SeminářČSJ. Odborná skupina statistické metody Praha

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "SeminářČSJ. Odborná skupina statistické metody. 19.1.2012 Praha"

Transkript

1 SeminářČSJ Odborná skupina statistické metody Praha

2 Kvalita měřicího procesu - Chyby měření a měřicích přístrojů Doc. Ing. Olga Tůmová, CSc. Tůmová 2

3 Murfyho zákony doporučují 1. měřit se nemá! 2. když už se měří, tak jen 1-krát!! 3. měří-li se víckrát, pak se výsledkům nedivit!!! 3

4 C h y b y měření a měřicích přístrojů Tůmová 4

5 Proč a jak měříme měřic icím zařízen zením a zvolenou metodou se na měřen eném objektu určuje uje velikost jisté veličiny iny vlivem zpětn tného působen sobení měřic icího zařízen zení na měřený objekt dochází ke změnám m poměrů v měřen eném objektu to má za následek, že e nelze měřen ením zjistit skutečnou hodnotu veličiny iny při každém reáln lném procesu dochází k chybám obecně platí požadavek, aby absolutní chyba co nejmenší 0! Poznámka: Z filologického hlediska se pochopitelně nejedná o chyby, ale o odchylky od skutečné hodnoty Tůmová 5

6 Rozdělen lení chyb podle příčin p vzniku chyby metody ( ( m, δ m ) většinou korigovatelné systematické chyby, vznikají vzájemným působen sobením měřic icího přístroje a měřen eného obvodu: a) zapojením přístroje do obvodu se připoj ipojí přídavný R, L nebo C (podle charakteru přístr str.) b) měřic icí přístroj koná v obvodu práci, proto odebírá energii z měřen eného signálu: spotřeba přístroje je udána výrobcem ve W, VA, W/V Tůmová 6

7 jsou dány vlastnostmi přístroj strojů, nedokonalostí jejích výroby i vlivem okolí: a) základn kladní chyby měřic icích ch přístroj strojů zahrnuty v třídě přesnosti; tj. maximáln lní možná chyba, pokud se přístroj používá podle pokynů a za podmínek udaných výrobcem (teplota, tlak, vlhkost vzduchu, cizí elmg. pole, poloha) b) přídavn davné chyby měřic icích ch přístroj strojů vznikají, pokud nejsou nebo nemohou být dodrženy podmínky stanovené výrobcem; tyto chyby mohou být i několikan kolikanásobn sobně větší než chyby základn kladní chyby měř m ěřic icích ch přístroj p strojů ( p, δ p ) Tůmová 7

8 chyby člen lenů měř ěřic icího obvodu jsou způsobeny nepřesnostmi esnostmi vyrovnání a kalibrace etalonů; pro velmi přesn esná měřen ení je udávána největší dovolená odchylka od jmenovité hodnoty chyby způsoben sobené rušivými vlivy jsou obtížně korigovatelné; (rušiv ivá napětí, C- nebo L- vazby, R- vodičů, atd.) Tůmová 8

9 chyby čten tení způsobeny pozorovatelem celkové chyby měř m ěřen ení jsou výsledkem větší šího počtu dílčích chyb Tůmová 9

10 Rozdělen lení chyb podle zdrojů chyby objektivní způsoben sobené objektivními příčinami chyby subjektivní zavin aviněné např. obsluhou Tůmová 10

11 Rozdělen lení chyb podle způsobu výskytu chyby systematické (soustavné) při opakování tého hož experimentu mají stále stejné znaménko nko na příslu slušné úrovni sledované veličiny iny způsobeny členy v měř ěřic icím řet etězci a měř ěřic icí metodou, např. spotřebou přístroj strojů, nepřesnost esností etalonů, vlivem frekvence, teploty apod. teoreticky lze eliminovat zavedením početn etních korekcí při zpracování výsledku měřen ení nebo úpravou měřic icího systému Tůmová 11

12 korigovatelné tehdy, známe me-li příčiny a zákonitosti jejich vzniku nebo pokud je můž ůžeme s jistou pravděpodobnost podobností určit kontrolním měř ěřen ením Např. (chyby aditivní,multiplikativn,multiplikativní,, linearity) Problém: v praxi mohou být značně velké, někdy nekorigovatelné > není-li k dispozici přesn esnější kontrolní měřen ení nebo teoretickým rozborem nelze určit příčiny systematické chyby Tůmová 12

13 chyby náhodn n hodné (nahodilé) jejich příčiny neznáme a jejich vliv lze zmenšit jen opakovaným měřen ením za stejných podmínek Např. nepravidelné kolísání teploty, změna odporu vlivem oteplení vodičů průchodem proudu, chyba reverzibility apod. opakováním se metoda měřen ení nezpřesn esní, zpřesn esní se jen výsledek měřen ení při opakovaném měřen ení náhodn hodné chyby rozloženy při N-rozd rozdělen lení symetricky kolem skutečné (konvenční) hodnoty Poznámka: ve výjimečných případech padech mohou někter která opakovaná měřen ení mohou vykazovat i jiná rozdělen lení pravděpodobnosti podobnosti Tůmová 13

14 chyby hrubé (omyly) Příčiny: nesprávn vné měřen ení, (velká nepřesnost esnost nebo porucha měřic icího přístroje stroje) nebo selhání pozorovatele Dosáhnou někdy i velikosti, že e zcela zkreslí a znehodnotí výsledek zpravidla jsou snadno rozeznatelné od ostatních hodnot, je nutné je vyloučit ze souboru naměřených hodnot Poznámka: hrubé chyby nesmíme me zaměňovat s odlehlými hodnotami tam musíme me zjistit, proč došlo k takové změně Tůmová 14

15 Vyhodnocení náhodných chyb N(0,σ 2 ) Gaussova křivka - graf. vyjádřen ení rozložen ení náhodných chyb Gaussův rozdělen lení N(0,σ 2 ), předpokl edpokládá se, že e platí Gauss zákon y = h π e ( ) 2 h 2 X kde y hustota rozdělen lení pravděpodobnosti, podobnosti, že nastane chyba velikosti X Tůmová 15

16 X velikost náhodn hodné chyby σ 2 rozptyl normáln lního rozdělen lení h míra přesnosti 1 h = 2σ středn ední hodnota náhodných n chyb je dána vztahem 1 n n i = 1 X i = Tůmová 16

17 pravděpodobn podobná chyba P určuje uje interval ± P, kde leží pravá hodnota s pravděpodobnost podobností P = 50% směrodatn rodatná odchylka s výběrov rová (dříve zvaná S středn ední kvadratická chyba) určuje uje interval ±1σ, kde leží pravá hodnota s pravděpodobnost podobností P = 68,27 %, určuje uje také polohu inflexního bodu S = X X n ( ) + X n Tůmová 17

18 kde n počet naměř ěřených hodnot ( ) X X 2 ( X ) 2 = i i X i i-tá naměř ěřen ená hodnota X aritmetický průměr krajní chyba K určuje uje interval, kde leží pravá hodnota s pravděpodobnost podobností P = 99,73 % a je definována na = 3σ 3 K S Tůmová 18

19 C h y b y m ěř e n í výsledky měřen ení se získ skávaj vají: - přímo (údaj měřic icího přístroje stroje, např. měřen ení odporu ohmetrem), - nepřímo (dosazením naměřených hodnot do matematických vztahů, např. měřen ení odporu Ohmovou metodou) Tůmová 19

20 Chyby naměř ěřených hodnot hodnota veličiny, iny, kterou zjistíme danou měřic icí metodou, značíme naměř ěřen ená hodnota N hodnota skutečná S (pravá, konvenční) - zjistíme ji přesn esnější metodou nebo teoretickým výpočtem Poznámka: tj. hodnota, která je nejbli bližší objektivní pravdě v daném čase (kterou však nikdy nezjistíme souvisí s postupně se zlepšuj ujícími přístroji i vyhodnocováním metod měřen ení) mezi nimi existuje vztah: S = N Tůmová 20

21 absolutní chyba měř m ěřen ené veličiny iny vyjadřuje vztah mezi naměř ěřenou a skutečnou hodnotou; musí se u ní zachovat znaménko nko! = N S = K korekce (oprava) K hodnota, kterou musíme me k naměřen ené hodnotě N přičíst a získ skáme hodnotu pravou S, - je opakem absolutní chyby: K = S N Tůmová 21

22 relativní chyba měř m ěřen ené veličiny inyδ (vzta tažen ená ke skutečné hodnotě) δ = S. 100 (%) aby mělo měřen ení smysl, volíme takovou měřic icí metodu, kdy předpokl edpokládáme, že δ 0 při přesn esnější ších měřen eních je N S, a relativní chyba δ = N. 100 (%) Tůmová 22

23 pravá hodnota S měřen ené veličiny iny obvykle není předem známa a nelze potom určit přímo ani velikost chyby pokud je výsledkem měřen enířada přibli ibližných hodnot, jejichž mezní velikosti jsou N 1 a N n, lze použít místo skutečné hodnoty S hodnotu S /, které se říká středn ední aproximace / ( N ) S 0,5 + = 1 N n Tůmová 23

24 Chyby přímých p měřm ěření výsledek přímých měřen ení se získ skáčten tením údaje příslu slušného měřic icího přístroje největší možná absolutní chyba měř m ěřen ení T rovna součtu absolutní chyby údaje přístroje U a absolutní chyby metody M T = U + M největší možná relativní chyba měř m ěřen eníδ T k naměřen ené hodnotě N δ T = N T. 100 (%) je vztažena Tůmová 24

25 Př.: Voltmetrem o třídě přesnosti TP = 1,5 a rozsahu 300 V je naměřeno napětí 225 V. Jaká je největší možná dovolená absolutní a největší možná relativní chyba údaje měřen ení? ± skutečná hodnota napětí U = 4, 5 V U = ( 225 ± 4, 5 )V a největší možná relativní chyba údaje tohoto měřen ení δ U 4, Poznámka: pro stanovení celkové (totální) chyby měření je nutné stanovit ještě chybu metody = ± 100 Tůmová 25 = ± 2 %

26 Chyby nepřímých měřm ěření při nepřímém m měřen ení je dán výsledek matematickou funkcí nezávislých proměnných jejich hodnoty jsou obvykle zjištěny přímými měřen eními, která jsou zatížena chybami je-li měřen ená veličina ina Y dána Y = f(x, X 1 2, X n ), pak absolutní chyba měřen ené veličiny iny Y je přibli ibližně rovna vztahu ( tot totáln lní diferenciál ) Tůmová 26

27 = f X f X ( Y ) ( X ) ( X ) f X n ( X n ) z dané rovnice lze určit pravidla pro určen ení absolutních nebo relativních chyb při základn kladních matematických operacích ch určen ení relativní chyby měřen ení, je-li měřen ená funkce Y = f(a, B): 27

28 Funkce Relativní chyba Y = A + B δ Y = A A + + B B Y = A B A + B δ Y = A B A Y = AB ; Y = δ Y = δ A + δ B B Y = A Y = n δ = Y n δ m Y A δ 1 = m δ A A 28

29 Výsledky opakovaných měřm ěření pro zpřesn esnění výsledku měřen ení (abychom mohli určit výsledek co nejbližší skutečné hodnotě S), opakují se měřen ení několikr kolikrát za stejných podmínek výsledky jednotlivých měřen ení (v obr. označen ené +) mohou být vůči hodnotě S různ zné 29

30 výsledky nejsou přesn p esné (nejsou správn vné ani shodné), je-li vzájemn jemná shoda výsledků špatn patná S výsledky jsou shod s hodné, ale nejsou správn vné, výsledky mezi sebou shodují, ale výrazně se liší od skutečné hodnoty S 30

31 výsledky přesn esné (správn vné a shodné současn asně) S výsledky odlehlé se výrazně liší od ostatních S 31

32 Vliv počtu opakovaných měření na přesnost výsledku Čím větší je počet měř ěřen ení, tím více se aritmetický průměr r blíží ke skutečné (konvenční) hodnotě S Úměrn rně s počtem měř ěřen ení narůst stá potřebný čas i ekonomická náro ročnost Při zvětšov ování počtu měř ěřen ení chyba klesá zpočátku rychle, od určit itého počtu podstatně pomaleji Počet měř ěřen ení nad je v technické praxi neopodstatnělé Doporučuje uje se, že počet opakování měř ěřen ení by neměl klesnout pod 6-5! Trend chyby aritmetického průměru ru vidět v grafu 32

33 Chyby analogových a digitálních přístrojů Výrobce garantuje určit ité meze chyb měř ěřic icích ch přístroj strojů (tzv. chyby základn kladní), pokud jsou tyto přístroje používan vané podle stanovených metrologických požadavk adavků a za specifických podmínek udaných výrobcem. Pokud nejsou nebo nemohou být dodrženy podmínky stanovené výrobcem, dochází k přídavným chybám, které mohou i několikan kolikanásobn sobně převý evýšit chyby základn kladní. Chyby se vyjadřuj ují v %, %o nebo ppm Tůmová 33

34 Chyby přístrojů Referenční podmínky zahrnují - Klimatické veličiny, iny, Mechanické veličiny, iny, Veličiny iny ovlivňuj ující napájen jení, elmg.pole.pole, popř. zářen ení Referenční podmínky jsou např.: Teplota okolního vzduchu [(20, 23 nebo 27 ) ± (1, 2, 5 nebo 10 )] o C Relativní vlhkost (45 75) % Atmosférický tlak (86 106) kpa Síťov ové napájen jení přístroj strojů (230 ± 4) V a kmitočet napájen jení (50 ± 0,5) Hz Př.: - teplota okolí 23 o C, - vnější magnetické pole B < 0,5 mt, - pracovní poloha přístroje ± 5 o. 34

35 Chyby přístrojů Jmenovité pracovní podmínky liší se podle typu klimatického prostřed edí, pro které je přístroj určen: Teplota okolního vzduchu v rozmezí (+5 až +40, -10 až +55, -25 až +50, -30 až +70) o C, Relativn elativní vlhkost vzduchu 80% při 25 o C, 90% při 30 o C Atmosférický tlak ( nebo ) kpa Síťov ové napájen jení přístroj strojů (230 ± 22) V a kmitočet napájen jení (50 ± 0,5) Hz 35

36 Chyby analogových přístrojů Základn kladní chyby analogových měř ěřic icích ch přístroj strojů jsou zahrnuty v třídě přesnosti. Třída přesnosti TP vyjádřena jako maximáln lní možná relativní chyba v %, pokud se přístroj používá podle stanovených metrologických požadavk adavků výrobce určených k udržen ení chyb měř ěřen ení a za specifických vztažných podmínek udaných výrobcem ve specifikovaných mezích (teplota, tlak a vlhkost vzduchu, cizí elektromagnetické pole, poloha, druh měř ěřených veličin in apod.). např. TP 1 znamená 1 % z hodnoty, kterou lze definovat 3 způsoby viz dále (způsob určen ení TP je graficky uveden na přístroji) 36

37 δ u = δ p + δ z Nejsou-li dodrženy vztažné podmínky, je poměrn rná chyba údaje přístroje dána: součtem poměrn rné chyby přístroje (za vztažných podmínek) a poměrnou chybou změn údaje (které vznikají, pokud přístroj nepracuje za vztažných podmínek): z δ u = δ + δ p z kde δ je souhrn změn údaje přístroje (při měř ěřen ení za jiných než vztažných podmínek), udaný v % skutečné hodnoty S. Poznámka: Dovolené chyby jsou uvedeny v normách a třídy přesnosti bývají u většiny analogových měř ěřidel normalizovány. ny. 37

38 Chyby analogových přístrojů Třída přesnosti TP se určí jako poměr absolutní chyby a naměř ěřen ené hodnoty vyjádřen ené v %. Naměř ěřenou hodnotou můž ůže být 3 způsoby: a) měř ěřic icí rozsah M (používá se nejčast astěji) b) skutečná hodnota měř ěřen ené veličiny iny S c) délka stupnice měř ěřic icího přístroje l 38

39 Chyby analogových přístrojů Výpočet TP a její označen ení na přístroji: a) p TP=δ ( % ) např. 1,5 pm = 100 M p b) TP = δ ( % ) ps = 100 1,5 S c) l TP = δ 100 ( % ) 1,5 pl = l V praxi je nejčastěji třída přesnosti typu a). 39

40 Chyby analogových přístrojů Ukázka závislosti absolutní a relativní chyby na rozsahu analogového přístroje, je-li třída přesnosti vztažena k rozsahu M 40

41 Chyby analogových přístrojů Hlavními příčinami chyb analogových měř ěřic icích ch přístroj strojů s elektromechanickým měř ěřic icím ústroj strojím jsou: nepřesnost esnost výroby a nepřesnost esnost kalibrace, rušiv ivé síly a momenty, vnitřní rušiv ivá elektrická a magnetická pole, oteplení vlastní spotřebou přístroje, stárnut rnutí materiálu a součástek, stek, opotřeben ebení a poškozen kození přístroje. Každá z těchto příčin působ sobí další kombinované chyby analogových přístroj strojů 41

42 Chyby analogových přístrojů Veličiny, iny, které většinou vyvolávaj vají přídavn davné chyby: teplota okolí, vychýlení přístroje ze správn vné polohy, kmitočet a tvar křivky měř ěřen ené střídav davé veličiny. iny. Analogové přístroje mají většinou stupnici cejchovanou pro měř ěřen ení efektivní hodnoty harmonického ho průběhu. Poznámka: Pokud ve skutečnosti se jedná o jiný periodický průběh, je třeba výsledek na přístroji přepo epočítávat (např. pomocí činitele tvaru). Obdobně musíme me postupovat, chceme-li změř ěřit maximáln lní nebo středn ední hodnotu příslu slušné veličiny. iny. 42

43 Chyby analogových přístrojů a) absolutní multiplikativní chyba se zvětšuje s naměř ěřenou hodnotou (obvykle chybné nastavení hlavních měř ěřic icích ch prvků přístroje) b) absolutní aditivní chyba vzniká chybným nastavením nulové polohy přístroje nebo chybovém napětí (offsetu) zesilovače 43

44 Chyby analogových přístrojů a) chyba linearity (nelineárn rní charakteristiky použitých součástek stek a materiálů, nepřesnost esnost montáže), můž ůže měnit znaménko, nko, lze odstranit korekční křivkou přístroje b) chyba reverzibility (způsob sobí rozdíln lné údaje přístroje při snižov ování a zvyšov ování měř ěřen ené veličiny) iny) 44

45 Chyby digitálních přístrojů Spojitý analogový signál je pro měř ěřen ení digitáln lním přístrojem upravit - vznikají chyby: Chyba vzorkováním vzniká vlivem zvolené vzorkovací frekvence, nutné pro věrohodnou rekonstrukci měř ěřen eného signálu (Shannonův teorém) Chyba kvantováním - závis visí na rozlišovac ovací schopnosti zvoleného A/D převodn evodníku (viz tabulka) 45

46 Chyby digitálních přístrojů Základn kladní chyby digitáln lních přístroj strojů se skládaj dají ze dvou složek: 1. část chyby je udána v % údaje měř ěřen ené veličiny iny (MH nebo rdg of reading) a 2. část chyby je vztažena k maximáln lní hodnotě měř ěřic icího rozsahu (MHMR nebo FS full scale). 46

47 Chyby digitálních přístrojů Základní chyba absolutní: = ± (x % z údaje měřené hodnoty + y % z měřicího rozsahu) (Chyba rozsahu může být též vyjádřena počtem kvantovacích kroků - digitů). Základní chyba relativní: δ celková = δ čtení + δ rozsahu Je dána součtem relativní chyby měřené hodnoty a relativní chyby vztažené k maximální hodnotě rozsahu vyjádřené v procentech. celk = čtení + rozsahu = Chyby digitálních přístrojů mohou být rozšířeny o chyby, které garantuje výrobce za určitý časový úsek (např. měsíc, 3 měsíce nebo 1 rok). 47

48 Chyby digitálních přístrojů Absolutní chybu digitálních přístrojů lze vyjádřit dvěma způsoby: a) celková δ = 100 δ U U +. x kde δ 1 je relat. chyba v % U x (údaje měř ěřen ené veličiny), iny), δ 2 je relat. chyba v % U M (hodnoty měř ěřic icího rozsahu). δ ( 1.. ) b) 100 k celková = ± U X + 3 kde δ 1 je relat. chyba v % U x (údaje měř ěřen ené veličiny), iny), ( 3.k) je absolutní chyba udaná v počtu jednotek posledního místa číslicov slicového zobrazovače, tj. počet kvantovacích ch kroků. M =

49 Chyby digitálních přístrojů Ukázka celkové (totální) absolutní P a relativníδ P chyby digitálního přístroje (součet chyby údaje M a chyby rozsahu R ) 49

50 Příklady chyb digitálních přístrojů Digitální voltmetr má pětimístný zobrazovač (99999), na rozsahu 10 V bylo změřeno 5,0000 V. a) výrobce stanovil základní chybu přístroje = ± (0,01 % údaje + 0,01 % rozsahu) pak základní absolutní chyba = ± ( ) = ± 1,5 mv b) pokud výrobce stanovil základní chybu přístroje = ± ( 0.01 % údaje + 9 kvantovacích kroků), je základní absolutní chyba = ± ( ) = ± 1,4 mv. 50

51 Chyby digitálních přístrojů Rozlišen ení měř ěřic icích ch systémů - A/D a D/A převodu Příklady: a) osmibitový AD-převodn evodník má rozlišení 256 úrovní (2 8 úrovní), tj. 2,4 digit, 0,4 % z rozsahu, tj. 3,9 mv z rozsahu ± 1V; b) číslicový voltmetr, 3 digit odpovídá desetibitovému převodníku. S ohledem na vyráběnou řadu se použije 12-bitový AD převodník. Jeho rozlišení je 0,024 % = 244,14 ppm = 0,24 mv z rozsahu ± 1 V. 51

52 Rozlišení měřicích systémů (AD a DA převodu) počet bitů n počet úrovní 2 n digit D = log 2 n LSB % LSB ppm LSB mv z 1V Dynam. rozsah - db 1 2 0,3 50, ,00 500,0000 6, ,6 25, ,00 250, , ,9 12, ,00 125, , ,2 6, ,00 62, , ,5 3, ,00 31, , ,8 1, ,00 15, , ,1 0, ,50 7, , ,4 0, ,25 3, , ,7 0, ,12 1, , ,0 0, ,56 0, , ,3 0, ,28 0, , ,6 0, ,14 0, ,0 52

53 Ostatní elektrické měřicí přístroje U elektronických a speciáln lních přístroj strojů (např. webermetry, integrační měř ěřic icí přístroje, RLC můstky atd.) závis visí vyjádřen ení údaje chyby na výrobci. Pokud mají tyto přístroje zabudován v sobě ukazovací přístroj (pro čten tení údaje) s udanou třídou přesnosti, vztahuje se tato třída přesnosti pouze na ukazovací přístroj (indikátor), nikoliv na celý měř ěřic icí přístroj (např. měř ěřič zkreslení). Chyby této to skupiny měř ěřic icích ch přístroj strojů je nutné vyhledat vždy v technické dokumentaci výrobce. 53

54 Konec přednášky D Ě K U J I Z A P O Z O R N O S T Tůmová 54

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika

Mˇeˇren ı vlastn ı indukˇcnosti Ondˇrej ˇ Sika Obsah 1 Zadání 3 2 Teoretický úvod 3 2.1 Indukčnost.................................. 3 2.2 Indukčnost cívky.............................. 3 2.3 Vlastní indukčnost............................. 3 2.4 Statická

Více

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr

Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Analogově-číslicové převodníky ( A/D )

Analogově-číslicové převodníky ( A/D ) Analogově-číslicové převodníky ( A/D ) Převodníky analogového signálu v číslicový (zkráceně převodník N/ Č nebo A/D jsou povětšině založeny buď na principu transformace napětí na jinou fyzikální veličinu

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ

MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),

Více

Zákony hromadění chyb.

Zákony hromadění chyb. Zákony hromadění chyb. Zákon hromadění skutečných chyb. Zákon hromadění středních chyb. Tomáš Bayer bayertom@natur.cuni.cz Přírodovědecká fakulta Univerzity Karlovy v Praze, Katedra aplikované geoinformatiky

Více

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík

Nejistota měř. ěření, návaznost a kontrola kvality. Miroslav Janošík Nejistota měř ěření, návaznost a kontrola kvality Miroslav Janošík Obsah Referenční materiály Návaznost referenčních materiálů Nejistota Kontrola kvality Westgardova pravidla Unity Referenční materiál

Více

Šum AD24USB a možnosti střídavé modulace

Šum AD24USB a možnosti střídavé modulace Šum AD24USB a možnosti střídavé modulace Vstup USB měřicího modulu AD24USB je tvořen diferenciálním nízkošumovým zesilovačem s bipolárními operačními zesilovači. Charakteristickou vlastností těchto zesilovačů

Více

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3.

1. Zadání. 2. Teorie úlohy ID: 78 357. Jméno: Jan Švec. Předmět: Elektromagnetické vlny, antény a vedení. Číslo úlohy: 7. Měřeno dne: 30.3. Předmět: Elektromagnetické vlny, antény a vedení Úloha: Symetrizační obvody Jméno: Jan Švec Měřeno dne: 3.3.29 Odevzdáno dne: 6.3.29 ID: 78 357 Číslo úlohy: 7 Klasifikace: 1. Zadání 1. Změřte kmitočtovou

Více

Měření teploty a odporu

Měření teploty a odporu AP0015 APLIKAČNÍ POZNÁMKA Měření teploty a odporu Abstrakt Aplikační poznámka řeší způsoby měření teploty a odporu pomocí analogových vstupů řídicích systémů firmy AMiT. Autor: Zbyněk Říha Dokument: ap0015_cz_01.pdf

Více

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz. weisz@vsb.cz. E-mail:

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz. weisz@vsb.cz. E-mail: AKUSTICKÁ MĚŘENÍ Přednáší a cvičí: Kontakt: Ing. Michal WEISZ,Ph Ph.D. CPiT pracoviště 9332 Experimentáln lní hluková a klimatizační laboratoř. Druhé poschodí na nové menze kl.: 597 324 303 E-mail: michal.weisz

Více

Základní definice el. veličin

Základní definice el. veličin Stýskala, 2002 L e k c e z e l e k t r o t e c h n i k y Vítězslav Stýskala, Jan Dudek Oddíl 1 Určeno pro studenty komb. formy FBI předmětu 452081 / 06 Elektrotechnika Základní definice el. veličin Elektrický

Více

Biostatistika Cvičení 7

Biostatistika Cvičení 7 TEST Z TEORIE 1. Střední hodnota pevně zvolené náhodné veličiny je a) náhodná veličina, b) konstanta, c) náhodný jev, d) výběrová charakteristika. 2. Výběrový průměr je a) náhodná veličina, b) konstanta,

Více

1. Základy teorie přenosu informací

1. Základy teorie přenosu informací 1. Základy teorie přenosu informací Úvodem citát o pojmu informace Informace je název pro obsah toho, co se vymění s vnějším světem, když se mu přizpůsobujeme a působíme na něj svým přizpůsobováním. N.

Více

GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346

GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346 GEODÉZIE ENGINEERING s.r.o. Mezinár.výzkumné laserové centrum ELI Hrdlo ezská 21/31, 19000 Praha 9, tel: +420 284 810 346 Dolní B ežany email: geopraha@geopraha.cz, web: www.geopraha.cz Projekt m ení posun

Více

Protokol o měření. Jak ho správně zpracovat

Protokol o měření. Jak ho správně zpracovat Protokol o měření Jak ho správně zpracovat OBSAH Co je to protokol? Forma a struktura Jednotlivé části protokolu Příklady Další tipy pro zpracování Co je to protokol o měření? Jedná se o záznam praktického

Více

Pracovní list žáka (ZŠ)

Pracovní list žáka (ZŠ) Pracovní list žáka (ZŠ) Účinky elektrického proudu Jméno Třída.. Datum.. 1. Teoretický úvod Elektrický proud jako jev je tvořen uspořádaným pohybem volných částic s elektrickým nábojem. Elektrický proud

Více

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY

2. MĚŘENÍ TEPLOTY TERMOČLÁNKY 2. MĚŘENÍ TEPLOTY TERMOČLÁNKY Otázky k úloze (domácí příprava): Jaká je teplota kompenzačního spoje ( studeného konce ), na kterou koriguje kompenzační krabice? Dá se to zjistit jednoduchým měřením? Čemu

Více

Název: Měření paralelního rezonančního LC obvodu

Název: Měření paralelního rezonančního LC obvodu Název: Měření paralelního rezonančního LC obvodu Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek:

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4

MĚŘENÍ Laboratorní cvičení z měření. Měření vlastní a vzájemné indukčnosti, část 3-1-4 MĚŘENÍ Laboratorní cvičení z měření Měření vlastní a vzájemné indukčnosti, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

3. Kmitočtové charakteristiky

3. Kmitočtové charakteristiky 3. Kmitočtové charakteristiky Po základním seznámení s programem ATP a jeho preprocesorem ATPDraw následuje využití jednotlivých prvků v jednoduchých obvodech. Jednotlivé příklady obvodů jsou uzpůsobeny

Více

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu

1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu 1.1 Paralelní spolupráce transformátorů stejného nebo rozdílného výkonu Cíle kapitoly: Cílem úlohy je ověřit teoretické znalosti při provozu dvou a více transformátorů paralelně. Dalším úkolem bude změřit

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce: REDL 3.EB 9 1/11 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku zenerovy diody v propustném i závěrném směru. Charakteristiky znázorněte graficky. b) Vypočtěte a graficky znázorněte statický odpor diody

Více

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.

Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D. Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

PRO KONKURENCESCHOPNOST 2007-2013

PRO KONKURENCESCHOPNOST 2007-2013 OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST 2007-2013 2013 1 Novinky pro 2007-2013 2013 (terminologie) Priorita Opatřen ení 2004 2006 Grantové schéma Projekt (národn rodní, systémový) Konečný ný

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Základní principy přeměny analogového signálu na digitální

Základní principy přeměny analogového signálu na digitální Základní y přeměny analogového signálu na digitální Pro přenos analogového signálu digitálním systémem, je potřeba analogový signál digitalizovat. Digitalizace je uskutečňována pomocí A/D převodníků. V

Více

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10

Poř. č. Příjmení a jméno Třída Skupina Školní rok 2 BARTEK Tomáš S3 1 2009/10 Vyšší odborná škola a Střední průmyslová škola elektrotechnická Božetěchova 3, Olomouc Laboratoře elektrotechnických měření Název úlohy MĚŘENÍ CHARAKTERISTIK REZONANČNÍCH OBVODŮ Číslo úlohy 301-3R Zadání

Více

Senzor teploty. Katalogový list SMT 160-30

Senzor teploty. Katalogový list SMT 160-30 Senzor teploty Katalogový list SMT 160-30 Obsah 1. Úvod strana 2 2. Inteligentní senzor teploty strana 2 3. Vývody a pouzdro strana 4 4. Popis výrobku strana 4 5. Charakteristické údaje strana 5 6. Definice

Více

mové techniky budov ení- ochrana osob, budov, prostor a předmp Zabezpečovac zení Ing. Jan Vaňuš N 716 tel.: 59 699 1509 vanus@vsb.czvsb.

mové techniky budov ení- ochrana osob, budov, prostor a předmp Zabezpečovac zení Ing. Jan Vaňuš N 716 tel.: 59 699 1509 vanus@vsb.czvsb. Základy Systémov mové techniky budov 6 přednáška Ing. Jan Vaňuš N 716 tel.: 59 699 1509 email: jan.vanus vanus@vsb.czvsb.cz http://sweb sweb.cz/jan.vanus Lidé stále více pociťují potřebu zajištění vlastního

Více

Elektrický proud 2. Zápisy do sešitu

Elektrický proud 2. Zápisy do sešitu Elektrický proud 2 Zápisy do sešitu Směr elektrického proudu v obvodu 1/2 V různých materiálech vedou elektrický proud různé částice: kovy volné elektrony kapaliny (roztoky) ionty plyny kladné ionty a

Více

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika

Stabiliz atory napˇet ı v nap ajec ıch zdroj ıch - mˇeˇren ı z akladn ıch parametr u Ondˇrej ˇ Sika - měření základních parametrů Obsah 1 Zadání 4 2 Teoretický úvod 4 2.1 Stabilizátor................................ 4 2.2 Druhy stabilizátorů............................ 4 2.2.1 Parametrické stabilizátory....................

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Národníinformačnístředisko pro podporu jakosti

Národníinformačnístředisko pro podporu jakosti Národníinformačnístředisko pro podporu jakosti OVĚŘOVÁNÍ PŘEDPOKLADU NORMALITY Doc. Ing. Eva Jarošová, CSc. Ing. Jan Král Používané metody statistické testy: Chí-kvadrát test dobré shody Kolmogorov -Smirnov

Více

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY

5. MĚŘENÍ TEPLOTY TERMOČLÁNKY 5. MĚŘENÍ TEPLOTY TERMOČLÁNKY Úkol měření 1. Ověření funkce dvoudrátového převodníku XTR 101 pro měření teploty termoelektrickými články (termočlánky). 2. Použití měřicího modulu Janascard AD232 s izotermální

Více

Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu

Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu Část 4 Stanovení a zabezpečení garantované hladiny akustického výkonu Obsah 1. Úvod 2. Oblast působnosti 3. Definice 3.1 Definice uvedené ve směrnici 3.2 Obecné definice 3.2.1 Nejistoty způsobené postupem

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

Přesnost měření. Obsah. Energetické hodnoty a stupeň účinnosti pro FV-střídač Sunny Boy a Sunny Mini Central

Přesnost měření. Obsah. Energetické hodnoty a stupeň účinnosti pro FV-střídač Sunny Boy a Sunny Mini Central Přesnost měření Energetické hodnoty a stupeň účinnosti pro FV-střídač Sunny Boy a Sunny Mini Central Obsah Každý provozovatel fotovoltaického zařízení chce být co nejlépe informován o výkonu a výnosu svého

Více

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Práce a energie, tepelné jevy, elektrický proud, zvukové jevy Tercie 1+1 hodina týdně Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika

Více

nastavovány měřící režimy a jejich parametry, to se může uskutečnit bu předem

nastavovány měřící režimy a jejich parametry, to se může uskutečnit bu předem MONITOR VÝKONŮ QV Monitor výkonů je určen pro analýzu dodávaného i odebíraného výkonu sítí nn i vn. Je určen pro dlouhodobá měření bez přítomnosti obsluhy, ale umožňuje i přímá měření, kdy jsou měřená

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

2. KONFERENCE O UCELENÉ REHABILITACI I P V Z prosinec 2004. Potřebuje rehabilitace sociální pomoc a sociální pomoc rehabilitaci?

2. KONFERENCE O UCELENÉ REHABILITACI I P V Z prosinec 2004. Potřebuje rehabilitace sociální pomoc a sociální pomoc rehabilitaci? 2. KONFERENCE O UCELENÉ REHABILITACI I P V Z prosinec 2004 Potřebuje rehabilitace sociální pomoc a sociální pomoc rehabilitaci? Charakteristiky současného stavu 1. Systém m neřeší celkovou situaci,, nýbrn

Více

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE STŘEDNÍ PRŮMYSLOVÁ ŠKOLA V ČESKÝCH BUDĚJOVICÍCH, DUKELSKÁ 13 PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE Provedl: Tomáš PRŮCHA Datum: 23. 1. 2009 Číslo: Kontroloval: Datum: 4 Pořadové číslo žáka: 24

Více

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá

APOSYS 10. Kompaktní mikroprocesorový regulátor APOSYS 10. MAHRLO s.r.o. Ľudmily Podjavorinskej 535/11 916 01 Stará Turá APOSYS 10 Kompaktní mikroprocesorový regulátor APOSYS 10 Popis dvojitý čtyřmístný displej LED univerzální vstup s galvanickým oddělením regulační výstupy reléové regulace: on/off, proporcionální, PID,

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

Bezpečnost práce, měření fyzikálních veličin, chyby měření

Bezpečnost práce, měření fyzikálních veličin, chyby měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 1 Bezpečnost práce, měření fyzikálních

Více

Vývoj úmrtnosti. při narození v roce 2006. života. Zdroj: www.mapsofworld.com

Vývoj úmrtnosti. při narození v roce 2006. života. Zdroj: www.mapsofworld.com Světový populační vývoj I.3 Vývoj úmrtnosti RNDr. Jiřina ina Kocourková, Ph.D. Středn ední délka života při narození v roce 2006 Zdroj: www.mapsofworld.com Státy ty s nejdelší a nejkratší středn ední délkou

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. úloha č. 10 Název: Rychlost šíření zvuku. Pracoval: Jakub Michálek Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 10 Název: Rychlost šíření zvuku Pracoval: Jakub Michálek stud. skup. 15 dne: 20. března 2009 Odevzdal dne: Možný

Více

knové senzory v geotechnice a stavebnictví

knové senzory v geotechnice a stavebnictví Optovláknov knové senzory v geotechnice a stavebnictví Safibra, s.r.o. 1 Obsah Proč monitorovat? Co lze optovlákny monitorovat. FBG technologie Raman OTDR Brillouin OTDR Úloha firmy Safibra 2 Proč monitorovat?

Více

18.04.2007 AGREGÁTN TNÍ

18.04.2007 AGREGÁTN TNÍ 7. přednáška 18.04.2007 AGREGÁTN TNÍ POPTÁVKA A NABÍDKA 7. přednáška 18.04.2007 I. AD II. AS III. Rovnováha AD-AS AS 7. přednáška KLÍČOV OVÁ SLOVA Agregátn tní poptávka, agregátn tní nabídka, rovnovážná

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1

Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice 2 Číslo úlohy : 1 Pedagogická fakulta v Ústí nad Labem Fyzikální praktikum k elektronice Číslo úlohy : 1 Název úlohy : Vypracoval : ročník : 3 skupina : F-Zt Vnější podmínky měření : měřeno dne : 3.. 004 teplota : C tlak

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

ELEKTROTECHNICKÁ SCHÉMATA A ZAŘÍZENÍ, DESKY S PLOŠNÝMI SPOJI

ELEKTROTECHNICKÁ SCHÉMATA A ZAŘÍZENÍ, DESKY S PLOŠNÝMI SPOJI ELEKTROTECHNICKÁ SCHÉMATA A ZAŘÍZENÍ, DESKY S PLOŠNÝMI SPOJI Označování komponent ve schématu Zkratky jmenovitých hodnot rezistorů a kondenzátorů Zobrazování komponentů ve schématu Elektrotechnická schémata

Více

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1

Pravděpodobnost v závislosti na proměnné x je zde modelován pomocí logistického modelu. exp x. x x x. log 1 Logistická regrese Menu: QCExpert Regrese Logistická Modul Logistická regrese umožňuje analýzu dat, kdy odezva je binární, nebo frekvenční veličina vyjádřená hodnotami 0 nebo 1, případně poměry v intervalu

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3

MĚŘENÍ Laboratorní cvičení z měření. Měření na elektrických strojích - transformátor, část 3-2-3 MĚŘENÍ Laboratorní cvičení z měření Měření na elektrických strojích - transformátor, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu:

Více

CZ.1.07/1.2.00/08.0113

CZ.1.07/1.2.00/08.0113 Operační program: Prioritní osa: Oblast podpory: Spolupráce na všech v frontách CZ.1.07/1.2.00/08.0113 Vzdělávání pro konkurenceschopnost 1. Počáte teční vzdělávání 1.2. Rovné příležitosti dětíd a žáků,,

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Měření tlaku v závislosti na nadmořské výšce KET/MNV

Měření tlaku v závislosti na nadmořské výšce KET/MNV Měření tlaku v závislosti na nadmořské výšce KET/MNV Vypracoval : Martin Dlouhý Osobní číslo : A08B0268P 1. Zadání Změřte hodnotu atmosférického tlaku v různých nadmořských výškách (v několika patrech

Více

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření

Fyzikální veličiny a jednotky, přímá a nepřímá metoda měření I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 2 Fyzikální veličiny a jednotky,

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2

Předpoklad o normalitě rozdělení je zamítnut, protože hodnota testovacího kritéria χ exp je vyšší než tabulkový 2 Na úloze ukážeme postup analýzy velkého výběru s odlehlými prvky pro určení typu rozdělení koncentrace kyseliny močové u 50 dárců krve. Jaká je míra polohy a rozptýlení uvedeného výběru? Z grafických diagnostik

Více

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného čísla A a přibližného čísla a = A a. Je třeba rozlišovat dva případy:

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

Pracovní list žáka (SŠ)

Pracovní list žáka (SŠ) Pracovní list žáka (SŠ) vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Rezistory lze zapojovat do série nebo paralelně. Pro výsledný odpor sériového zapojení rezistorů platí: R = R1 + R2 +

Více

X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem.

X. Hallův jev. Michal Krištof. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách konstantního proudu vzorkem. X. Hallův jev Michal Krištof Pracovní úkol 1. Zjistěte závislost proudu vzorkem na přiloženém napětí při nulové magnetické indukci. 2. Zjistěte závislost Hallova napětí na magnetické indukci při dvou hodnotách

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Chyby spektrometrických metod

Chyby spektrometrických metod Chyby spektrometrických metod Náhodné Soustavné Hrubé Správnost výsledku Přesnost výsledku Reprodukovatelnost Opakovatelnost Charakteristiky stanovení 1. Citlivost metody - směrnice kalibrační křivky 2.

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník

ELEKTRICKÝ PROUD V KOVECH. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník ELEKTRICKÝ PROUD V KOVECH Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 3. ročník Elektrický proud Uspořádaný pohyb volných částic s nábojem Směr: od + k ( dle dohody - ve směru kladných

Více

SROVNÁNÍ KLEŠŤOVÝCH MULTIMETRŮ

SROVNÁNÍ KLEŠŤOVÝCH MULTIMETRŮ SROVNÁNÍ KLEŠŤOVÝCH MULTIMETRŮ Výrobce LUTRON LUTRON MASTECH MASTECH PROVA PROVA PROVA Kyoritsu Kyoritsu Kyoritsu Typ CM 9930 CM 9940 MS2138 MS2108 CM02 CM03 11 2300R 2033 2031 Digitů 4 4 3 3/4 3 3/4 3

Více

Laboratorní práce č. 4: Určení elektrického odporu

Laboratorní práce č. 4: Určení elektrického odporu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého studia Laboratorní práce č. 4: Určení elektrického odporu G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého

Více

4.2.13 Regulace napětí a proudu reostatem a potenciometrem

4.2.13 Regulace napětí a proudu reostatem a potenciometrem 4..3 Regulace napětí a proudu reostatem a potenciometrem Předpoklady: 405, 407, 40 Nejde o dva, ale pouze o jeden druh součástky (reostat) ve dvou různých zapojeních (jako reostat a jako potenciometr).

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Transformátor trojfázový

Transformátor trojfázový Transformátor trojfázový distribuční transformátory přenášejí elektricky výkon ve všech 3 fázích v praxi lze použít: a) 3 jednofázové transformátory větší spotřeba materiálu v záloze stačí jeden transformátor

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Chyby a nejistoty měření

Chyby a nejistoty měření Moderní technologie ve stdi aplikované fyziky CZ..07/..00/07.008 Chyby a nejistoty měření (doplňjící tet k laboratorním cvičení) Připravili: Petr Schovánek, Vítězslav Havránek Obsah Obsah... Seznam ilstrací...

Více

Copyright Moeller Elektrotechnika s.r.o. 2008. Všechna práva vyhrazena.

Copyright Moeller Elektrotechnika s.r.o. 2008. Všechna práva vyhrazena. Časové relé Z-ZR Copyright Moeller Elektrotechnika s.r.o. 2008 Všechna práva vyhrazena. Informace v tomto dokumentu mohou podléhat změnám - platí aktuální verze. Společnost Moeller Elektrotechnika s.r.o.

Více

ZÁKLADNÍ ŠKOLA a MATEŘSKÁ ŠKOLA STRUPČICE, okres Chomutov

ZÁKLADNÍ ŠKOLA a MATEŘSKÁ ŠKOLA STRUPČICE, okres Chomutov ZÁKLADÍ ŠKOLA a MATEŘSKÁ ŠKOLA STRPČCE, okres Chomutov Autor výukového Materiálu Datum (období) vytvoření materiálu Ročník, pro který je materiál určen Vzdělávací obor tématický okruh ázev materiálu, téma,

Více

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje

Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně. Přístroje Otázka 22(42) Přístroje pro měření signálů, metody pro měření v časové a frekvenční doméně Rozmanitost signálů v komunikační technice způsobuje, že rozdělení měřicích metod není jednoduché a jednoznačné.

Více

Měření délky, určení objemu tělesa a jeho hustoty

Měření délky, určení objemu tělesa a jeho hustoty Úloha č. 1a Měření délky, určení objemu tělesa a jeho hustoty Úkoly měření: 1. Seznámení se s měřicími přístroji posuvné měřítko, mikrometr, laboratorní váhy. 2. Opakovaně (10x) změřte rozměry dvou zadaných

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Úvod. Postup praktického testování

Úvod. Postup praktického testování Testování vzorků kalů odebraných v rámci Doškolovacího semináře Manažerů vzorkování odpadů 21. 10. 2014 v ČOV Liberec, akciové společnosti Severočeské vodovody a kanalizace Úvod Společnost Forsapi, s.r.o.

Více

ěžné výstupy projektu

ěžné výstupy projektu Průběž ěžné výstupy projektu Spolupráce na všech v frontách CZ.1.07/1.2.00/08.0113 Operační program: Prioritní osa: Oblast podpory: Vzdělávání pro konkurenceschopnost 1. Počáte teční vzdělávání 1.2. Rovné

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Implementační struktura

Implementační struktura 1 OP Vzdělávání pro konkurenceschopnost Globální cíl Rozvoj vzdělanostní společnosti za účelem posílení konkurenceschopnosti ČR prostřednictvím modernizace systémů počátečního, terciárního a dalšího vzdělávání

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Pojem a úkoly statistiky

Pojem a úkoly statistiky Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více