy univerzity. na rovnice a nerovnice

Přírodovědecká fakulta Masarykovy univerzity. na rovnice a nerovnice Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na rovnice a nerovnice Bakalářská práce BRNO 006 Hana Kotulková Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze

Více

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ

DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ Jihočeská univerzita v Českých Budějovicích Pedagogická fakulta DIFERENCIÁLNÍ ROVNICE 1. ŘÁDU SBÍRKA ŘEŠENÝCH PŘÍKLADŮ DIPLOMOVÁ PRÁCE Diplomant: Vedoucí diplomové práce: Zdeněk ŽELEZNÝ RNDr. Libuše Samková,

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného

Více

Funkce komplexní proměnné a integrální transformace

Funkce komplexní proměnné a integrální transformace Funkce komplexní proměnné a integrální transformace Fourierovy řady I. Marek Lampart Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na

Více