Lidské tělo jako předmět fyzikálního měření

Rozměr: px
Začít zobrazení ze stránky:

Download "Lidské tělo jako předmět fyzikálního měření"

Transkript

1 Veleth ápadů uitelů yziky 8 Lidské tělo jako předmět yzikálího měřeí ŠTĚPÁNKA KUBÍNOVÁ Kateda yziky, PřF UHK Abstakt Laboatoí páce by měly být edílou souástí výuky yziky. Vyuující se však asto setkávají s edostatkem pomůcek a ezájmem ze stay žáků. Jak lze tedy povést laboatoí páce sado, zábavě a s využitím poutavého příběhu? Nechte žáky vypavit se apříklad po stopách zloiu a vypátat pachatele i vyzkoušet si paktiky oího lékaře. Laboatoí páce a téma optika V deší době ejsou býle u lověka ic eobvyklého, alespoň a teí je používá již zaá ást populace. Každý tedy ví, že oky býlí jsou chaakteistické především svou optickou mohutostí udávaou v dioptiích, ať kladých i zápoých. Vědí však studeti jaká je vlastí optická mohutost oka? Jak vziká v oku obaz? Jak je možé, že lověk vidí ostře a blízko i a dálku? Nechme je si to vypoítat, případě změřit po své vlastí oi v ámci laboatoí páce. Optická soustava lidského oka Zeptáme-li se studetů a iomace týkající se lidského oka, asto ejsou ai schopi říci jeho spávé ozměy, atož optickou mohutost. Nosí-li apříklad ěkdo býle s pěti dioptiemi, pokládají to studeti již za zaou optickou mohutost. Co tedy řekou, zjistí-li přibližou optickou mohutost svého oka? Zkusme ejpve optickou mohutost oka vypoítat pomocí modelu, a ásledě změřit. Existuje ěkolik modelů lidského oka, kteé umožňuji poměě přesý, ale zjedodušeý popis zobazováí předmětu okem. Po aše úely použijeme kombiaci Gullstadova modelu a Emsleyova-Gaova schematického modelu oka. [] Při vytvářeí obazu musí světelý papsek pojít až k sítici, místu vytvořeí obazu, tyřmi ůzými optickými postředími. Těmito postředími jsou ohovka, komoová voda, oka a sklivec. Každé z ich má odlišé optické vlastosti, kteé si budeme yí chaakteizovat pomocí půměých hodot zdavého oka. Rohovka má tva vypukloduté oky a lze ji popsat těmito paamety: Polomě křivosti vější plochy = 7,7 mm Polomě křivosti vitří plochy = 6,8 mm Idex lomu ohovky =,376 Tloušťka ohovky d = 0,5 mm Komoová voda vyplňuje předí oí segmet o hloubce zhuba,7 mm. Idex lomu =,336 59

2 Veleth ápadů uitelů yziky 8 Oí oka uguje v oku jako spojá oka. Lze jí chaakteizovat podobě jako lupu ablízko zvětšuje, a dálku keslí zmešeé převáceé obázky. Zak využívá pouze tuto duhou vlastost. Zakřiveí oí oky eí stejé a obou staách, předí plocha je méě vykleutá ež zadí. Čoku lze tedy popsat paamety: Polomě zakřiveí předí plochy oky Polomě zakřiveí zadí plochy oky R = 0 mm R = - 6 mm Idex lomu oky emá stejou hodotu v jejím jádu a a okaji, ve výpotech se používá půměá hodota =,46 Rosolovitá hmota sklivce vyplňuje celý zadí segmet oka. Sklivec chaakteizujeme pouze jeho idexem lomu, kteý je stejý jako v případě komoové vody. Idex lomu sklivce s =,336 Optickou soustavu oka si lépe představíme za pomoci ásledujícího ákesu. ohovka oka sítice komoová voda zakový ev Nákes Optické složky oka sklivec = s s Nákes Zobazovací systém oka 60

3 Veleth ápadů uitelů yziky 8 Na zaátku laboatoí páce se můžeme žáků zeptat, co všecho zají o lidském oku, a s jejich pomocí vytvořit ákes podobý ákesu.. Zjistíme, zda žáci vědí, kteé ásti lidského oka tvoří zobazovací apaát a jak vlastí obaz v oku vziká. Při zjišťováí ástí tvořících optickou soustavu oka keslíme ákes., jež poslouží jako model po ásledující výpoet optické mohutosti oka. Výpoet optické mohutosti oka Optickou soustavu oka ozdělíme a dvě ásti ohovku a oí oku. Rohovka je zhuba 0,5 mm silá vypuklodutá oka z jedé stay obklopeá vzduchem a z duhé stay komoovou vodou. Po výpoet její optické mohutosti použijeme ovice po tlustou oku. Pod pojmem tlustá oka, espektive je oka ozumíme dvojici cetovaých lámavých kulových ploch o uitém idexu lomu, vořeých do postředí o ůzých idexech lomu. Tlustá oka je jedozaě zadaá idexy lomu, paamety obou kulových ploch (středy S a poloměy ) a vzdáleostí jejich vcholů d. Tlustá oka je v podstatě složeá cetovaá zobazovací soustava, dílími zobazovacími soustavami jsou obě lámavé kulové plochy. [] Optická mohutost oky je ova převáceé hodotě ohiskové vzdáleosti oky, tedy. Poto musíme ejpve uit ohiskovou vzdáleost ohovky jako celku. Vyjdeme z ásledujících vztahů po tlustou oku []:. Po ohiskové vzdáleosti jedotlivých lámavých ploch ohovky platí:.. Po optický iteval tlusté oky platí ásledující vztah: d. Po dosazeích a ásledých úpavách dostaeme vztah po optickou mohutost ohovky ve tvau: d Po íselém dosazeí jedotlivých hodot 43 D. 6

4 Veleth ápadů uitelů yziky 8 Obdobě budeme postupovat i v případě oí oky, kdy se však jedá o dvojvypuklou oku obklopeou postředím o stejém idexu lomu. Tím se vypoet zaě zjedoduší. Po ohiskové vzdáleosti dvou lámavých ploch bude platit []:. R. R R R A ásledě po optickou mohutost oky: d R R R R Po íselém dosazeí je hodota optické mohutosti oky ova 7,5 D. Celkovou optickou mohutost oka získáme pouhým seteím hodot ohovky a oí oky, jelikož uvažujeme, že jsou cetovaé a těsě a sebe aléhají. Zdavé lidské oko má tedy dle ašeho výpotu 60,5 dioptií. Výpoet optické mohutosti oka pomocí měřeí koveí vzdáleosti Již víme přibližou hodotu optické mohutosti lidského oka, yí se pokusíme uit tuto veliiu po aše oi pomocí měřeí. Koveí vzdáleostí se myslí vzdáleost předmětu od eakomodujícího oka (ezaostřeého oka), kdy se předmět zobazuje a sítici ejostřeji. Po tuto úlohu potřebujeme list papíu s tištěým textem běžé velikosti a délkové měřidlo. Měřeí bude pobíhat celkem třikát po pavé oko, levé oko a obě oi souasě. Zakyjte si jedo oko a uchopte list papíu s textem do uky, kteá je a stejé staě těla jako otevřeé oko. Oko ezaostřujte, spíše se pokuste o koukaí do dálky. Přibližujte a oddalujte uku s textem, dokud alezete místo ejostřejšího viděí. Změřte vzdáleost mezi tímto místem a okem, jedá se pávě o ou koveí vzdáleost. Měřeí povedeme i po zbylé dva uvedeé případy. Pokládejme optický systém oka za jedu spojou oku, před kteou je předmět umístě v koveí vzdáleosti a obaz se vytváří a sítici, zhuba 7 mm od této oky. [] Je uté dát pozo a zamékovou koveci. Pokud zapíšeme zámé hodoty, obdžíme: a = koveí vzdáleost v metech (měla by dosahovat hodot 0,5 0,3 m) a = 7 mm = m Po výpoet použijeme zobazovací ovici oky: a a Neí přeapeím, že každé oko může mít jiou optickou mohutost. 6

5 Veleth ápadů uitelů yziky 8 Měřeí akomodace oka Lidské oko je schopé zobazovat ostře předměty blízké i vzdáleé. Vytvořeí obazu předmětu v ůzé vzdáleosti před okem je umožěo změou optické mohutosti uvedeého dioptického systému oka, tzv. akomodací. Jaký ozsah akomodace v dioptiích lze opět staovit měřeím. Lidské oko ozlišuje dva okajové body bod daleký a bod blízký. Bod daleký zázoňuje ejvzdáleější předmět, jež může ještě oko vidět ostře. Teto bod by se u zdavého oka měl teoeticky alézat v ekoeu. Neí tedy uté jej měřit. Naopak bod blízký zaí ejblíže oku umístěý předmět, kteý ještě eí ozmazaý. Vzdáleost bodu blízkého budeme měřit. [] Opět použijeme papí s textem běžé velikosti, postupě jej budeme přibližovat k oku až do okamžiku, kdy bude text aposledy jasě itelý. Zde se achází blízký bod a jeho vzdáleost od oka změříme. Měřeí můžeme povést opět po každé oko zvlášť i obě oi souasě. Zjištěou hodotu dosadíme do ovice: a d a b akomodaí amplituda, kde a b ozauje bod blízký a a d bod daleký. Hodoty dosazujeme v metech, aby výsledek byl v dioptiích. Jelikož a d je ovo ekoeu, abývá duhý zlomek v ovici hodoty ula. Akomodaí amplituda se měí s věkem, jak ukazuje ásledující obázek. Obázek 3 Závislost akomodaí amplitudy a věku [] Liteatua [] KUCHYNKA, Pavel. Oí lékařství..vyd. Paha: Gada, 007, [40], 768 s. ISBN [] KALUS, Reé. Tivium z optiky. Vyd.. Ostava: Ostavská uivezita, 004, 07 s. ISBN

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10

Ústav fyzikálního inženýrství Fakulta strojního inženýrství VUT v Brně GEOMETRICKÁ OPTIKA. Přednáška 10 Ústav yzikálího ižeýrství Fakulta strojího ižeýrství VUT v Brě GEOMETRICKÁ OPTIKA Předáška 10 1 Obsah Základy geometrické (paprskové) optiky - Zobrazeí cetrovaou soustavou dvou kulových ploch. Rovice čočky.

Více

λ λ λ λ c n2 n = n = ; 4.2.- 2. n n c v

λ λ λ λ c n2 n = n = ; 4.2.- 2. n n c v 4.. Geometická optika 4... Idex lomu. Popsat sklo jako ejběžěji používaý mateiál v optice, jeho složeí a techologii výoby.. Deiovat absolutí a elativí idex lomu jako výzamé chaakteistiky optického postředí.

Více

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby

Přehled vztahů k problematice jednoduchého úročení a úrokové sazby Přehled vztahů k poblematice jedoduchého úočeí a úokové sazby Pozámka: Veškeé úokové sazby /předlhůtí i polhůtí/, diskotí sazby, míy iflace a sazby daě z příjmů je do uvedeých vzoců uto dosazovat v jejich

Více

stručná osnova jarní semestr podzimní semestr

stručná osnova jarní semestr podzimní semestr Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich

Více

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti.

a my chceme data proložit nějakou hladkou funkcí, která by vystihovala hlavní vlastnosti dat, ale ignorovala malé fluktuace a nepřesnosti. Vyováváí dat Naše pozoováí jsou dáa tabulkou čísel, kde y y y i často bývají časové údaje, a my chceme data položit ějakou hladkou fukcí, kteá by vystihovala hlaví vlastosti dat, ale igoovala malé fluktuace

Více

stručná osnova jarní semestr podzimní semestr

stručná osnova jarní semestr podzimní semestr Brýlová optika stručá osova jarí semestr základy geometrické optiky pro brýlovou optiku Gullstradovo schématické oko, další modely, otoreceptory oka, vizus, optotypy myopie, hypermetropie, aakie a jejich

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Základy optického zobrazení

Základy optického zobrazení Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě

Více

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n

základním prvkem teorie křivek v počítačové grafice křivky polynomiální n Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického odporu

Určeno studentům středního vzdělávání s maturitní zkouškou, druhý ročník, měření elektrického odporu rčeo studetům středího vzděláváí s maturití zkouškou, druhý ročík, měřeí elektrického odporu Pracoví list - příklad vytvořil: Ig. Lubomír Koříek Období vytvořeí VM: říje 2013 Klíčová slova: elektrický

Více

sin n sin n 1 n 2 Obr. 1: K zákonu lomu

sin n sin n 1 n 2 Obr. 1: K zákonu lomu MĚŘENÍ INDEXU LOMU REFRAKTOMETREM Jedou z charakteristických optických veliči daé látky je absolutím idexu lomu. Je to podíl rychlosti světla ve vakuu c a v daém prostředí v: c (1) v Průchod světla rozhraím

Více

23. Mechanické vlnění

23. Mechanické vlnění 3. Mechaické vlěí Mechaické vlěí je děj, při kterém částice pružého prostředí kmitají kolem svých rovovážých poloh a teto kmitavý pohyb se přeáší (postupuje) od jedé částice k druhé vlěí může vzikout pouze

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady

ODRAZ A LOM SVTLA. Odraz svtla lom svtla index lomu úplný odraz svtla píklady ODRAZ A LOM SVTLA Odraz svtla lo svtla idex lou úplý odraz svtla píklady Každý z Vás se urit kdy díval do vody. Na klidé vodí hladi vidl kro svého obrazu také kaey ebo písek a d. Na základí škole jste

Více

3 - Póly, nuly a odezvy

3 - Póly, nuly a odezvy 3 - Póly, uly a odezvy Michael Šebek Automatické řízeí 5 3--5 Automatické řízeí - Kyberetika a robotika Póly přeosu jsou kořey jmeovatele pro gs () = bs () as () jsou to komplexí čísla si: as ( i) = pokud

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

9.3.5 Korelace. Předpoklady: 9304

9.3.5 Korelace. Předpoklady: 9304 935 Koelace Předpoklad: 9304 Zatím jsme se zabýval vžd pouze jedím zakem, ve statstckém výzkumu jsme však u každého jedotlvce (statstcké jedotk) sledoval zaků více Učtě spolu ěkteé zak souvsí (apříklad

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace Koec srady!!!.6. Mociy s přirozeým mocitelem I Předpoklady: základí početí operace Pedagogická pozámka: Zápis a začátku kapitoly je víc ež je srada. Tato hodia je prví v druhé části studia. Až dosud ehrálo

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y

L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Závislost slovních znaků

Závislost slovních znaků Závislost slovích zaků Závislost slovích (kvalitativích) zaků Obměy slovího zaku Alterativí zaky Možé zaky Tříděí věcé sloví řady: seřazeí obmě je subjektiví záležitostí (podle abecedy), možé i objektiví

Více

Vytápění BT01 TZB II - cvičení

Vytápění BT01 TZB II - cvičení CZ..07/2.2.00/28.030 Středoevropské cetrum pro vytvářeí a realizaci iovovaých techicko-ekoomických studijích programů Vytápěí BT0 TZB II - cvičeí Zadáí Pro vytápěé místosti vašeho objektu avrhěte otopá

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Klasická pravděpodobnost

Klasická pravděpodobnost NMUMP403 (Pavděpodobost a matematická statistika I Klasická pavděpodobost 1. Házíme čtyřmi šestistěými hacími kostkami. Učete, jaká je pavděpodobost, že (a padou čtyři ůzá čísla, (b padou pouze lichá čísla,

Více

17. Statistické hypotézy parametrické testy

17. Statistické hypotézy parametrické testy 7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Užití binomické věty

Užití binomické věty 9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +

Více

Interference. 15. prosince 2014

Interference. 15. prosince 2014 Iterferece 15. prosice 014 1 Úvod 1.1 Jev iterferece Mějme dvě postupé vly ψ 1 z,t) = A 1 cosωt kz +ϕ 1 ) a ψ z,t) = A cosωt kz +ϕ ). Uvažujme yí jejich superpozici ψ = ψ 1 +ψ a podívejme se, jaká bude

Více

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání

Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

5.3.4 Využití interference na tenkých vrstvách v praxi

5.3.4 Využití interference na tenkých vrstvách v praxi 5.3.4 Využití intefeence na tenkých vstvách v paxi Předpoklady: 5303 1. kontola vyboušení bousíme čočku, potřebujeme vyzkoušet zda je spávně vyboušená (má spávný tva) máme vyobený velice přesný odlitek

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

OVMT Přesnost měření a teorie chyb

OVMT Přesnost měření a teorie chyb Přesost měřeí a teorie chyb Základí pojmy Naměřeé údaje ejsou ikdy absolutě přesé, protože skutečé podmíky pro měřeí se odlišují od ideálích. Při každém měřeí vzikají odchylky od správých hodot chyby.

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

1 ROVNOMĚRNOST BETONU KONSTRUKCE

1 ROVNOMĚRNOST BETONU KONSTRUKCE ROVNOMĚRNOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí rovoměrosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).

Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky). Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké

Více

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. OPTIKA Optické přístroje TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. ) Oko Oko je optická soustava, kterou tvoří: rohovka, komorová voda, čočka a sklivec.

Více

Cavendishův pokus: Určení gravitační konstanty,,vážení Země

Cavendishův pokus: Určení gravitační konstanty,,vážení Země Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35

Více

Fabryův-Perotův rezonátor

Fabryův-Perotův rezonátor Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Příklady k přednášce 9 - Zpětná vazba

Příklady k přednášce 9 - Zpětná vazba Příklady k předášce 9 - Zpětá vazba Michael Šebek Automatické řízeí 205 6--5 Příklad: Přibližá iverze tak průřezu s výškou hladiy y(t), přítokem u(t) a odtokem dy() t dt + 2 yt () = ut () Cíl řízeí: sledovat

Více

Úloha III.S... limitní

Úloha III.S... limitní Úloha III.S... limití 10 bodů; průměr 7,81; řešilo 6 studetů a) Zkuste vlastími slovy popsat postup kostrukce itervalových odhadů středí hodoty v případě obecého rozděleí měřeých dat (postačí vlastími

Více

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí:

Geometrická optika. Vznikají tak dva paprsky odražený a lomený - které spolu s kolmicí v místě dopadu leží v jedné rovině a platí: Geometrická optika Je auka o optickém zobrazováí. Byla vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým ejsou potřeba zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře

Více

Úloha II.S... odhadnutelná

Úloha II.S... odhadnutelná Úloha II.S... odhadutelá 10 bodů; průměr 7,17; řešilo 35 studetů a) Zkuste vlastími slovy popsat, k čemu slouží itervalový odhad středí hodoty v ormálím rozděleí a uveďte jeho fyzikálí iterpretaci (postačí

Více

Měření indexu lomu pevných látek a kapalin refraktometrem

Měření indexu lomu pevných látek a kapalin refraktometrem F Měřeí idexu lomu pevých látek a kapali refraktometrem Úkoly : 1. Proveďte kalibraci refraktometru 2. Změřte idex lomu kapali 1-3 3. Změřte idex lomu ezámých vzorků optických skel Postup : 1. Pricip měřeí

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA

OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA OPTICKÉ VLASTNOSTI OKA. ROZKLAD SVĚTLA HRANOLEM 1. OPTICKÉ VLASTNOSTI OKA Stavbu lidského oka znáte z vyučování přírodopisu. Zopakujte si ji po dle obrázku. Komorová tekutina, oční čočka a sklivec tvoří

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Základy korelační analýzy

Základy korelační analýzy Základy koelačí aalýzy Doposud jsme se z hlediska biostatistiky zabývali hodoceím spojitých a diskétích áhodých veliči v jedé ebo více odlišitelých expeimetálích skupiách. Tato kapitola představuje úvod

Více

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ 3..- 4.. 2009 DIVYP Bro, s.r.o., Filipova, 635 00 Bro, http://www.divypbro.cz UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ autoři: prof. Ig. Mila Holický, PhD., DrSc., Ig. Karel Jug, Ph.D., doc. Ig. Jaa Marková,

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Název: Čočková rovnice

Název: Čočková rovnice Název: Čočková rovnice Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Matematika) Tematický celek: Optika Ročník: 5. (3.

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Instalační manuál inels Home Control

Instalační manuál inels Home Control OBSAH 1) Úvod... 3 2) Kofigurace chytré krabičky... 3 3) Nahráí aplikace do TV... 3 4) Nastaveí IP adresy do TV... 4 5) Nastaveí chytré krabičky pomocí SmartTV aplikace... 4 5.1) Půdorys (floorpla)...

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Gullstrandovo schématické oko

Gullstrandovo schématické oko Gullstrandovo schématické oko oční koule Allvar Gullstrand Narodil se ve Švédsku v roce 1862. Otec byl proslulým lékařem. Studoval lékařství v Uppsale, Vídni a Stockholmu. Svůj výzkum zaměřil na dioptriku,

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

ZÁKLADNÍ POJMY OPTIKY

ZÁKLADNÍ POJMY OPTIKY Záš pojmy A. Popiš aspoň jede fyzikálí experimet měřeí rychlosti světla. - viz apříklad Michelsoův, Fizeaův, Roemerův pokus. Defiuj a popiš fyzikálí veličiu idex lomu. - je to bezrozměrá fyzikálí veličia

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Gullstrandovo schématické oko

Gullstrandovo schématické oko Gullstrandovo schématické oko oční koule Alvar Gullstrand Narodil se ve Švédsku v roce 1862. Otec byl proslulým lékařem. Studoval lékařství v Uppsale, Vídni a Stockholmu. Svůj výzkum zaměřil na dioptriku,

Více