Funkce a lineární funkce pro studijní obory

Rozměr: px
Začít zobrazení ze stránky:

Download "Funkce a lineární funkce pro studijní obory"

Transkript

1 Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na

2 1. Funkce Funkce je přiřazení, které každému prvku nějaké zadané množiny M přiřazuje právě jedno reálné číslo. Množinu M nazýváme definiční obor - značíme D, případně D(f) Reálná čísla, která jsou takto přiřazena, nám tvoří další množinu, kterou nazýváme obor hodnot funkce - značíme H, případně H(f). Funkce může být zadána různými způsoby: tabulkou x y spojnicovým diagramem rovnicí y = 2x + 5 grafem 2. Funkce - procvičovací příklady 2

3 1. Určete, zda jde o graf funkce: 1346 Ano 2. Určete, zda jde o graf funkce: 1347 Ne 3. Určete, zda jde o zápis funkce: y = 2x Ano 4. Určete, zda jde o tabulku představující funkci: x * o # $ y Ano 5. Určete, zda jde o tabulku představující funkci: x * o # o y Ne 3

4 6. Určete, zda jde o graf funkce: 1348 Ne 7. Určete, zda jde o graf funkce: 1349 Ne 8. Určete, zda jde o tabulku představující funkci: x y Ne 9. Určete, zda jde o tabulku představující funkci: x y Ano 10. Určete, zda jde o tabulku představující funkci: x y * o # $ 1344 Ne 4

5 3. Vlastnosti funkce 1. Funkce rostoucí, klesající a konstantní Funkce je rostoucí, jestliže pro vyšší hodnotu nezávisle proměnné z definičního oboru nabývá i vyšší funkční hodnoty. Jinými slovy plati: (x 2 > x 1 ) D f(x 2 ) > f(x 1 ) Příkladem rostoucí funkce je y = 2x Rostou-li hodnoty nezávisle proměnné z definičního oboru, rostou i jejich funkční hodnoty. Taková funkce je rostoucí Funkce je klesající, jestliže pro vyšší hodnotu nezávisle proměnné z definičního oboru nabývá nižší funkční hodnoty. Jinými slovy plati: (x 2 > x 1 ) D f(x 2 ) < f(x 1 ) Příkladem klesající funkce je y = -2x + 3 Funkce je konstantní, jestliže pro libovolné dvě hodnoty nezávisle proměnné z definičního oboru nabývá vždy stejné funkční hodnoty. Jinými slovy plati: (x 2 x 1 ) D f(x 2 ) = f(x 1 ) Příkladem konstantní funkce je y = 6 Pozn.: Graf funkce rostoucí "jde do kopce", graf funkce klesající "jde z kopce", graf funkce konstantní je přímka (nebo její část) rovnoběžná s osou x. Pozn.: Funkce nerostoucí a funkce neklesající. 2. Funkce sudá a funkce lichá Funkce je sudá, jestliže pro x D platí, že f(x) = f(-x) Graf funkce sudé je vždy osově souměrný podle osy y. Příklad sudé funkce: y = x 2 5

6 Funkce je lichá, jestliže pro x D platí, že f(-x) = -f(x) Graf funkce liché je vždy středově souměrný podle počátku. Příklad liché funkce: 3. Funkce periodická Periodická je taková funkce, která ve svém definičním oboru nabývá pravidelně se opakující hodnoty. 6

7 4. Funkce prostá Funkce f definovaná na množině A, která je podmnožinou definičního oboru D(f), se nazývá prostá, jestliže pro dva libovolné body x i a x j patřící do množiny A, pro něž platí, že x i x j, zároveň platí f(x i ) f(x j ). Jsou-li různé nezávisle proměnné z definičního oboru a jsou-li jejich funkční hodnoty různé, jde o funkci prostou. 7

8 Příkladem prosté funkce může být exponenciální funkce f: y = a x, kde a > Funkce shora omezená Funkce f definovaná na množině A, která je podmnožinou definičního oboru D(f), se nazývá shora omezená (ohraničená), právě tehdy, když existuje takové číslo r R, že pro všechna x A je f(x) r. Funkce y = -x 2 nabývá pro všechny hodnoty definičního oboru záporných funkčních hodnot. Proto je velmi snadné určit číslo, které dané podmínce o omezenosti funkce shora vyhovuje. Jsou to všechna kladná čísla (např. číslo 1). 6. Funkce zdola omezená Funkce f definovaná na množině A, která je podmnožinou definičního oboru D(f), se nazývá zdola omezená (ohraničená), právě tehdy, když existuje takové číslo r R, že pro všechna x A je f(x) r. Funkce y = x 2 nabývá pro všechny hodnoty z definičního oboru kladných funkčních hodnot. Proto je velmi snadné 8

9 určit číslo, které dané podmínce o omezenosti funkce zdola vyhovuje - jsou to všechna záporná čísla (např. číslo -1). 7. Funkce omezená Funkce f definovaná na množině A, která je podmnožinou definičního oboru D(f), se nazývá omezená (ohraničená), právě tehdy, když je omezená shora i zdola. Z oboru hodnot a grafu funkce plyne, že není problém nalézt číslo, které bude splňovat podmínku pro omezenost funkce shora (všechna čísla větší než 1, tedy např. číslo 2) a číslo, které bude splňovat podmínku pro omezenost funkce zdola (všechna čísla menší než 1, tedy např. číslo -2). 8. Inverzní funkce Z definice inverzní funkce plyne, že se inverzní funkce k dané (prosté) funkci dá určit záměnou definičního oboru za obor hodnot, tedy y za x. 9

10 9. Minimum funkce Nejmenší hodnotou, neboli absolutním minimem, funkce f na množině A se nazývá taková funkční hodnota f(a), pro kterou platí: f(x) f(a). Z velikosti funkčních hodnot a z grafu funkce je vidět, že v bodě 0 je funkční hodnota nejmenší a f(0) = 1 je absolutním minimem této funkce. Funkční hodnoty v jiných bodech (např. 1; -1) jsou již vždy větší než absolutní minimum funkce. 10. Maximum funkce Největší hodnotou, neboli absolutním maximem, funkce f na množině A se nazývá taková funkční hodnota f(a), pro kterou platí: f(x) f(a). 10

11 Z velikosti funkčních hodnot a z grafu funkce je vidět, že v bodě 0 je funkční hodnota největší a f(0) = 1 je absolutním maximem této funkce. Funkční hodnoty v jiných bodech (např. 1, -0,5) jsou již vždy menší než absolutní maximum funkce Průsečíky s osami u funkcí Průsečíky se souřadnicovými osami určíme tak, že vždy řešíme příslušnou rovnici. Příklad 1: Je dána funkce y = 2x - 3 Určete průsečík X s osou x a průsečík Y s osou y. Řešení: 1. Průsečík s osou x. Jedná se vlastně o bod ležící na ose x, tedy o bod, který má souřadnici y rovnu 0. Proto 2x - 3 = 0 a po vyřešení rovnice dostáváme x = 1,5 Bod X[1,5; 0] 2. Průsečík s osou y. Jedná se vlastně o bod ležící na ose y, tedy o bod, který má souřadnici x rovnu 0. Proto y = = -3 Bod Y[0; -3] 4. Vlastnosti funkce - procvičovací příklady 11

12 1. Určete, zda je daná funkce rostoucí nebo klesající, určete definiční obor a obor hodnot funkce, načrtněte graf: 1472 Funkce je rostoucí; D(f) = H(f) = R \ {0} 2. Určete, zda je daná funkce rostoucí nebo klesající, načrtněte graf: f: y = -x 2 Funkce je rostoucí pro x (- ; 0> a klesající pro x <0; + ) Zjistěte, zda je funkce f: y = x 2 + x sudá nebo lichá. Funkce není ani sudá, ani lichá. 4. Zjistěte, zda je funkce f: y = -4x 2 sudá nebo lichá. Funkce je sudá

13 5. Určete, zda je daná funkce rostoucí nebo klesající, načrtněte graf: y = 2x + 1 Funkce je rostoucí Určete, zda je daná funkce rostoucí nebo klesající, určete definiční obor a obor hodnot funkce, načrtněte graf: 1473 Funkce je rostoucí; D(f) = H(f) = <0; + ) 13

14 7. Určete, zda je daná funkce rostoucí nebo klesající, načrtněte graf: y = 3 Funkce je zároveň nerostoucí i neklesající; je totiž konstantní Určete, zda je daná funkce rostoucí nebo klesající, určete její průsečíky s osami a načrtněte graf: f: y = x Funkce je rostoucí; průsečík s osou y je Y[0; 4], s osou x není žádný. 14

15 9. Určete, zda je daná funkce rostoucí nebo klesající, rozhodněte, zda je sudá nebo lichá, načrtněte graf: y = -2x Funkce je klesající, lichá Zjistěte, zda je funkce f sudá nebo lichá: 1478 Funkce je lichá. 11. Zjistěte, zda je funkce f: y = 2x - 3 sudá nebo lichá. Funkce není ani lichá, ani sudá Definiční obor funkce Určování definičního oboru funkce je trochu podobná činnost jako určování podmínek řešitelnosti u lomených výrazů. Musíme tedy vždy určit, pro jaká čísla funkce nenabývá žádné funkční hodnoty - jinými slovy, pro jaké hodnoty nezávisle proměnné neexistuje odpovídající závisle proměnná. Z uvedeného tedy vyplývá, že pokud má být definiční obor funkce jiný než celá množina reálných čísel, je to zpravidla tehdy, pokud se v rovnici, představující zápis funkce, vyskytuje proměnná ve jmenovateli, pod sudou odmocninou, za logaritmem, apod. Definiční obor funkce f zapisujeme: D(f) = R D(f) = (- ; 0> D(f) = {2; 6; 8} D(f) = R \ {0} Při zápisu tedy používáme označení číselných oborů, intervaly, případně množiny. 15

16 6. Definiční obor funkce - ukázkové příklady 1. Určete definiční obor D(f) funkce f: 1361!!!... V zápisu funkce se vyskytuje sudá odmocnina, proto musíme dohlédnout, aby výraz pod touto odmocninou nikdy nedosáhl záporné hodnoty. Proto musí platit, že 6x - (x ) 0 Znamená to tedy, že musíme vyřešit kvadratickou nerovnici. Nejprve si výraz na levé straně rozložíme na součin: 6x - (x ) = -x 2 + 6x - 11 = -(x 2-6x + 11) Trojčlen v závorce můžeme rozložit na součin tak, že si vyřešíme pomyslnou kvadratickou rovnici x 2-6x + 11 = 0 přes vzorec a diskriminant. D = b 2-4ac = (-6) = -8 Vzhledem k tomu, že diskriminant vyšel záporný, nemá kvadratická rovnice řešení, proto neexistuje ani rozklad trojčlenu na součin na levé straně nerovnice. Proto mohou nyní nastat dvě možnosti: 1. Buď je zadaná nerovnice splněna pro jakékoliv reálné číslo 2. Nebo není zadaná rovnice splněna pro žádné reálné číslo Která z obou možností nastane, zjistíme snadno tak, že si dosadíme libovolné číslo a posoudíme-je-li v tu chvíli splněna rovnost. Např. pro x = 0 dostaneme To ale není splněno nikdy, proto definičním oborem není žádné reálné číslo, tedy definičním oborem je prázdná množina. D(f) = { } 2. Určete definiční obor D(f) funkce f: 1360!!!... V zápisu se sice vyskytuje sudá odmocnina, proto se nabízí uvést jako definiční obor všechna nezáporná čísla. Vzhledem k tomu, že ale pod odmocninou je sudá mocnina, ta vlastně nikdy nedosáhne záporné hodnoty. Proto v tomto případě není omezení žádné a definičním oborem jsou všechna reálná čísla. D(f) = R 3. Určete definiční obor D(f) funkce f: 1362!!!... V zápisu rovnice se vyskytují sudé odmocniny. Musíme tedy dohlédnout, aby výrazy pod nimi byly nezáporné. Řešení tedy bude mít dvě části: 1. Čitatel - proto x 0 2. Jmenovatel - proto 6-5x > 0 (rovnost vypadává, protože ve jmenovateli by jinak vyšla nula), odtud x < 6/5 Z obou závěrů uděláme nyní průnik, protože musí být splněny současně: Závěrem tedy bude uzavřený interval <0; 6/5) D(f) = <0; 6/5) 16

17 4. Určete definiční obor funkce f: 1363!!!... V zápisu rovnice funkce se vyskytuje sudá odmocnina, proto musíme dohlédnout, aby výraz pod touto odmocninou byl nezáporný. Tedy musí platit: (2x - 1). (x + 3) 0 Aby byl součin nezáporný, musí být buď oba činitelé nezáporní nebo naopak oba činitelé nekladní. Řešíme tedy dvě situace: 1. (2x - 1) 0 (x + 3) 0 2. (2x - 1) 0 (x + 3) 0 x 0,5 x -3 x 0,5 x -3 x <0,5; + ) x (- ; -3> Vzhledem k tomu, že stačí, aby nastala alespoň jedna ze situací, je celkovým řešením sjednocení obou intervalů, tedy x (- ; -3> <0,5; + ) x (- ; -3> <0,5; + ) 7. Definiční obor funkce - procvičovací příklady 1. Určete definiční obor funkce: 1357 D(f) =(- ; 1> <3; + ) 2. Určete definiční obor funkce: 1358 D(f) = R 3. Určete definiční obor D(f) funkce f: 1351 x { 3} 4. Určete definiční obor D(f) funkce f: 1353 x (- ; -3> <2; 5) (5; + ) 5. Určete definiční obor funkce: 1359 D(f) = R 6. Určete definiční obor D(f) funkce f: 1350 x (- ; -3) (0,5; + ) 7. Určete definiční obor funkce: 1354 D(f) = (- ; 2,5> 17

18 8. Určete definiční obor D(f) funkce f: 1352 x ( -2; 0) (0; 1) 9. Určete definiční obor funkce: Určete definiční obor funkce: 1356 D(f) = (- ; 1) (1; 2) (2; + ) 8. Lineární funkce Lineární funkce je funkce, která je dána rovnicí y = ax + b, kde a, b jsou reálná čísla. Grafem lineární funkce je přímka (nebo její část). Definičním oborem každé lineární funkce (pokud není omezen intervalem) jsou všechna reálná čísla. Oborem hodnot každé lineární funkce jsou všechna reálná čísla (pokud se nejedná o funkci konstantní nebo o funkci, jejíž definiční obor je omezený intervalem). Průsečíky grafu lineární funkce s osami: 1. s osou x: - v tomto případě je druhá souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za y = 0 a vypočteme první souřadnici průsečíku s osou x. Příklad 1: Určete průsečík funkce y = 2x - 1 s osou x. Řešení: Hledaný bod X[x; y] 18

19 Dosadíme za y = 0, proto 0 = 2x - 1 Vyřešíme vzniklou rovnici a dostáváme x = 0,5 Závěr: Hledaný průsečík je X[0.5; 0]. 2. s osou y: - v tomto případě je první souřadnice bodů rovna nule, proto do rovnice funkce dosadíme za x = 0 a vypočteme druhou souřadnici průsečíků s osou y. Příklad 2: Určete průsečík funkce y = 2x - 1 s osou y. Řešení: Hledaný bod Y[x; y] Dosadíme za x = 0, proto y = Vyřešíme vzniklou rovnici a dostáváme y = -1 Závěr: Hledaný průsečík je Y[0; -1]. Zvláštní případy lineární funkce: 1. Je-li v rovnici lineární funkce číslo a = 0, pak y = 0. x + b, neboli y = b - jedná se o tzv. konstantní funkci - grafem je přímka, která je rovnoběžná s osou x 2. Je-li v rovnici lineární funkce číslo b = 0, pak y = ax + 0, neboli y = ax - jedná se o přímou úměrnost - grafem je přímka (nebo její část), která vždy prochází počátkem souřadného systému 19

20 Vlastnosti lineární funkce: 1. Lineární funkce je rostoucí, je-li a > Lineární funkce je klesající, je-li a < 0. Číslo a se také někdy nazývá směrnice přímky. Pozn.: Je-li a = 0, je funkce konstantní, tedy nerostoucí i neklesající. Určení rovnice lineární funkce ze zadaných bodů Vzhledem k tomu, že víme, že grafem lineární funkce je přímka, a přímka je vždy jednoznačně určena dvěma body, stačí nám pro zadání lineární funkce její dva body. Jedním z těchto bodů, případně i oběma body, může být klidně některý z průsečíků s osami, případně i počátek souřadného systému. Příklad 3: Určete rovnici lineární funkce, jejíž graf prochází body A[2; 3], B[-1; 2] Řešení: Obecná rovnice je y = ax + b. Dosadíme do ní postupně souřadnice obou bodů: 3 = 2a + b 2 = -a + b Dostali jsme soustavu rovnic, kterou vyřešíme sčítací nebo dosazovací metodou. Já použiji např. sčítací: První rovnici opíšu, druhou vynásobím dvěma: 3 = 2a + b 4 = -2a + 2b Obě rovnice sečtu: 7 = 3b b = 7/3 Vrátím se k původním rovnicím a tentokráte opět první rovnici opíšu a druhou vynásobím (-1): 3 = 2a + b -2 = a - b 20

21 Opět obě rovnice sečtu: 1 = 3a a = 1/3 Dosadíme zpět do původní obecné rovnice lineární funkce a dostaneme: Tím jsme stanovili rovnici lineární funkce, která oběma body prochází. Grafické řešení soustavy lineárních rovnic Obě rovnice převedeme do tvaru y = ax + b a sestrojíme grafy obou nově vzniklých funkcí. Souřadnice průsečíku těchto funkcí představují řešení původní soustavy lineárních rovnic. 9. Lineární funkce - procvičovací příklady 1. Na obrázku je narýsován graf funkce. Určete souřadnice bodů K, L K[2; 5], L[-3; -7.5] 2. Určete, zda je daná funkce rostoucí nebo klesající, načrtněte graf. y = 3 Funkce je zároveň nerostoucí i neklesající, D(f) = R, H(f) = {3} Určete všechny lineární funkce, do nichž patří tyto uspořádané dvojice: [0; -2], [3; 5] f: y = 7x/3-2; D(f) = H(f) = R

22 4. Načrtněte graf funkce f: Načrtněte graf funkce g: y = 0,2x + 3; x < -5; 3) Řešte graficky soustavu rovnic: x + y = y = -3x Přímky jsou rovnoběžné různé, proto soustava rovnic nemá řešení 7. Určete, zda je daná funkce rostoucí nebo klesající, načrtněte graf. y = -2x Funkce je klesající, lichá, D(f) = H(f) = R Načrtněte graf funkce g 1 : y =

23 9. Načrtněte graf funkce g 3 : y = 2x - 1, Na obrázku je narýsován graf funkce. Napište rovnici funkce Řešte graficky soustavu rovnic: 3x + y = 9 6x + 2y = 18 Přímky jsou rovnoběžné splývající, proto soustava má nekonečně mnoho řešení typu [k; -3k + 9], k R libovolné 12. Načrtněte graf funkce g 2 : y = Řešte graficky soustavu rovnic: 3x - 2y = 4 x + 3y = 5 x = 2 y =

24 14. Určete všechny lineární funkce, do nichž patří tyto uspořádané dvojice: [1; 1], [3,5; -7] f: y = -16x/5 + 21/5; D(f) = H(f) = R 15. Určete, zda je daná funkce rostoucí nebo klesající, načrtněte graf. y = 2x + 1 Funkce je rostoucí, neboť směrnice je kladná Na obrázku je narýsován graf funkce. Napište název funkce Jedná se o lineární funkci. 24

25 Obsah 1. Funkce 2. Funkce - procvičovací příklady 3. Vlastnosti funkce 4. Vlastnosti funkce - procvičovací příklady 5. Definiční obor funkce 6. Definiční obor funkce - ukázkové příklady 7. Definiční obor funkce - procvičovací příklady 8. Lineární funkce 9. Lineární funkce - procvičovací příklady

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

Funkce pro učební obory

Funkce pro učební obory Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,

Více

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická

Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK

M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí.

Přehled funkcí. Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo. přehled fcí. Přehled funkcí Martina Hetmerová Gymnázium Přípotoční 1337 Praha 10 Vlastnosti funkcí Funkce na množině D R je předpis, který každému číslu z množiny D přiřazuje právě jedno reálné číslo Zapisujeme: f:y=f(x)

Více

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí:

Matematická funkce. Kartézský součin. Zobrazení. Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: Matematická funkce Kartézský součin Uspořádanou dvojici prvků x, y označujeme [x, y] Uspořádané dvojice jsou si rovny, pokud platí: [x, y] = [u, v] x = u y = v Pokud K, L jsou libovolné množiny, pak množinu

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Vlastnosti funkcí Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Definiční obor Definiční obor funkce je množina všech čísel,

Více

M - Příprava na 1. zápočtový test - třída 3SA

M - Příprava na 1. zápočtový test - třída 3SA M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento

Více

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ 5 přednáška S funkcemi se setkáváme na každém kroku ve všech přírodních vědách ale i v každodenním životě Každá situace kdy jsou nějaký jev nebo veličina jednoznačně určeny

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Lineární rovnice pro učební obory

Lineární rovnice pro učební obory Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Logaritmy a věty o logaritmech

Logaritmy a věty o logaritmech Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Logaritmy Definice

Více

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0

. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0 Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová, E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

Mocninná funkce: Příklad 1

Mocninná funkce: Příklad 1 Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.

Více

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení.

Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. @083 6 Polynomické funkce Poznámka: V kurzu rovnice ostatní podrobně probíráme polynomické rovnice a jejich řešení. Definice: Polynomická funkce n-tého stupně (n N) je dána předpisem n n 1 2 f : y a x

Více

Funkce. Vlastnosti funkcí

Funkce. Vlastnosti funkcí FUNKCE Funkce zobrazení (na číselných množinách) předpis, který každému prvku z množiny M přiřazuje právě jeden prvek z množiny N zapisujeme ve tvaru y = f () značíme D( f ) Vlastnosti funkcí 1. Definiční

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE

KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE KVADRATICKÁ FUNKCE URČENÍ KVADRATICKÉ FUNKCE Z PŘEDPISU FUNKCE Slovo kvadrát vzniklo z latinského slova quadratus které znamená: čtyřhranný, čtvercový. Obsah čtverce se vypočítá, jako druhá mocnina délky

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z ÚVODU DO MATEMATICKÉ ANLÝZY FUNKCE 999/000 CIFRIK Funkce F a) Zadání: Vyšetřete bez užití limit a derivací funkci : y = { x } f Definice:

Více

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R +

y = 1/(x 3) - 1 x D(f) = R D(f) = R\{3} D(f) = R H(f) = ( ; 2 H(f) = R\{ 1} H(f) = R + Funkce. Vlastnosti funkcí Funkce f proměnné R je zobrazení na množině reálných čísel (reálnému číslu je přiřazeno právě jedno reálné číslo). Z grafu poznáme, zda se jedná o funkci tak, že nenajdeme žádnou

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj.

a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. @121 12. Mocninné funkce a r Co je to r-tá mocnina čísla a, za jakých podmínek má smysl, jsme důkladně probrali v kurzu ČÍSELNÉ MNOŽINY. Tam jsme si mj. řekli: 1. Je-li exponent r přirozené číslo, může

Více

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic

Lineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

CZ.1.07/1.5.00/

CZ.1.07/1.5.00/ Projekt: Příjemce: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova 3, 371 60 České Budějovice

Více

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část Matematika I 1/15 2/15 Organizace Zápočet: test 6. + 11. týden semestru (pátek) 80 bodů 50 79 bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část www.vscht.cz/mat Výuka www.vscht.cz/mat/jana.nemcova

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

ROVNICE, NEROVNICE A JEJICH SOUSTAVY

ROVNICE, NEROVNICE A JEJICH SOUSTAVY Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ ÚLOH ROVNICE, NEROVNICE A JEJICH SOUSTAVY CIFRIK C. Úloha 1 [kvadratická rovnice s kořeny y_1=x_1^2+x_2^2, y_2=x_1^3+x_2^3]

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

Algebraické výrazy - řešené úlohy

Algebraické výrazy - řešené úlohy Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,

Více

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 15. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 15 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána čtvercová mřížka, v níž každý čtverec má délku

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, }

Číselné množiny. Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } ÚVOD DO MATEMATIKY Číselné množin Přirozená čísla (N) Množina všech přirozených čísel N={1,2,3 } Celá čísla (Z) Množina všech celých čísel Z={,-3,-2,-1,0,1,2,3, } Racionální čísla (Q) Čísla která lze vjádřit

Více

Nejprve si uděláme malé opakování z kurzu Množiny obecně.

Nejprve si uděláme malé opakování z kurzu Množiny obecně. @021 3. Řešení grafické přímka v kartézské soustavě souřadnic Nejprve si uděláme malé opakování z kurzu Množiny obecně. Rovnice ax + by + c = 0, kde aspoň jedno z čísel a,b je různé od nuly je v kartézské

Více

Nerovnice v součinovém tvaru, kvadratické nerovnice

Nerovnice v součinovém tvaru, kvadratické nerovnice Nerovnice v součinovém tvaru, kvadratické nerovnice Příklad: Pro která x R je součin x x 5 kladný? Řešení: Víme, že součin je kladný, mají-li oba činitelé stejné znaménko. Tedy aby platilo x x 5 0, musí

Více

Význam a výpočet derivace funkce a její užití

Význam a výpočet derivace funkce a její užití OPAKOVÁNÍ ZÁKLADŮ MATEMATIKY Metodický list č. 1 Význam a výpočet derivace funkce a její užití 1. dílčí téma: Výpočet derivace přímo z definice a pomocí základních vzorců. K tomuto tématu je třeba zopakovat

Více

Obsah. Metodický list Metodický list Metodický list Metodický list

Obsah. Metodický list Metodický list Metodický list Metodický list METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

M - Příprava na pololetku č. 2-2SAB

M - Příprava na pololetku č. 2-2SAB M - Příprava na pololetku č. 2-2SAB Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument byl

Více

Zlín, 23. října 2011

Zlín, 23. října 2011 (. -. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 3. října 0 Postup při vyšetřování průběhu funkce. Definiční obor funkce,

Více

2 Reálné funkce jedné reálné proměnné

2 Reálné funkce jedné reálné proměnné 2 Reálné funkce jedné reálné proměnné S funkcemi se setkáváme na každém kroku, ve všech přírodních vědách, ale i v každodenním životě. Každá situace, kd jsou nějaký jev nebo veličina jednoznačně určen

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ Parametrické vyjádření přímky v rovině Máme přímku p v rovině určenou body A, B. Sestrojíme vektor u = B A. Pro bod B tím pádem platí: B = A + u. Je zřejmé,

Více

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28.

fakulty MENDELU v Brně (LDF) s ohledem na disciplíny společného základu http://akademie.ldf.mendelu.cz/cz (reg. č. CZ.1.07/2.2.00/28. Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h) Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme

Více

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE

3. LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE . LINEÁRNÍ FUNKCE, LINEÁRNÍ ROVNICE A LINEÁRNÍ NEROVNICE Dovednosti:. Lineární funkce. -Vědět, že je vyjádřena předpisem f: y = a + b, a znát geometrický význam konstant a,b. -Umět přiřadit proměnné její

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

Úvod do řešení lineárních rovnic a jejich soustav

Úvod do řešení lineárních rovnic a jejich soustav Úvod do řešení lineárních rovnic a jejich soustav Rovnice je zápis rovnosti dvou výrazů, ve kterém máme najít neznámé číslo (neznámou). Po jeho dosazení do rovnice musí platit rovnost. Existuje-li takové

Více

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje.

Očekávaný výstup Pracovní list se skládá ze dvou částí teoretické, kde si žák připomene vlastnosti funkcí a praktické, kde tyto funkce určuje. Číslo projektu Škola Autor Číslo materiálu Název Téma hodiny Předmět Ročník/y/ Anotace CZ.1.07/1.5.00/34.0394 Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Mgr. Renata

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Funkce. Úkol: Uveďte příklady závislosti dvou veličin.

Funkce. Úkol: Uveďte příklady závislosti dvou veličin. Funkce Pojem funkce Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze. Funkce vyjadřuje závislost

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto

Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.0/1.5.00/34.080 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25

LDF MENDELU. Simona Fišnarová (MENDELU) Základy lineárního programování VMAT, IMT 1 / 25 Základy lineárního programování Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25

6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25 6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Základní poznatky o funkcích

Základní poznatky o funkcích Základní poznatk o funkcích Tajemství černé skříňk (Definice funkce, základní pojm) 0 c, d, g, h 0 a) ANO b) NE 0 D( f )={ 6} H( f )={ 7} 0 a) D( f )={ 0 } b) H( f )={ 8 9 0 } c) f ( 0)= f ( )=9 f ( )=

Více

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Základy matematiky kombinované studium 714 0365/06

Základy matematiky kombinované studium 714 0365/06 Základy matematiky kombinované studium 714 0365/06 1. Některé základní pojmy: číselné množiny, intervaly, operace s intervaly (sjednocení, průnik), kvantifikátory, absolutní hodnota čísla, vzorce: 2. Algebraické

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

16. DEFINIČNÍ OBORY FUNKCÍ

16. DEFINIČNÍ OBORY FUNKCÍ 6 DEFINIČNÍ OBORY FUNKCÍ 6 Urči definiční obor funkce 7 46 0 7 46 = 0 46 ± 5, = = 7; = 4 7 D ( f ) = ( ; 7 ; ) 7 f : y = 7 46 Funkce odmocnina je definována pro kladná reálná čísla a pro nulu Problematické

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více