Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody

Rozměr: px
Začít zobrazení ze stránky:

Download "Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody"

Transkript

1 Předmět: MA04 Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Sledovat informace na webových stránkách vyučujícího (o zkoušce, část studijních materiálů aj.): stránka FSv ČVUT katedra matematiky Chleboun nebo Hlavní literatura zdroje na webové stránce přednášejícího skripta O. Zindulka: MA 3 skripta K. Rektorys: MA 43 (knihovna)

2 Volitelný předmět: Seminář k Matematice 4 (101XSM4) Více informací na webu. Kdy a kde: středa 14:00 15:40, B Jacobiova metoda 10 0 Gaussova Seidelova metoda max norma max norma norma rezidua norma chyby Cislo iterace Superrelaxacni metoda (SOR) norma rezidua norma chyby Cislo iterace max norma max norma norma rezidua norma chyby Cislo iterace Metoda sdruzenych gradientu norma rezidua norma chyby Cislo iterace

3 Magisterské studium náročnější úroveň než bak. studium Bakalář jak? Inženýr jak a proč? Matematika řešení příkladů Cíl předmětu: Trocha matematické teorie stojící za řešením úloh, s nimiž se setkáte i v jiných předmětech (NAK). Připomenutí matematických souvislostí. Částečné opakování. Procvičení mozku; abstraktní myšlení. Rozšíření obzorů. Základy mostu dorozumění při spolupráci s odborníky, kteří hovoří náročnějším matematickým jazykem (absolventi FJFI ČVUT, MFF UK aj.).

4 Má to smysl? V životě někdy rozhodují maličkosti. Drobná znalostní převaha může způsobit, že najdete místo nebo si ho udržíte. Možná ponesete odpovědnost za projekty s důležitým podílem výpočtů. I když na výpočty budete mít odborníky, úspěch projektu a vaše postavení ve firmě bude záviset na tom, zda s nimi budete schopni odborně spolupracovat. (Příběh přehrady Orlík.) Častá námitka: Proč se zatěžovat teorií nebo základy elementárních numerických metod, když technické úlohy stejně počítáme skvělým komerčním programem? (Protože černé skříňky jsou nebezpečné. Sleipner, 1991) Diplom by měl být určitou zárukou schopností absolventa.

5 Příběh Orlík: Jak rychle betonovat? Uměle chladit? The University of Texas at Austin Matematické modelování ( ): skupinu vedl Ivo Babuška ( 1926, stavební inženýr ČVUT 1949, MÚ ČSAV, od 1968 v USA, čestný doktorát ČVUT 2007); snad až aritmetických operací na ručních kalkulačkách. Zásadní význam měla spolupráce s (prof. dr.) ing. Ladislavem Mejzlíkem (DrSc.) ( , absolvent ČVŠT v Brně). Obě strany si navzájem rozuměly!!!

6 Příběh Sleipner: kolaps vrtné plošiny pro těžbu ropy z mořského dna, 1991, škoda USD arnold/disasters/sleipner.html

7 S chutí do práce.

8 Komplexní čísla (množinu všech komplexních čísel značíme C) Imaginární osa b α r Reálná osa z=a+ib a z = a+ib z = r(cosα+i sinα) = re iα r = z = a 2 + b 2 a cosα = a 2 + b 2 b sinα = a 2 + b 2 Číslo z = a ib je komplexně sdružené k číslu z = a+ib, w + z = w + z a wz = w z. Počítání s komplexními čísly dle obvyklých pravidel algebry a s využitím vztahu i 2 = 1.

9 Vlastní čísla a vlastní vektory matic Nechť A je čtvercová matice. Nenulový sloupcový vektor x se nazývá vlastní vektor matice A, platí-li Ax = λx pro nějaké číslo λ C. Toto λ se nazývá vlastní číslo matice A odpovídající vlastnímu vektoru x. λ je vlastní číslo matice A (právě tehdy, když) λ je kořenem charakteristického polynomu matice A, tj. det(a λi) = 0. Návod pro výpočet vl. čísel malé matice! Kořeny mohou být násobné i komplexní (čísla). Vl. vektor(y) odpovídající vl. č. λ získáme vyřešením soustavy lin. alg. rovnic (A λi)x = 0. Počet lineárně nezávislých vl. vektorů může být menší než počet vl. čísel (braných s násobností). Využití: vlastnosti metod NLA, řešení soustav LODR Ẋ = AX + b, hlavní směry napětí a hlavní napětí, vlastní frekvence a vlastní tvary kmitání, Google...

10 Nechť A je čtvercová matice (reálná nebo komplexní). Matice A je singulární (tj. neexistuje A 1, regulární: existuje A 1 ) právě tehdy, když má vlastní číslo 0. (λ, x) vlastní pár matice A = (λ 2, x) vlastní pár matice A 2. Existuje-li A 1, je (λ, x) vlastním párem matice A právě tehdy, když (1/λ, x) je vlastním párem matice A 1 (tj. A i A 1 mají stejné vlastní vektory). Je-li (λ, x) vlastní pár reálné matice A, pak také ( λ, x) je vlastním párem matice A. Reálná nesymetrická matice může mít komplexní vl. čísla a vektory! Je-li A reálná a symetrická, pak všechna její vlastní čísla jsou reálná a vlastní vektory odpovídající různým vlastním číslům jsou navzájem kolmé. n i=1 λ i = tr A, kde tr A = n i=1 a n ii, i=1 λ i = det A

11 Definice Množina všech vlastních čísel matice se nazývá spektrum matice. Spektrum matice A budeme označovat σ(a). Definice Reálnému číslu (A) = max{ λ : λ σ(a)} říkáme spektrální poloměr matice A.

12 Geršgorinova věta Nechť A = (a ij ) je komplexní nebo reálná čtvercová matice n-tého řádu, tj. typu (n, n). Potom všechna vlastní čísla matice A leží v komplexní rovině ve sjednocení n i=1 K i kruhů K i o středu a ii a poloměru n j=1, j i a ij : n K i = z C : a ii z a ij, i = 1, 2,...,n. j=1, j i V každé komponentě tohoto sjednocení leží právě tolik vlastních čísel matice A, z kolika kruhů tato komponenta vznikla. Speciálně v izolovaném kruhu leží právě jedno vlastní číslo.

13 Příklad Je dána matice A = Pomocí Geršgorinovy věty zjistěte, a) zda je zaručeno, že matice A je regulární; b) zda by číslo 4+2i mohlo být vlastním číslem matice A; c) zda by číslo 4+2i mohlo být vlastním číslem matice A. Odhadněte spektrální poloměr. Vypočtěte vlastní čísla, spektrální poloměr, případně vlastní vektory.

14 Řešení: Spočtěme vlastní čísla a porovnejme s odhady danými Geršgorinovými kružnicemi. 1 λ 0 5 det(a λi) = det 0 2 λ λ Kořeny, tj. vlastní čísla = (1 λ)(2 λ)(3 λ)+10(2 λ) = (2 λ)(3 4λ+λ ) = (2 λ)(λ 2 4λ+13) det(a λi) = 0 λ 1 = 2+3i, λ 2 = 2 3i, λ 3 = 2

15 G. kruznice, vl. císla λ, spektr. polomer, jeho h. odhad 6 4 Imaginární osa λ 1 S 1 S 2 S 3 λ 3 4 λ Reálná osa a) G. věta regulárnost nezaručí (vypočtená vl. čísla ano). b) Ne (stačí G. věta). c) G. věta připouští, že mohlo. Spektrální poloměr přesný (A) = 13, odhadnutý dle G. věty Geršgorin (A) = 6,

16 Vlastní vektory: řešíme (A λi)v = (0, 0, 0) T λ 1 = 2+3i 1 3i i 0 3i 0 0 3i i i i 0 3i 0 v 1 = 1 3i 0 r, r C\{0} Zkouška: Av 1 = λ 1 v i 0 = 11 3i 0 a (2+3i) 1 3i 0 = 11 3i i 2 4+6i

17 λ 1 = v 1 = 1 p, p C\{0} Zk i i λ 2 = 2 3i 0 3i 0 0 3i i i i 0 3i i v 2 = 0 2 q, q C\{0} Zk.

18 Příklad Je dána matice 1+3i 1+i 2/(1+i) A = 1/2 3 2i (1+i)/i. 2i (1+i)/2 3i Pomocí Geršgorinovy věty zjistěte, a) zda je zaručeno, že matice A je regulární; b) zda by číslo 2+3i mohlo být vlastním číslem matice A; c) zda by číslo 3 2i mohlo být vlastním číslem matice A; d) zda by číslo 2/5 i/5 mohlo být vlastním číslem matice A 1. Odhadněte spektrální poloměr. Geršgorinovy kruhy Kruh K 1 : S 1 = [1, 3], r 1 = 2 2 < 3 Kruh K 2 : S 2 = [3, 2], r 2 = < 2 Kruh K 3 : S 3 = [0, 3], r 3 = < 3

19 G. kruznice, vl. cisla λ, spektr. polomer, jeho h. odhad 6 4 λ 1 S 1 Imaginární osa S 3 S 2 λ 3 4 λ Reálná osa a) ano b) ano c) ne, protože 3 2i ( 3i) = 3+i = 10 > 3 1 d) ne, neboť = 2+i nemůže být vl. č. matice A. 2/5 i/5

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: úterý 14:00-15:40 nebo dle dohody

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: úterý 14:00-15:40 nebo dle dohody Předmět: MA4 Vyučující: Jan Chleboun, místnost B-35, linka 3866 (jan.chleboun@cvut.cz) Konzultace: úterý 14:-15:4 nebo dle dohody Sledovat informace na webových stránkách vyučujícího (o zkoušce, studijní

Více

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního

Více

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29

Matematika 1 MA1. 2 Determinant. 3 Adjungovaná matice. 4 Cramerovo pravidlo. 11. přednáška ( ) Matematika 1 1 / 29 Matematika 1 11. přednáška MA1 1 Opakování 2 Determinant 3 Adjungovaná matice 4 Cramerovo pravidlo 5 Vlastní čísla a vlastní vektory matic 6 Zkouška; konzultace; výběrová matematika;... 11. přednáška (15.12.2010

Více

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011

Iterační metody řešení soustav lineárních rovnic. 27. prosince 2011 Iterační metody řešení soustav lineárních rovnic Michal Čihák 27. prosince 2011 Přímé metody řešení soustav lineárních rovnic V přednáškách z lineární algebry jste se seznámili s několika metodami řešení

Více

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus. (1 [B] Nechť A : R 6 R 6 je lineární zobrazební takové, že A 26 = I. Najděte lineární prostory V 1, V 2 a V 3 takové, že R 6 = V 1 V 2 V 3 dim V 1 = dim V 2 = dim V 3 AV 1 V 1, AV 2 V 2 a AV 3 V 3 (2 [B]

Více

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak,

Podobnost matic. Definice 8.6. Dány matice A, B M n (C). Jestliže existuje regulární matice P M n (C) tak, Podobnost matic Definice 84 Dány matice A, B M n (C) Jestliže existuje regulární matice P M n (C) tak, že B = P 1 AP, pak říkáme, že matice B je podobná matici A a píšeme A B Takto zavedená binární relace

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R}

[1] Motivace. p = {t u ; t R}, A(p) = {A(t u ); t R} = {t A( u ); t R} Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost s diagonální

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vektorový (lineární) prostor (připomenutí) Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost

Více

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.

Matice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule. Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,

Více

Soustavy lineárních rovnic-numerické řešení. October 2, 2008

Soustavy lineárních rovnic-numerické řešení. October 2, 2008 Soustavy lineárních rovnic-numerické řešení October 2, 2008 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22 x 2 + + a 2n x n = b 2... a n1 x 1 + a n2 x 2 + + a

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Lineární (vektorový) prostor Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Arnoldiho a Lanczosova metoda

Arnoldiho a Lanczosova metoda Arnoldiho a Lanczosova metoda 1 Částečný problém vlastních čísel Ne vždy je potřeba (a někdy to není ani technicky možné) nalézt celé spektrum dané matice (velké řídké matice). Úloze, ve které chceme aproximovat

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

2.6. Vlastní čísla a vlastní vektory matice

2.6. Vlastní čísla a vlastní vektory matice 26 Cíle V této části se budeme zabývat hledáním čísla λ které je řešením rovnice A x = λ x (1) kde A je matice řádu n Znalost řešení takové rovnice má řadu aplikací nejen v matematice Definice 261 Nechť

Více

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti

PROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,

Více

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího).

Četba: Texty o lineární algebře (odkazy na webových stránkách přednášejícího). Předmět: MA 4 Dnešní látka Vlastní čísla a vektory Google Normovaný lineární prostor Normy matic a vektorů Symetrické matice, pozitivně definitní matice Gaussova eliminační metoda, podmíněnost matic Četba:

Více

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n

Matice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n [1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Linearní algebra příklady

Linearní algebra příklady Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 15 Vlastní čísla a vlastní vektory V této a následujících kapitolách budeme zkoumat jeden z nejdůležitějších pojmů tohoto kurzu. Definice15.1 Buď A:V Vlineárnízobrazení,Vvektorovýprostornad tělesem

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny

NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte

Více

2. Schurova věta. Petr Tichý. 3. října 2012

2. Schurova věta. Petr Tichý. 3. října 2012 2. Schurova věta Petr Tichý 3. října 2012 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14. Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V

Více

stránkách přednášejícího.

stránkách přednášejícího. Předmět: MA 4 Dnešní látka Iterační metoda Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Superrelaxační metoda (metoda SOR) Metoda sdružených gradientů Četba: Text o lineární algebře v Příručce

Více

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda

Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Předmět: MA 4 Dnešní látka Opakování: normy vektorů a matic, podmíněnost matic Jacobiova iterační metoda Gaussova-Seidelova iterační metoda Četba: Text o lineární algebře v Příručce přežití na webových

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Algoritmus pro hledání vlastních čísel kvaternionových matic

Algoritmus pro hledání vlastních čísel kvaternionových matic Úvod Algoritmus pro hledání vlastních čísel kvaternionových matic Bc. Martin Veselý Fakulta jaderná a fyzikálně inženýrská Katedra softwarového inženýrství v ekonomii Skupina aplikované matematiky a stochastiky

Více

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC

2.6. VLASTNÍ ČÍSLA A VEKTORY MATIC .6. VLASTNÍ ČÍSLA A VEKTORY MATIC V této kapitole se dozvíte: jak jsou definována vlastní (charakteristická) čísla a vektory čtvercové matice; co je to charakteristická matice a charakteristický polynom

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic irko Navara Centrum strojového vnímání, katedra kybernetiky elektrotechnická fakulta ČVUT, Praha http://cmpfelkcvutcz/~navara 30 11 2016 Úloha: Hledáme řešení

Více

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0.

a vlastních vektorů Příklad: Stanovte taková čísla λ, pro která má homogenní soustava Av = λv nenulové (A λ i I) v = 0. Výpočet vlastních čísel a vlastních vektorů S pojmem vlastního čísla jsme se již setkali například u iteračních metod pro řešení soustavy lineárních algebraických rovnic. Velikosti vlastních čísel iterační

Více

(Cramerovo pravidlo, determinanty, inverzní matice)

(Cramerovo pravidlo, determinanty, inverzní matice) KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Soustavy lineárních rovnic-numerické řešení

Soustavy lineárních rovnic-numerické řešení Soustavy lineárních rovnic-numerické řešení November 9, 2008 Soustavy lineárních rovnic-numerické řešení 1 / 52 (Systém lin. rovnic) Systém rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a 22

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory Kapitola 11 Vlastní čísla a vlastní vektory Základní motivace pro studium vlastních čísel a vektorů pochází z teorie řešení diferenciálních rovnic Tato teorie říká, že obecné řešení lineární diferenciální

Více

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x).

vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých mocnin). Rozhodněte o definitnosti kvadratické formy κ(x). Řešené příklady z lineární algebry - část 6 Typové příklady s řešením Příklad 6.: Kvadratickou formu κ(x) = x x 6x 6x x + 8x x 8x x vyjádřete ve tvaru lineární kombinace čtverců (lineární kombinace druhých

Více

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic

1/10. Kapitola 12: Soustavy lineárních algebraických rovnic 1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11

Více

Připomenutí co je to soustava lineárních rovnic

Připomenutí co je to soustava lineárních rovnic Připomenutí co je to soustava lineárních rovnic Příklad 2x 3y + z = 5 3x + 5y + 2z = 4 x + 2y z = 1 Soustava lineárních rovnic obecně Maticový tvar: a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21 x 1 + a

Více

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i. KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení

Více

Podobnostní transformace

Podobnostní transformace Schurova věta 1 Podobnostní transformace a výpočet vlastních čísel Obecný princip: Úloha: Řešíme-li matematickou úlohu, je často velmi vhodné hledat její ekvivalentní formulaci tak, aby se řešení úlohy

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců

Čtvercové matice. Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant matice Čtvercové matice Čtvercová matice je taková matice, jejíž počet řádků je roven počtu jejích sloupců Determinant je zobrazení, které přiřadí každé čtvercové matici A skalár (reálné číslo).

Více

Co je obsahem numerických metod?

Co je obsahem numerických metod? Numerické metody Úvod Úvod Co je obsahem numerických metod? Numerické metody slouží k přibližnému výpočtu věcí, které se přesně vypočítat bud nedají vůbec, nebo by byl výpočet neúměrně pracný. Obsahem

Více

Numerické řešení soustav lineárních rovnic

Numerické řešení soustav lineárních rovnic Numerické řešení soustav lineárních rovnic Mirko Navara http://cmpfelkcvutcz/~navara/ Centrum strojového vnímání, katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 04a http://mathfeldcvutcz/nemecek/nummethtml

Více

Soustavy linea rnı ch rovnic

Soustavy linea rnı ch rovnic [1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.

Více

Matematika I A ukázkový test 1 pro 2014/2015

Matematika I A ukázkový test 1 pro 2014/2015 Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě

Více

Teorie náhodných matic aneb tak trochu jiná statistika

Teorie náhodných matic aneb tak trochu jiná statistika Teorie náhodných matic aneb tak trochu jiná statistika B. Vlková 1, M.Berg 2, B. Martínek 3, O. Švec 4, M. Neumann 5 Gymnázium Uničov 1, Gymnázium Václava Hraběte Hořovice 2, Mendelovo gymnázium Opava

Více

Soustavy lineárních rovnic a determinanty

Soustavy lineárních rovnic a determinanty Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny

Více

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat

Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Všechno, co jste kdy chtěli vědět o maticích, ale báli jste se zeptat Čtvercová matice n n, např. může reprezentovat: A = A A 2 A 3 A 2 A 22 A 23 A 3 A 32 A 33 matici koeficientů soustavy n lineárních

Více

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci FP - SEMINÁŘ Z NUMERICKÉ MATEMATIKY Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci OBSAH A CÍLE SEMINÁŘE: Opakování a procvičení vybraných

Více

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s

Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru. Kvadratická forma v n proměnných je tak polynom n proměnných s Kapitola 13 Kvadratické formy Definice 13.1 Kvadratická forma v n proměnných s koeficienty z tělesa T je výraz tvaru f(x 1,..., x n ) = a ij x i x j, kde koeficienty a ij T. j=i Kvadratická forma v n proměnných

Více

Simulace (nejen) fyzikálních jevů na počítači

Simulace (nejen) fyzikálních jevů na počítači Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy

Více

Kapitola 11: Vektory a matice:

Kapitola 11: Vektory a matice: Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i

Více

Kapitola 11: Vektory a matice 1/19

Kapitola 11: Vektory a matice 1/19 Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =

Více

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:

Více

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a

Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy

Více

(u, v) u. v. cos φ =

(u, v) u. v. cos φ = LA 3. cvičení Ortogonalita, Gramm-Schmitův ortonormalizační proces Lukáš Pospíšil, Martin Hasal,2 Ortogonální systém vektorů Poznámka: Motivace - připomeňme si Kosinovu větu v obecném tvaru kde φ je úhel

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE

HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA HODNOST A DETERMINANT MATICE, INVERZNÍ MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s

Více

ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A

ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A ČTVERCOVÉ MTICE Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det() značíme determinant čtvercové matice Regulární matice hodnost je rovna jejímu řádu determinant je

Více

Nelineární optimalizace a numerické metody (MI NON)

Nelineární optimalizace a numerické metody (MI NON) Nelineární optimalizace a numerické metody (MI NON) Magisterský program: Informatika Obor: Teoretická informatika Katedra: 18101 Katedra teoretické informatiky Jaroslav Kruis Evropský sociální fond Praha

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

)(x 2 + 3x + 4),

)(x 2 + 3x + 4), 3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem

Více

15 Maticový a vektorový počet II

15 Maticový a vektorový počet II M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Lineární algebra : Skalární součin a ortogonalita

Lineární algebra : Skalární součin a ortogonalita Lineární algebra : Skalární součin a ortogonalita (15. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 30. dubna 2014, 09:00 1 2 15.1 Prehilhertovy prostory Definice 1. Buď V LP nad

Více

Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci

Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v

Více

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR

Fakt. Každou soustavu n lineárních ODR řádů n i lze eliminací převést ekvivalentně na jednu lineární ODR DEN: ODR teoreticky: soustavy rovnic Soustava lineárních ODR 1 řádu s konstantními koeficienty je soustava ve tvaru y 1 = a 11 y 1 + a 12 y 2 + + a 1n y n + b 1 (x) y 2 = a 21 y 1 + a 22 y 2 + + a 2n y

Více

Lineární algebra. Soustavy lineárních rovnic

Lineární algebra. Soustavy lineárních rovnic Lineární algebra Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ.1.07/2.2.00/28.0326

Více

Lineární algebra. Matice, operace s maticemi

Lineární algebra. Matice, operace s maticemi Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo

Více

Lineární algebra : Vlastní čísla, vektory a diagonalizace

Lineární algebra : Vlastní čísla, vektory a diagonalizace Lineární algebra : Vlastní čísla, vektory a diagonalizace (14. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 21. dubna 2014, 19:37 1 2 14.1 Vlastní čísla a vlastní vektory Nechť je

Více

AVDAT Vektory a matice

AVDAT Vektory a matice AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x

Více

7. Lineární vektorové prostory

7. Lineární vektorové prostory 7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární

Více

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je

Více

Numerické metody lineární algebry

Numerické metody lineární algebry Numerické metody lineární algebry 1 Úvod 11 Úlohy lineární algebry 1 Řešení soustav lineárních rovnic A x = b Řešení soustavy s regulární čtvercovou maticí A řádu n n pro 1 nebo více pravých stran Výpočet

Více

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3, Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo

10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo 0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový

Více

DRN: Soustavy linárních rovnic numericky, norma

DRN: Soustavy linárních rovnic numericky, norma DRN: Soustavy linárních rovnic numericky, norma Algoritmus (GEM: Gaussova eliminace s částečným pivotováním pro převod rozšířené regulární matice na horní trojúhelníkový tvar). Zadána matice C = (c i,j

Více

Úlohy nejmenších čtverců

Úlohy nejmenších čtverců Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.

Více

Matematika 2 pro PEF PaE

Matematika 2 pro PEF PaE Determinanty / 8 Matematika 2 pro PEF PaE 3 Determinanty Přemysl Jedlička Katedra matematiky, TF ČZU Permutace Determinanty Výpočet determinantu z definice 2 / 8 Permutací množiny {,, n} rozumíme prosté

Více

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2, Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se

Více

CHARAKTERISTICKÉ VEKTORY

CHARAKTERISTICKÉ VEKTORY Kapitola 3 CHARAKTERISTICKÉ VEKTORY Nyní se budeme zabývat vlastnostmi matic lineárních zobrazení A: V V, kde V je vektorový prostor dimenze n Protože každý komplexní n -dimenzionální vektorový prostor

Více