4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal

Rozměr: px
Začít zobrazení ze stránky:

Download "4. konference o matematice a fyzice na VŠT Brno, Fraktály ve fyzice. Oldřich Zmeškal"

Transkript

1 4. konfeence o matematice a fyzice na VŠT Bno, Faktály ve fyzice Oldřich Zmeškal Ústav fyzikální a spotřební chemie, Fakulta chemická, Vysoké učení technické, Pukyňova 118, 612 Bno, Česká epublika mail: zmeskal@fch.vutb.cz Abstakt. Příspěvek se zabývá aplikací faktální geometie při fomulování zákonů popisujících vlastnosti fyzikálních polí. K popisu vlastností takovýchto objektů se používají dva základní paamety: faktální dimenze, kteá chaakteizuje tend opakování motivu objektu v -ozměném postou při změně měřítka a faktální mía K, kteá chaakteizuje počet elementáních objektů, ze kteých je faktální stuktua složena. Výsledky zobecňují známé poznatky popisující inteakce mezi bodovými objekty, tj. objekty s faktální dimenzí = (např. hmotnými body, bodovými elektickými náboji), esp. hmotnými nebo nabitými tělesy ( = = 3) na objekty mající faktální stuktuu,. Odvozené vztahy lze použít také k popisu vlastností jiných duhů polí (akustických, teplotních, atd.) Lze je také aplikovat obecně na -ozměný posto, tj. např. k popisu vlastností časopostou (speciální a obecná teoie elativity). Klíčová slova. faktální stuktuy, faktální dimenze, faktální mía, fyzikální pole, faktální geometie, elektostatické pole, gavitační pole 1. Úvod Většina příodních objektů má faktální chaakte [1, 2]. Jejich vlastnosti mohou být popsány dvěma základními paamety faktální míou K a faktální dimenzí. Faktální mía přitom definuje zaplněnost postou elementání buňkou mající učité vlastnosti (hmotnost, elektický náboj, obecně enegii), faktální dimenze pak tend změny zaplněnosti postou při změně měřítka (jeho velikost může být menší nebo větší než je velikost měřící buňky). Faktální dimenze se může měnit mezi dvěmi limitními hodnotami: - po = bude změna faktální stuktuy při změně měřítka maximální (v eálném světě tomu odpovídají idealizované objekty, např. hmotný bod, bodový elektický náboj), 1

2 4. konfeence o matematice a fyzice na VŠT Bno, po =, kde = 3 je euklidovská dimenze postou, nebude změna vlastností stuktuy na velikosti měřítka záviset (v eálném světě to může být např. tuhé těleso, ideální plyn, homogenně ozložený elektický náboj atd.). 2. Zaplněnost postou faktální stuktuou Faktální míu K lze definovat ovnicí [3, 4] ( ε ) = m K = N ε (1/ ), (1) kde ε je velikost měřítka, N(ε) je počet objektů o velikosti ε, kteé pokývají danou stuktuu, esp. m je počet opakování zmenšeného objektu v síti o velikosti a 1/ je změna měřítka. Faktální dimenzi stuktuy lze potom učit deivací (1) podle velikosti (esp. změny) měřítka d ln N = d lnε ( ε ) ln( m) ln(). (2) Faktální dimenze 2 (plošných) objektů může být učena numeicky např. pomocí předcházejících ovnic užitím počítačů např. metodou počítání čtveců ( box counting method ) nebo mass method. Obě metody jsou navzájem komplementání ( ε =1, N ( ε ) = m ) a dávají stejné výsledky faktální dimenze. Pokytí plochy faktálním objektem může být tedy popsáno ovnicí ( ) m 2 N S () = = = K. (3) 2 2 Rovnice (3) může být zobecněna po -dimenzionální posto na tva F () ( ) m N = = = K, (4) kde je topologická dimenze postou. Hodnotu F() si nazveme zaplněnost (pokytí) postou. Poslední ovnice vyjadřuje závislost zaplněnosti postou na jeho velikosti (učeném např. délkou hany v -ozměném postou), ale také na paametech K a. Faktální dimenze se tedy může měnit v intevalu,. Limitní případy jsou - zaplněnost postou fyzikální veličinou se po = (t.j. když množství veličiny je nezávislé na velikosti postou, N ( ) = K ) snižuje s jeho velikostí podle vztahu F() = K (po > 1). - zaplněnost postou je nezávislá na velikosti postou po = (t.j. posto je homogenně zaplněn) a je ovno faktální míře F() = K. Počet objektů v ohaničené oblasti (po > 1) se zvyšuje s jeho velikostí podle N = K. () ob. 1 Pokytí (zaplněnost) dvoudimenzionálního postou 2

3 4. konfeence o matematice a fyzice na VŠT Bno, Situace po 2 posto je znázoněna na ob. 1; ozdílné konstanty K a K * jsou způsobeny adiálním ohaničením postou (čtvecová oblast byla nahazena kuhovou) 3. Intenzita a potenciál fyzikálního pole Hustotu faktální fyzikální veličiny ρ ( ) (např. hustotu elektického náboje nebo hustotu hmotnosti) v - ozměném euklidovském postou můžeme definovat vztahem ρ( ) = ef( ) = ek, (5) kde je polomě elementání buňky, e je kvantum fyzikální veličiny, K faktální mía a faktální dimenze. Z tohoto vztahu můžeme také učit množství fyzikální veličiny Q() (např. hmotnosti nebo elektického náboje) v postou o objemu V * * Q() = en( ) = ρ dv = ek = ρ(), (6) V* kde dv * = d( ) je elementání objem -ozměného postou. Intenzitu fyzikálního pole můžeme učit užitím Gauss-Ostogadského věty po adiální pole pomocí vztahu ( ) div = k ρ, (7) d = k ρ + 1 d (), (8) kde konstanta k je úměná příslušné fyzikální konstantě (např. pemitivitě nebo gavitační konstantě). Intenzita elektického pole a potenciál V souvisí navzájem vztahem = gadv, (9) takže obě veličiny souvisí s hustotou faktální veličiny ρ ( ) pomocí vztahu ( ) V = div = k ρ, (1) kde je Laplaceův opeáto. Tato ovnice může být po adiální ozdělení faktální veličiny ρ () přepsána do tvau 2 d V = k ρ d (). (11) Z těchto vztahů lze vypočítat závislost intenzity a potenciálu adiálního fyzikálního pole 3

4 4. konfeence o matematice a fyzice na VŠT Bno, = k( ek), V = k( ek). (12) ( + 2) na velikosti elementání buňky. Závislost adiálních složek hustoty fyzikální veličiny, intenzity a potenciálu fyzikálního pole po ůzné hodnoty faktální dimenze jsou znázoněny na ob. 2 a ob. 3. Z hustoty fyzikální veličiny ρ ( ) dané vztahem (5) lze učit adiální složku intenzity a také odpovídající potenciál V fyzikálního (např. elektického nebo gavitačního) pole. V následující části je tento, čistě matematický apaát použit po popis vlastností elektostatického a gavitačního pole. a) b) c) ob. 2 Závislost fyzikální veličiny na vzdálenosti a na faktální dimenzi a) adiální hustota fyzikální veličiny ρ(, ), b) adiální intenzita pole fyzikální veličiny (, ) a c) adiální potenciál fyzikálního pole V (, ) po topologickou dimenzi = 3 a) b) c) ob. 3 Závislost fyzikální veličiny na topologické dimenzi a faktální dimenzi a) adiální hustoty fyzikální veličiny ρ(, ), b) adiální intenzity fyzikálního pole (, ) a c) adiálního potenciálu V (, ) po ozmě = 2 4. lektostatické a gavitační pole Hustota faktální fyzikální veličiny ρ ( ) ve tojdimenzionálním postou ( = 3) lze přepsat podle (5) do tvau 3 ( ) = ρ ρ, (13) kde ρ = ek a e je kvantum fyzikální veličiny. Pomocí ovnice (7) lze učit také množství fyzikální veličiny Q() (např. hmotnosti nebo elektického náboje) ve 3 postou 4

5 4. konfeence o matematice a fyzice na VŠT Bno, = ρ, (14) () = Q Q kde Q = 3ρ / je hmotnost (elektický náboj) v postou o velikosti = 1. Intenzita a potenciál fyzikálního pole pak může být zapsána jako (12) 2 1 = kρ, V = kρ. (15) ( 1) Konstanta k v těchto vztazích má ůzný význam po jednotlivé typy polí a po ůzné faktální dimenze (viz Tabulka I). Tabulka I Typické faktální dimenze v -ozměném postou nezávislá veličina typ pole objem kρ (elstat) kρ (gav) Q, M = konst. bodový objekt/sféické V* = 4π 3 /3 Q /4πε GM 2 V = konst. ekvipotenciální/cylindické V* = 2π 3 τ /2πε 2Gτ 1 = konst. homogenní/ovinné V* = 8 3 σ /ε 4πGσ ρ = konst. homogenní hustota ρ /ε 4πGρ Veličiny popsané v předcházející části byly užity po popis vlastností elektostatického pole s definovaným ozdělením elektického náboje. V následující části budou diskutovány speciální případy, např. intenzita a potenciál pole v okolí homogenně nabité ovinné desky ( = 1 = 2), esp. homogenně nabité tyče ( = 2 = 1). Jsou zde uvedeny také vztahy popisující vlastnosti elektostatického pole v okolí bodového náboje ( = ), esp. v homogenně nabitém tělese ( = = 3) (viz ob. 4) ob. 4 Speciální geometie po a) ovinné, b) cylindické,c) sféické pole ve 3 postou Po faktální dimenzi = a euklidovskou dimenzi = 3, tj. po adiální intenzitu a potenciál V elektického pole ve vzdálenosti od bodového elektického náboje Q lze ovnici (16) přepsat do tvau 1 Q 1 Q =, V 2 =, (16) 4πε ε 4πε ε 5

6 4. konfeence o matematice a fyzice na VŠT Bno, kde ε ε je pemitivita postředí, k = 3 (4πε ε ) a 4π 3 je koeficient po tansfomaci z kychle na kouli Po = představuje ovnice (16) ve 3 postou ( = 3) např. intenzitu a potenciál elektického pole uvnitř homogenně nabitého tělesa s konstantní hustotou elektického náboje ρ ρ ρ 2 =, V =, (17) 3ε ε 6ε ε kde k = 1 ε ε. Po = 1 = 2 definuje ovnice (16) ve 3 postou ( = 3) např. intenzitu a potenciál elektostatického pole v okolí homogenně nabité desky s konstantní plošnou hustotou náboje σ σ = = const., V 2ε ε σ =, (18) 2ε ε kde k = 1 ε ε. Po = 2 = 1 epesentuje (16) ve 3 postou ( = 3) elektické pole a potenciál v okolí homogenně nabité tyče s konstantní lineání hustotou náboje τ τ τ ln ( ) =, V =, (19) 2πε ε 2πε ε kde k = 1 2πε ε, π je koeficient po tansfomaci z kychle na válec a je vzdálenost tyče od místa s nulovým potenciálem (např. ). Závislosti adiální složky intenzity elektostatického pole po ůzné hodnoty faktální dimenze je znázoněna na ob. 5. Stmost závislostí souhlasí s poznatky známými po speciální případy. Po homogenní těleso, esp. homogenně nabité těleso je stmost závislosti lineáně ostoucí m ~ ( = 3, = 3); po homogenní gavitační, esp. elektostatické pole je m ~ konst. ( = 3, = 2) a po homogenní, esp. homogenně nabitou tyč je m ~ 1/ ( = 3, = 1). Po bodový elektický náboj (Coulombův zákon) nebo hmotný bod (Newtonův zákon) bude se závislost limitně blížit hodnotě m ~ 1/ 2 ( = 3, ). Závislost po =,1, což je hodnota blízká ideálnímu případu je znázoněna na obázku. 6

7 4. konfeence o matematice a fyzice na VŠT Bno, (a.u.) 3, 2,5 2, 1,5 1,,5, ~ 1/ 1.9 ~ 1. ~. ~ 1/ 1. =.1 = 1. = 2. = 3. 1, 1,5 2, 2,5 3, 3,5 4, (a.u.) ob. 5 Závislosti adiální složky intenzity fyzikálního pole () po topologickou dimenzi = 3 a ůzné faktální dimenze V (a.u.) ~ 1/.1 ~ 1/.9 ~ 2. ~ 1. = 3, = 2, =,9 =,1 1, 1,5 2, 2,5 3, 3,5 4, (a.u.) ob. 6 Závislosti adiální složky potenciálu fyzikálního pole V () po topologickou dimenzi = 3 a ůzné faktální dimenze Závislost adiální složky potenciálu po ůzné hodnoty faktální dimenze jsou zobazeny na ob. 6. Po homogenní těleso, esp. homogenně nabité těleso bude stmost potenciálu na vzdálenosti ůst paabolicky m ~ 2 ( = 3, = 3), po homogenní pole v okolí ovinných těles, esp. plošně nabitých desek bude závislost lineání m ~ ( = 3, = 2). Po lineání tyč, esp. lineáně nabitou tyč bude situace složitější. Stmost se bude (po = 3, 1) limitně blížit konstantě m ~ konst., ale po = 1 nebude závislost definována. Na obázku je uvedena závislost po =.9, 7

8 4. konfeence o matematice a fyzice na VŠT Bno, což je hodnota blízká diskontinuitě. Po bodový náboj (Coulombův zákon) nebo hmotný bod (Newtonův gavitační zákon) bude stmost potenciálu m ~ 1/ ( = 3, ). Na obázku je uvedena závislost po =,1, což je hodnota blízká ideálnímu případu. 5. Závě Příspěvek se zabývá komplexním popisem konzevativních polí v okolí faktálních objektů v euklidovském postou. Jsou definovány fyzikální veličiny použité k popisu ůzných vlastností fyzikálních polí (elektického a gavitačního). Použitý matematický apaát byl aplikován také na popis elektických vlastností polovodičů, tepelných vlastností ideálního plynu [5] ale také k popisu vlastností elementáních částic [6, 7, 8]. 6. Liteatua 1. B. B. Mandelbot, Factal geomety of natue. New Yok: W.H. Feeman and Co. (1983) 2. M. F. Bansley, Factals veywhee. Boston: Academic Pess (1988) 3. O. Zmeskal, M. Nezadal, M. Buchnicek, Chaos, Solitons & Factals 17, 113 (23) 4. O. Zmeskal, M. Nezadal, M. Buchnicek, Chaos, Solitons & Factals; 19, 113 (24) 5. O. Zmeskal, M. Buchnicek, M. Vala, Chaos, Solitons & Factals 25, 941 (25) 6. M. S. l Naschie, Chaos, Solitons & Factals, 19, 29 (24) 7. M. S. l Naschie, Chaos, Solitons & Factals, 2, 437 ( 24) 8. O. Zmeskal, M. Buchnicek, P. Bedna, Chaos, Solitons & Factals 19, 113 (24) 8

Příklady elektrostatických jevů - náboj

Příklady elektrostatických jevů - náboj lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE

ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE ELEKTRICKÝ NÁBOJ COULOMBŮV ZÁKON INTENZITA ELEKTRICKÉHO POLE 1 ELEKTRICKÝ NÁBOJ Elektický náboj základní vlastnost někteých elementáních částic (pvní elektické jevy pozoovány již ve staověku janta (řecky

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE

F5 JEDNODUCHÁ KONZERVATIVNÍ POLE F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Evopský sociální fond Paha & EU: Investujeme do vaší budoucnosti F5 JEDNODUCHÁ KONZERVATIVNÍ POLE Asi nejznámějším konzevativním polem je gavitační silové pole Ke gavitační

Více

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r

Gravitační pole. a nepřímo úměrná čtverci vzdáleností r. r r Newtonův avitační zákon: Gavitační pole ezi dvěa tělesy o hotnostech 1 a, kteé jsou od sebe vzdáleny o, působí stejně velké síly vzájené přitažlivosti, jejichž velikost je přío úěná součinu hotností 1

Více

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.

Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el. Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.

Více

I. Statické elektrické pole ve vakuu

I. Statické elektrické pole ve vakuu I. Statické elektické pole ve vakuu Osnova:. Náboj a jeho vlastnosti 2. Coulombův zákon 3. Intenzita elektostatického pole 4. Gaussova věta elektostatiky 5. Potenciál elektického pole 6. Pole vodiče ve

Více

ε ε [ 8, N, 3, N ]

ε ε [ 8, N, 3, N ] 1. Vzdálenost mezi elektonem a potonem v atomu vodíku je přibližně 0,53.10-10 m. Jaká je velikost sil mezi uvedenými částicemi a) elektostatické b) gavitační Je-li gavitační konstanta G = 6,7.10-11 N.m

Více

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19

Elektrický náboj [q] - základní vlastnost částic z hlediska EM pole - kladný (nositel proton), záporný (nositel elektron) 19 34 Elektomagnetické pole statické, stacionání, nestacionání zásady řešení v jednoduchých geometických stuktuách, klasifikace postředí (lineaita, homogenita, dispeze, anizotopie). Vypacoval: Onda, otja@seznam.cz

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

Elektrické a magnetické pole zdroje polí

Elektrické a magnetické pole zdroje polí Elektické a magnetické pole zdoje polí Co je podstatou elektomagnetických jevů Co jsou elektické náboje a jaké mají vlastnosti Co je elementání náboj a bodový elektický náboj Jak veliká je elektická síla

Více

v 1 = at 1, (1) t 1 = v 1

v 1 = at 1, (1) t 1 = v 1 Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného

Více

do strukturní rentgenografie e I

do strukturní rentgenografie e I Úvod do stuktuní entgenogafie e I Difakce tg záření na kystalu Metody chaakteizace nanomateiálů I RND. Věa Vodičková, PhD. Studium kystalové stavby Difakce elektonů, neutonů, tg fotonů Kystal ideální mřížka

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

3.7. Magnetické pole elektrického proudu

3.7. Magnetické pole elektrického proudu 3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam

Více

Platí Coulombův zákon? Pole nabité koule.

Platí Coulombův zákon? Pole nabité koule. Platí Coulombův zákon? Pole nabité koule. Návody na pokusy Tato sada pokusů je ozdělena do tří samostatných expeimentálních částí: 1. Poměřování Coulombova zákona 2. Intenzita elektického pole v okolí

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS ELEKTŘIN MGNETIZMUS III Elektický potenciál Obsah 3 ELEKTRICKÝ POTENCIÁL 31 POTENCIÁL POTENCIÁLNÍ ENERGIE 3 ELEKTRICKÝ POTENCIÁL V HOMOGENNÍM POLI 4 33 ELEKTRICKÝ POTENCIÁL ZPŮSOENÝ ODOVÝMI NÁOJI 5 331

Více

Trivium z optiky Vlnění

Trivium z optiky Vlnění Tivium z optiky 7 1 Vlnění V této kapitole shnujeme základní pojmy a poznatky o vlnění na přímce a v postou Odvolávat se na ně budeme často v kapitolách následujících věnujte poto vyložené látce náležitou

Více

3.1. Magnetické pole ve vakuu a v látkovém prostředí Elektromagnetická indukce Energie a silové účinky magnetického pole...

3.1. Magnetické pole ve vakuu a v látkovém prostředí Elektromagnetická indukce Energie a silové účinky magnetického pole... Obsah Předmluva... 4. Elektostatika.. Elektostatické pole ve vakuu... 5.. Elektostatické pole v dielektiku... 9.3. Kapacita. Kondenzáto....4. Enegie elektostatického pole... 6. Elektický poud.. Elektický

Více

2.1 Shrnutí základních poznatků

2.1 Shrnutí základních poznatků .1 Shnutí základních poznatků S plnostěnnými otujícími kotouči se setkáváme hlavně u paních a spalovacích tubín a tubokompesoů. Matematický model otujících kotoučů můžeme s úspěchem využít např. i při

Více

Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole

Elektromagnetické jevy, elektrické jevy 4. Elektrický náboj, elektrické pole Elektomagnetické jevy, elektické jevy 4. Elektický náboj, elektické pole 4. Základní poznatky (duhy el. náboje, vodiče, izolanty) Někteé látky se třením dostávají do zvláštního stavu přitahují lehká tělíska.

Více

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ

ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ ELEKTROMAGNETICKÉ VLNY VE VOLNÉM PROSTŘEDÍ V celé této kapitole budeme předpokládat, že se pohybujeme v neomezeném lineáním homogenním izotopním postředí s pemitivitou = 0, pemeabilitou = 0 a měnou vodivostí.

Více

5. Světlo jako elektromagnetické vlnění

5. Světlo jako elektromagnetické vlnění Tivium z optiky 9 5 Světlo jako elektomagnetické vlnění Ve třetí kapitole jsme se dozvěděli že na světlo můžeme nahlížet jako na elektomagnetické vlnění Dříve než tak učiníme si ale musíme alespoň v základech

Více

Cavendishův pokus: Určení gravitační konstanty,,vážení Země

Cavendishův pokus: Určení gravitační konstanty,,vážení Země Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem

Více

Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry

Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole Siločáry Elektrostatické pole Coulombův zákon - síla působící mezi dvěma elektrickými bodovými náboji Definice intenzity elektrického pole iločáry elektrického pole Intenzita elektrického pole buzená bodovým elektrickým

Více

Konstrukční a technologické koncentrátory napětí

Konstrukční a technologické koncentrátory napětí Obsah: 6 lekce Konstukční a technologické koncentátoy napětí 61 Úvod 6 Účinek lokálních konstukčních koncentací napětí 63 Vliv kuhového otvou na ozložení napjatosti v dlouhém tenkém pásu zatíženém tahem

Více

Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v

Práce vykonaná v elektrickém poli, napětí, potenciál Vzájemná souvislost mezi intenzitou elektrického pole, napětím a potenciálem Práce vykonaná v Páce vykonaná v eektickém poi, napětí, potenciá Vzájemná souvisost mezi intenzitou eektického poe, napětím a potenciáem Páce vykonaná v eektostatickém poi po uzavřené dáze Gadient skaání funkce Skaání

Více

F r. Umístěme do P jinou elektricky nabitou částici. Síla na ni působící Elektromagnetická interakce

F r. Umístěme do P jinou elektricky nabitou částici. Síla na ni působící Elektromagnetická interakce . ELEKTROMAGNETISMUS.0. Elektomagnetická inteakce vzájemné působení elekticky nabitých částic Mechanismus: Každá pohybující se elekticky nabitá částice vytváří v okolním postou elektomagnetické pole, kteé

Více

Stavba atomu: Atomové jádro

Stavba atomu: Atomové jádro Stavba atomu: tomové jádo Výzkum stuktuy hmoty: Histoie Jen zdánlivě existuje hořké či sladké, chladné či hoké, ve skutečnosti jsou pouze atomy a pázdno. Démokitos, 46 37 př. n.l. Heni Becqueel 85 98 objev

Více

Cvičení z termomechaniky Cvičení 6.

Cvičení z termomechaniky Cvičení 6. Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby

Hlavní body. Keplerovy zákony Newtonův gravitační zákon. Konzervativní pole. Gravitační pole v blízkosti Země Planetární pohyby Úvod do gavitace Hlavní body Kepleovy zákony Newtonův gavitační zákon Gavitační pole v blízkosti Země Planetání pohyby Konzevativní pole Potenciál a potenciální enegie Vztah intenzity a potenciálu Úvod

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

DYNAMIKA HMOTNÉHO BODU

DYNAMIKA HMOTNÉHO BODU DYNAMIKA HMOTNÉHO BODU Součást Newtonovské klasická mechanika (v

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY

Více

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H.

Vlnovody. Obr. 7.1 Běžné příčné průřezy kovových vlnovodů: obdélníkový, kruhový, vlnovod, vlnovod H. 7 Vlnovody Běžná vedení (koaxiální kabel, dvojlinka) jsou jen omezeně použitelná v mikovlnné části kmitočtového spekta. S ůstem kmitočtu přenášeného signálu totiž významně ostou ztáty v dielektiku těchto

Více

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole

Klíčové pojmy Vypište hlavní pojmy: b) Tíhová síla. c) Tíha. d) Gravitační zrychlení. e) Intenzita gravitačního pole Pojekt Efektivní Učení Refomou oblastí gymnaziálního vzdělávání je spolufinancován Evopským sociálním fondem a státním ozpočtem České epubliky. GRAVITAČNÍ POLE Teoie Slovně i matematicky chaakteizujte

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21 Příklad : Síla působící mezi dvěma bodovými náboji Dva bodové náboje na sebe působí ve vakuu silou, která je dána Coulombovým zákonem. Síla je přímo úměrná velikosti nábojů, nepřímo úměrná kvadrátu vzdálenosti,

Více

Elektřina a magnetismus Elektrostatické pole

Elektřina a magnetismus Elektrostatické pole Elektostatické pole Elektostatické pole je posto (v okolí elekticky nabitých částic/těles), ve kteém na sebe náboje působí elektickými silami. Zdojem elektostatického pole jsou elektické náboje (vázané

Více

6 Diferenciální operátory

6 Diferenciální operátory - 84 - Difeenciální opeátoy 6 Difeenciální opeátoy 61 Skalání a vektoové pole (skalání pole) u u x x x Funkci 1 n definovanou v učité oblasti Skalání pole přiřazuje každému bodu oblasti učitou číselnou

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 3. GAUSSŮV ZÁKON 3.1 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ POMOCÍ GAUSSOVA ZÁKONA ÚLOHA

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

Gravitační a elektrické pole

Gravitační a elektrické pole Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti F8 KEPLEOVY ZÁKONY Evopský sociální fond Paha & EU: Investujeme do vaší udoucnosti F8 KEPLEOVY ZÁKONY Kepleovy zákony po planetání pohy zfomuloval Johannes Keple (1571 1630) na základě měření Tychona Baheho

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

14. Základy elektrostatiky

14. Základy elektrostatiky 4. Základy elektostatiky lektostatické pole existuje kolem všech elekticky nabitých tles. Tato tlesa na sebe vzájemn jeho postednictvím psobí. lektický náboj dva významy: a) vyjaduje stav elekticky nabitých

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Kovy - model volných elektronů

Kovy - model volných elektronů Kovy - model volných elektronů Kovová vazba 1. Preferuje ji většina prvků vyskytujících se v přírodě. Kov je tvořen kladně nabitými ionty (s konfigurací vzácného plynu) a relativně velmi volnými elektrony.

Více

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot

Pohyb tělesa, základní typy pohybů, pohyb posuvný a rotační. Obsah přednášky : typy pohybů tělesa posuvný pohyb rotační pohyb geometrie hmot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační Obsah přednášky : typy pohybů tělesa posuvný pohyb otační pohyb geoetie hot Pohyb tělesa, základní typy pohybů, pohyb posuvný a otační posuvný

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce.

Keplerova úloha. Abstrakt: Článek řeší problém pohybu planety (Země) kolem Slunce. Kepleova úloha Keple-2c.TEX jan.obzalek@mff.cuni.cz Abstakt: Článek řeší poblém pohybu planety (Země) kolem Slunce. Úplná úloha: co zanebáme Chceme vyšetřit pohyb planety, např. Země, v naší sluneční soustavě.

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln

Otázka 17. 17.1 Základy vyzařování elektromagnetických vln Otázka 17 Základy vyzařování elektomagnetických vln, přehled základních duhů antén a jejich základní paamety (vstupní impedance, směový diagam, zisk) liniové, plošné, eflektoové stuktuy, anténní řady.

Více

Rozklad přírodních surovin minerálními kyselinami

Rozklad přírodních surovin minerálními kyselinami Laboatoř anoganické technologie Rozklad příodních suovin mineálními kyselinami Rozpouštění příodních mateiálů v důsledku pobíhající chemické eakce patří mezi základní technologické opeace řady půmyslových

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající

k + q. Jestliže takový dipól kmitá s frekvencí ν (odpovídající Vlastnosti kmitajíího dipólu Podle klasiké teoie je nejefektivnějším zdojem elektomagnetikého záření kmitajíí elektiký dipól. Intenzita jeho záření o několik řádů převyšuje intenzity ostatníh zdojů záření

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Vodič a izolant

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Elektrické pole,

Více

ELT1 - Přednáška č. 4

ELT1 - Přednáška č. 4 ELT1 - Přednáška č. 4 Statická elektřina a vodivost 2/2 Rozložení elektostatických nábojů Potenciál el. pole, el. napětí, páce Coulombův zákon Bodový náboj - opakování Coulombův zákon - síla, kteou působí

Více

Vybrané kapitoly z fyziky. Zdeněk Chval

Vybrané kapitoly z fyziky. Zdeněk Chval Vybané kapitoly z fyziky Zdeněk Chval Kateda zdavotnické fyziky a biofyziky (KBF) Boeckého 7, č.dv. 49 tel. 389 037 6 e-mail: chval@jcu.cz Konzultační hodiny: čtvtek 5:00-6:30, příp. po dohodě Obsahové

Více

Diferenciální operátory vektorové analýzy verze 1.1

Diferenciální operátory vektorové analýzy verze 1.1 Úvod Difeenciální opeátoy vektoové analýzy veze. Následující text popisuje difeenciální opeátoy vektoové analýzy. Měl by sloužit především studentům předmětu MATEMAT na Univezitě Hadec Kálové k přípavě

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

ELEKTROSTATIKA. Obsah. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Úvod 3

ELEKTROSTATIKA. Obsah. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Úvod 3 ELEKTROTATIKA tudijní text po řešitele FO a ostatní zájemce o fyziku Bohumil Vybíal Obsah Úvod 3 Elektostatické pole ve vakuu 5 Elektický náboj 5 Coulombův zákon 7 3 Intenzita elektického pole 7 Příklad

Více

Vibrace vícečásticových soustav v harmonické aproximaci. ( r)

Vibrace vícečásticových soustav v harmonické aproximaci. ( r) Paktikum z počítačového modelování ve fyzice a chemii Úloha č. 5 Vibace vícečásticových soustav v hamonické apoximaci Úkol Po zadané potenciály nalezněte vibační fekvence soustavy několika částic diagonalizací

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

Sommerfeld-Wilsonova kvantová mechanika

Sommerfeld-Wilsonova kvantová mechanika Kapitola 3-1 - Kapitola 3 Sommefeld-Wilsonova kvantová mechanika Obsah: 3 Sommefeld-Wilsonova kvantovací podmínka 3. Hamonický osciláto 3.3 Atom vodíku - neelativistická teoie 3.4 Pincip koespondence Liteatua:

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA

ELEKTRICKÝ PROUD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA ELEKTRICKÝ PROD ELEKTRICKÝ ODPOR (REZISTANCE) REZISTIVITA 1 ELEKTRICKÝ PROD Jevem Elektrický proud nazveme usměrněný pohyb elektrických nábojů. Např.:- proud vodivostních elektronů v kovech - pohyb nabitých

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

Hydraulika podzemních vod

Hydraulika podzemních vod Hydaulika podzemních vod STOUPACÍ ZKOUŠKY - vyhodnocení stavu po skončení čepací zkoušky - měří se tzv. zbytkové snížení (původní hladina hladina po skončení čepání v libovolném čase po skončení odběu)

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

Základní otázky pro teoretickou část zkoušky.

Základní otázky pro teoretickou část zkoušky. Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

ELEKTŘINA A MAGNETIZMUS

ELEKTŘINA A MAGNETIZMUS LKTŘINA A MAGNTIZMUS II. Coulombův zákon Obsah COULOMBŮV ZÁKON.1 LKTRICKÝ NÁBOJ. COULOMBŮV ZÁKON.3 PRINCIP SUPRPOZIC 4.4 LKTRICKÉ POL 5.5 SILOKŘIVKY LKTRICKÉHO POL 6.6 SÍLA PŮSOBÍCÍ NA NABITOU ČÁSTICI

Více

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika

Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách. Mechanika 1 Fyzika 1, bakaláři AFY1 BFY1 KFY1 ZS 08/09 Okruhy, pojmy a průvodce přípravou na semestrální zkoušku v otázkách Mechanika Při studiu části mechanika se zaměřte na zvládnutí následujících pojmů: Kartézská

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D12_Z_OPAK_E_Elektricky_naboj_a_elektricke_ pole_t Člověk a příroda Fyzika Elektrický

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/ Střední půmyslová šola a Vyšší odboná šola technicá Bno, Soolsá 1 Šablona: Inovace a zvalitnění výuy postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechania, pužnost pevnost Záladní duhy namáhání,

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Přenos tepla. Přehled základních rovnic

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Přenos tepla. Přehled základních rovnic U8 - Ústav pocesní a zpacovatelské techniky FS ČVU v Paze I. Bilance vnitřní enegie Přenos tepla Přehled základních ovnic Fyzikální vlastnost P ρ ue u E vnitřní enegie Hustota toku IP q q - hustota tepelného

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Napětí horninového masivu

Napětí horninového masivu Npětí honinového msivu pimání npjtostí sekundání npjtostí účinky n stbilitu podzemního díl Dále můžeme uvžovt * bobtnání honiny * teplotní stv honiny J. Pušk MH 6. přednášk 1 Pimání npjtost gvitční (vyvolán

Více