JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "JAN VÁLEK, PETR SLÁDEK Katedra fyziky, chemie a odborného vzdělávání, Pedagogická fakulta, Masarykova univerzita, Poříčí 7, Brno"

Transkript

1 Veletrh nápdů učitelů fyziky 18 Fyzik cyklist JAN VÁLEK, PETR SLÁDEK Ktedr fyziky, chemie odorného vzdělávání, Pedgogická fkult, Msrykov univerzit, Poříčí 7, Brno Astrkt Jízdní kolo spojuje mnoho technických řešení. Všechn využívjí zákldní zákonitosti fyziky, proto je kolo vhodnou učení pomůckou ve výuce n zákldní škole. Důležitá je tké technik jízdy, šlpání do pedálů, rozložení hmotnosti, erodynmický tvr. Jízdní kolo tk můžeme použít jko spojovcí článek při tvorě mezipředmětových vzthů mezi fyzikou, technickou výchovou, informtikou, tělesnou výchovou, výchovou ke zdrví dlšími předměty. Úvod Jízdní kolo (icykl) je nejen doprvní prostředek, le nástroj pro cvičení, zvyšování seekázně, zlepšování psychického stvu. Jeho uživtel/mjitel y měl v prvidelných intervlech provést jeho zákldní údržu. V přípdě poruchy n cestách prověřuje technické schopnosti jeho uživtele při jejím odstrňování. K uvedeným skutečnostem nvíc přispívá fkt, že jízdní kolo v zákldní konfigurci je většině populce cenově dostupné. Jízdní kolo Pokud se n icykl podíváme z hledisk fyziky techniky, je n něm spojeno mnoho technických řešení: rozložení látky (poloh těžiště), technik jízdy (v sedle, ze sedl = > proklouznutí zdního kol n štěrku), šlpání do pedálů (kolik toho odkrouží chodidlo => tečn k pedálům), erodynmický tvr odpor vzduchu (tvr cyklisty pro čsovky n Tour De Frnce), pák (převody), setrvčnost, tření [2]. Všechn z nich využívjí zákldních zákonitostí fyziky, proto je icykl velmi vhodnou učení pomůckou ve výuce, nejen fyziky, n zákldní škole. Bicykl tk můžeme použít jko spojovcí článek při vytváření mezipředmětových vzthů mezi fyzikou, technickou výchovou, informční výchovou, výchovou ke zdrví dlšími [2]. Jízdní kolo ve fyzice Jk jsme již výše uvedli, nlezneme n jízdním kole mnoho prvků situcí, které lze ve výuce fyziky vhodně použít. My se le nyní omezíme pouze n prolemtiku těžiště celé soustvy jízdní kolo + cyklist. Poloh těžiště cyklisty V součsné doě, kdy stále více lidí myslí n svoji hmotnost zdrvý životní styl, se musel tento trend promítnout tké do cyklistiky. Ve skutečnosti je tomu nopk, v cyk- 264

2 Veletrh nápdů učitelů fyziky 18 listice je to již dlouho známá věc, že je jednodušší levnější snížit hmotnost cyklisty než jízdního kol. S tím zároveň souvisí tké poloh těžiště. Tento experiment yl pro nás stěžejní. Snžili jsme se simulovt více situcí. Jko první jsme zjišťovli polohu těžiště cyklisty ez jkékoli zátěže. V dlším jsme přidávli do tohu n zád neo n řicho 3 kg neo 6 kg zátěž, kterou nám tvořily jedn neo dvě plstové nádoy vody. V kždé konfigurci proěhlo měření při třech různých výškách zdního kol. To jsme podkládli ž třemi kusy dřev o výšce cc 10 cm. Odečítli jsme z váhy pod předním kolem, jká hmotnost systému jízdní kolo + cyklist připdá n přední kolo. Těžiště jízdního kol nlezneme podle I. Krejsy [3] v těchto místech: - Bez cyklisty - přiližně nd středovým složením podle druhu jízdního kol, výšky jeho sedl rozměru kol v rozmezí hodnot 0,33 m ž 0,60 m nd vozovkou - S cyklistou - přiližně nd rovinou sedl v rozmezí hodnot 0,05 m ž 0,25 m podle výšky hmotnosti cyklisty Při měření polohy těžiště jízdního kol s cyklistou nám tedy vznikly situce zchycené n Or. 1-3: Or. 1 - Fotogrfie z měření polohy těžiště jízdního kol s cyklistou ez zátěže Or. 2 - Fotogrfie z měření polohy těžiště jízdního kol s cyklistou zátěž n zádech Or. 3 - Fotogrfie z měření polohy těžiště jízdního kol s cyklistou zátěž n řiše 265

3 Veletrh nápdů učitelů fyziky 18 S využitím vzthů pro jednozvrtnou páku s osou otáčení v ose předního kol, přičemž změn průmětu vzdálenosti těžiště od osy otáčení se dá rozložit do průmětu vzdáleností středů kol do průmětu výšky těžiště do vodorovné spojnice středů kol. Celkovou výšku těžiště s od terénu pk získáme ještě přičtením poloměru kol r. Nměřené hodnoty jsme dosdili do vzthu (1) z [1]: kde: l( M M s ) 1 1 r (1) M tg l vzdálenost středů kol r poloměr kol M 1 hmotnost zjištěná n váze n předním kole nenkloněného jízdního kol M 1 hmotnost zjištěná n váze n předním kole nkloněného jízdního kol M hmotnost kolo + cyklist + zátěž α náklon kol, tg α můžeme určit npř. jko poměr výšky zvednutí zdního kol vodorovném průmětu vzdáleností oou os, kterou můžeme sndno získt npř. zvěšením olovnic n osy. Těžiště získná z měření jsou n orázcích Or. 4-8 vždy nměřen pro čtyři výšky zdního kol oproti přednímu, to v těchto výškách: T 1x = -8 cm; T 2x = 2 cm; T 3x = 12 cm; T 4x = 22 cm, index x odpovídá dnému přípdu. Or. 4 - ) Poloh těžiště jízdního kol s cyklistou ez zátěže 266

4 Veletrh nápdů učitelů fyziky 18 Or. 5 - ) Poloh těžiště jízdního kol s cyklistou zátěž 3 kg n zádech Or. 6 - ) Poloh těžiště jízdního kol s cyklistou zátěž 6 kg n zádech Or. 7 - ) Poloh těžiště jízdního kol s cyklistou zátěž 3 kg n řiše 267

5 Veletrh nápdů učitelů fyziky 18 Or. 8 - ) Poloh těžiště jízdního kol s cyklistou zátěž 6 kg n řiše Jk je ptrné z orázků Or. 4-8, výšk těžiště s se mění v závislosti n zátěži cyklisty, vodorovná poloh l 2 se výrzně nemění, její hodnotu určíme pomocí vzthu pro jednozvrtnou páku se středem otáčení v ose předního kol (2): M 1 l2 l (2) M kde: l vzdálenost os otáčení předního zdního kol icyklu; M 1 hmotnost zjištěná n váze n předním kole nenkloněného jízdního kol; M hmotnost kolo + cyklist + zátěže Závěr První příkld jsme prkticky prováděli s žáky 9. třídy v rámci příprvy n přijímcí zkoušky n střední školy. Žáci smi zjišťovli podkldy podíleli se výrznou měrou n uskutečnění celého pokusu. Teoretická příprv yl ponechán jko domácí práce žákům. Před měřením proěhlo zopkování celého úkolu. Vlstní měření se zvládlo z cc 45 minut. Se žáky lze dále diskutovt vliv rozložení látky n jízdu, jká je poloh těžiště utomoilů (osoní, nákldní, závodní), kdy dojde k zlokování předního kol cyklist přepdne přes řidítk, mnoho dlších technicko-sportovních spektů. Litertur [1] Ciul, K. Mechnik jízdního kol. 2. vyd. Prh: ČVUT v Prze, s. ISBN [2] Kšpr, E., Jnovič, J., Březin, F. Prolémové vyučování prolémové úlohy ve fyzice. 1. vyd. Prh: Státní pedgogické nkldtelství, n. p., s. [3] Krejs, I. Metodická pomůck k řešení nehody s účstí cyklistů. In: IKOS Znlecká kncelář [online] [cit ]. Dostupné z: 268

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

2 i i. = m r, (1) J = r m = r V. m V

2 i i. = m r, (1) J = r m = r V. m V Měření momentu setrvčnosti 1 Měření momentu setrvčnosti Úko č. 1: Změřte moment setrvčnosti obdéníkové desky přímou metodou. Pomůcky Fyzické kyvdo (kovová obdéníková desk s třemi otvory), kovové těísko

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

Pravoúhlý trojúhelník goniometrické funkce. Výpočet stran pravoúhlého trojúhelníka pomocí goniometrických funkcí

Pravoúhlý trojúhelník goniometrické funkce. Výpočet stran pravoúhlého trojúhelníka pomocí goniometrických funkcí Prvoúhlý trojúhelník goniometrické funkce V prvoúhlém trojúhelníku ABC jsou definovány funkce úhlu : sin, cos, tg, cotg tkto: sin c cos c tg cot g protilehlá odvěsn ku přeponě přilehlá odvěsn ku přeponě

Více

Nosné stavební konstrukce Výpočet reakcí

Nosné stavební konstrukce Výpočet reakcí Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

FYZIKÁLNÍ VELIČINY A JEDNOTKY

FYZIKÁLNÍ VELIČINY A JEDNOTKY I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í FYZIKÁLNÍ VELIČINY A JEDNOTKY 1. Mezinárodní soustv jednotek SI Slovo fyzik je odvozeno z řeckého slov fysis, které znmená přírod. Abychom správně

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stvení mecnik 2 (K132SM02) Přednáší: Jn Sýkor Ktedr mecniky K132 místnost D2016 e-mil: jn.sykor.1@fsv.cvut.cz konzultční odiny: Po 12-14 Kldné směry vnitřníc sil: Kldný průřez vnitřní síly jsou kldné ve

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M.

Definice. Necht M = (Q, T, δ, q 0, F ) je konečný automat. Dvojici (q, w) Q T nazveme konfigurací konečného automatu M. BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 2/3 Konfigurce konečného utomtu BI-AAG (20/202) J. Holu: 2. Deterministické nedeterministické konečné utomty p. 4/3 Automty

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Vzdálenost roviny a přímky

Vzdálenost roviny a přímky 511 Vzdálenost roviny přímky Předpokldy: 510 Př 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti přímky od roviny, nvrhni definici této vzdálenosti Uvžovt o vzdálenosti přímky roviny můžeme pouze v přípdě,

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

Výpočet vnitřních sil přímého nosníku

Výpočet vnitřních sil přímého nosníku Stvení sttik, 1.ročník klářského studi ýpočet vnitřních sil přímého nosníku nitřní síly přímého vodorovného nosníku prostý nosník konzol nosník s převislým koncem Ktedr stvení mechniky Fkult stvení, ŠB

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy

JEDNODUCHÝ INTEGRÁL příklady. pro vysoké školy JEDNODUCHÝ INTEGRÁL příkldy pro vysoké školy Bohemicus mthemticus doctor Pvel Novotný 0 Vzor citce: NOVOTNÝ, P. Jednoduchý integrál příkldy : pro vysoké školy. Bučovice : Nkldtelství Mrtin Stříž, 0. 6

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Technická dokumentace Ing. Lukáš Procházka

Technická dokumentace Ing. Lukáš Procházka Tehniká dokumente ng Lukáš Proházk Tém: hlvní část dokumentu, orázky, tulky grfy 1) Osh hlvní části dokumentu ) Orázky, tulky grfy ) Vzore rovnie Hlvní část dokumentu Hlvní část dokumentu je řzen v následujíím

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Ktedr geotechniky podzemního stvitelství Modelování v geotechnice Princip metody mezní rovnováhy (prezentce pro výuku předmětu Modelování v geotechnice) doc. RNDr. Ev Hrubešová, Ph.D. Inovce studijního

Více

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia

Stavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Letní semestr. Stavební statika, 1.ročník bakalářského studia Stvení sttik, 1.ročník klářského studi Stvení sttik Úvod do studi předmětu n Stvení fkultě VŠB-TU Ostrv Letní semestr Ktedr stvení mechniky Fkult stvení, VŠB - Technická univerzit Ostrv Stvení sttik -

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Repetitorium z matematiky

Repetitorium z matematiky Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Výpočet vnitřních sil přímého nosníku III: šikmý nosník

Výpočet vnitřních sil přímého nosníku III: šikmý nosník Stvení sttik,.ročník klářského studi Výpočet vnitřníh sil přímého nosníku III: šikmý nosník Výpočet vnitřníh sil šikmého nosníku - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku

Více

Pluto již není planetou, z astronomie však nemizí

Pluto již není planetou, z astronomie však nemizí uto již není plnetou, z stronomie všk nemizí Vldimír Štefl, Brno Cílem příspěvku je vysvětlit čtenářům - žákům i učitelům, proč bylo uto při svém objevu v roce 1930 oznčeno z plnetu nopk jké byly důvody,

Více

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty OBHAJOBA DISETAČNÍ PÁCE Větvené mzcí systémy jejich proudové poměry triologicko-hydrulické spekty PhD student: Ing. Antonín Dvořák Školitel: Doc. NDr. Ing. Josef Nevrlý, CSc. Ústv konstruování VUT- BNO

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3 Cvičení.ročník rovnice, nerovnice, výrzy, funkce ) Vypočítejte: ) [0 (8. 0 7. 0 )] b) [ ( ). ( ) ( 7)]: ( ) c) (9 ): ( ) + [ 8 (0 )] d)[. ( 9 + 7) ( ). ( )]. e). 9. 9 f). 7 + 9 ) Vyjádřete jko jedinou

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

nejen z Some Ideas not only from practical Physics Seminars Miroslav Jílek1

nejen z Some Ideas not only from practical Physics Seminars Miroslav Jílek1 Několik nápdů. nejen z kroužků fyziky Some des not only from prcticl Physics Seminrs Miroslv Jílek1 Absird This pper describes severl ides from progrm of prctícl semínr for high school sfudents interested

Více

SEMINÁŘ I Teorie absolutních a komparativních výhod

SEMINÁŘ I Teorie absolutních a komparativních výhod PODKLDY K SEMINÁŘŮM ŘEŠENÉ PŘÍKLDY SEMINÁŘ I eorie bsolutních komprtivních výhod Zákldní principy teorie komprtivních výhod eorie komprtivních výhod ve své klsické podobě odvozuje motivci k obchodu z rozdílných

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/

Výukový matriál byl zpracován v rámci projektu OPVK 1.5 EU peníze školám. registrační číslo projektu:cz.1.07/1.5.00/ Výukový mtriál yl zprcován v rámci projektu OPVK 1.5 EU peníze školám registrční číslo projektu:cz.1.07/1.5.00/34.1026 Autor: Mgr. Vldimír Mikel zprcováno: 7.12.2012 ročník (oor) temtická olst Předmět

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek

SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI. František Prášek SYLABUS MODULU UPLATNĚNÍ NA TRHU PRÁCE DÍLČÍ ČÁST II BAKALÁŘSKÝ SEMINÁŘ + PŘÍPRAVA NA PRAXI Frntišek Prášek Ostrv 011 1 : Sylbus modulu Upltnění n trhu práce, dílčí část II Bklářská práce + příprv n prxi

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ

APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ APLIKACE METODY RIPRAN V SOFTWAROVÉM INŽENÝRSTVÍ Brnislv Lcko VUT v Brně, Fkult strojního inženýrství, Ústv utomtizce informtiky, Technická 2, 616 69 Brno, lcko@ui.fme.vutbr.cz Abstrkt Příspěvek podává

Více

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34.

18. x x 5 dx subst. t = 2 + x x 1 + e2x x subst. t = e x ln 2 x. x ln 2 x dx 34. I. Určete integrály proved te zkoušku. Určete intervl(y), kde integrál eistuje... 3. 4. 5. 6. 7. 8. 9. 0... 3. 4. 5. 6. 7. e d substituce t = ln ln(ln ) d substituce t = ln(ln ), dt = ln 3 e 4 d substituce

Více

Úmrtnost v Česku a vybraných evropských krajinách

Úmrtnost v Česku a vybraných evropských krajinách Úmrtnost v Česku vybrných evropských krjinách Bohdn Lind Univerzit Prdubice, ústv mtemtiky Vývoj úmrtnosti v ČR v letech 197 1999 podle nejčstějších příčin V České republice zemřelo v roce 1999 19 768

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

ROTAČNÍ KVADRIKY V PŘÍKLADECH

ROTAČNÍ KVADRIKY V PŘÍKLADECH Univerzit Plckého v Olomouci Rozšíření kreditce učitelství mtemtiky učitelství deskriptivní geometrie n PřF UP v Olomouci o formu kombinovnou CZ..07/..00/8.003 ROTAČNÍ KVADRIKY V PŘÍKLADECH Mrie OŠLEJŠKOVÁ,

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 6: Určování polohy těžiště stabilometrickou plošinou Metodický pokyn pro vyučující se vzorovým protokolem Ing. Patrik

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt relizovný n PŠ Nové Město nd Metují s finnční podporou v Operční proru Vzdělávání pro konkurencescopnost Královérdeckéo krje Modul 03 - Tecnické předěty In. Jn Jeelík - nuk o rovnováze kplin jejic

Více

PŘÍČNÉ PŘEMÍSTĚNÍ VOZIDEL PŘI ANALÝZE SILNIČNÍ NEHODY

PŘÍČNÉ PŘEMÍSTĚNÍ VOZIDEL PŘI ANALÝZE SILNIČNÍ NEHODY Ing. Albert Brdáč PŘÍČNÉ PŘEMÍSTĚNÍ VOZIDEL PŘI ANALÝZE SILNIČNÍ NEHODY V příspěvku jsou prezentován výsledk disertční práce utor, zbývjící se nlýzou součsného stvu možností výpočtu čsu potřebného n příčné

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výuk technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuk směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrz, výrz s mocninmi odmocninmi Kpitol Člen

Více

Projekt MŠMT ČR: EU peníze školám

Projekt MŠMT ČR: EU peníze školám Projekt MŠMT ČR: EU peníze školám Číslo projektu CZ.1.07/1.5.00/34.1094 Název projektu Učíme se trochu jink moderně zábvněji Číslo název šblony II/2 Inovce zkvlitnění výuky cizích jzyků n středních školách

Více

Grant 2006. Výzkum e-learningu - učitelé

Grant 2006. Výzkum e-learningu - učitelé Grnt 2006 Výzkum e-lerningu - učitelé Dosttek informcí o e-lerningu Máte Máte dosttek dosttek informcí informcí o o tom, tom, co co je je to to e-lerning e-lerning (elektronické (elektronické zděláání)?

Více

š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý

Více

UC485 UC 485 15 kv ESD IEC-1000-4-2 Protected 2 42 485/ S

UC485 UC 485 15 kv ESD IEC-1000-4-2 Protected 2 42 485/ S PPouch elektronik UC 85 PŘEVODNÍK LINKY n neo RS22 S GALVANICKÝM ODDĚLENÍM 15 kv ESD Protected IEC-1000--2 Převodník CANNON 9 CANNON 9 zásuvk vidlice K1 PPouch elektronik - 8-12V + /22 Z přepínče RS22

Více

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4.

MECHANIKA STATIKA. + y. + x. - x. F 4y F4. - y. FRBy. FRAy. Ing. Radek Šebek 2012 A B C D. I a III 3 5 7 D II. B C a b c F1Z F2Z. a 2. a 3. a 4. h MECHNIK + y 2 F Vy F 2y 1 FV V F 1y F 3y F3 3 - x F 1x F 3x F 4x 0 F 2x F 4y F4 F Vx + x F FRy 4 - y FRy F l FRy C D FRy I 2 III 6 V 1 3 5 7 D II 4 IV C c Z Z Ing. Rdek Šeek 2012 MECHNIK 1. OSH 2. MECHNIK

Více

NAVRHOVÁNÍ BETONOVÝCH KONSTRUKCÍ PODLE EN (EUROKÓDU 2) ČÁST 1 NAVRHOVÁNÍ PRVKŮ ŽELEZOBETONOVÝCH KONSTRUKCÍ

NAVRHOVÁNÍ BETONOVÝCH KONSTRUKCÍ PODLE EN (EUROKÓDU 2) ČÁST 1 NAVRHOVÁNÍ PRVKŮ ŽELEZOBETONOVÝCH KONSTRUKCÍ POZVÁNKA A ZÁVAZNÁ PŘIHLÁŠKA 4. BĚH ŠKOLENÍ Ktedrou betonových konstrukcí mostů FSv ČVUT v Prze, Ústvem betonových zděných konstrukcí FAST VUT v Brně, Ktedrou betónových konštrukcií mostov SvF STU Brtislv

Více

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc.

PLANETOVÉ PŘEVODY. Pomůcka do cvičení z předmětu Mobilní energetické prostředky Doc.Ing. Pavel Sedlák, CSc. PLANETOVÉ PŘEVODY Pomůck do cvičení předmětu Mobilní energetické prostředky Doc.Ing. Pvel Sedlák, CSc. Pro pochopení funkce plnetových převodů jejich kinemtiky je nutné se senámit se ákldy především kinemtikou

Více

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII Ing. Romn Grinová, Ph.D. Ing. Ondřej Zimný, Ph.D. prof. Ing. Zor Jnčíková, CSc. Ostrv

Více

II. Faktory ovlivňující rozhodnutí o ukončení pracovní aktivity

II. Faktory ovlivňující rozhodnutí o ukončení pracovní aktivity II. Fktory ovlivňující rozhodnutí o ukončení prcovní ktivity Hrnice pro odchod do strobního důchodu v ČR má rozhodující vliv n ukončení veškerých prcovních ktivit výrzně se projevuje i v pozdějším ukončení

Více

ÚZEMNÍ STUDIE - LOKALITA ROUDNIČSKÁ HRADEC KRÁLOVÉ k.ú. TŘEBEŠ

ÚZEMNÍ STUDIE - LOKALITA ROUDNIČSKÁ HRADEC KRÁLOVÉ k.ú. TŘEBEŠ ÚZEMNÍ TUDIE - LOKLIT ROUDNIČKÁ HRDEC KRÁLOVÉ k.ú. TŘEBEŠ HLVNÍ PROJEKTNT: ing.rch Krel CHMIED ml. UTOR TVBY : ing.rch Krel chmied ml. ODPOVĚDNÝ PROJEKTNT: ing.rch Krel chmied ml. INVETOR : Mgistrát měst

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

Psychologická metodologie. NMgr. obor Psychologie

Psychologická metodologie. NMgr. obor Psychologie Pržská vysoká škol psychosociálních studií, s.r.o. Temtické okruhy ke státní mgisterské zkoušce Psychologická metodologie NMgr. oor Psychologie 1 Vědecká teorie vědecká metod Vědecké vysvětlení, vědecký

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo?

Auto během zrychlování z počáteční rychlost 50 km/h se zrychlením dráhu 100 m. Jak dlouho auto zrychlovalo? Jaké rychlosti dosáhlo? ..7 Ronoměrně zrychlený pohyb příkldech III Předpokldy: 6 Pedgogická poznámk: Hodinu dělím n dě části: 5 minut n prní d příkldy zbytek n osttní. I když šichni nestihnout spočítt druhý příkld je potřeb,

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

Datamining a AA (Above Average) kvantifikátor

Datamining a AA (Above Average) kvantifikátor Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitálí učeí mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitěí výuk prostředictvím ICT Číslo ázev šlo klíčové ktivit III/ Iovce zkvlitěí výuk prostředictvím ICT Příjemce podpor Gmázium,

Více