evod povahy kritérií v modelech vícekriteriální analýzy variant Anotace Klí ová slova Annotation Keywords Úvod

Rozměr: px
Začít zobrazení ze stránky:

Download "evod povahy kritérií v modelech vícekriteriální analýzy variant Anotace Klí ová slova Annotation Keywords Úvod"

Transkript

1 Převod povhy krtérí v odelech vícekrterální nlýzy vrnt Mln Houšk, Ludl Döeová Ktedr operční systéové nlýzy PEF ČZU v Prze e-l: housk@pef.czu.cz, doeov@pef.czu.cz Anotce Př řešení úloh vícekrterální nlýzy vrnt se čsto relzuje procedur, která před vlstní výpočte odelu určtou etodou nebo etod převede všechn krtér tk, by všechn byl buď nlzční, nebo (čstěj xlzční. Článek ukzuje probletckou kobnc převodní procedury etody VAV, př jejíž použtí dochází k hrubéu zkreslení výsledků, nvrhuje řešení této probléové stuce. Klíčová slov Vícekrterální nlýz vrnt, etod TOPSS, povh krtér Annotton When the ultple crter decson-kng odel s solved, the procedure for trnsforton of crter type s often relzed, to ll the crter types would be cost or (usully beneft. The rtcle shows the proble stuton csed by the wrong cobnton of trnsforton procedure nd the MCDM ethod, when the results of the odel coputton re bsed, nd suggests soluton of ths proble stuton. Keywords Multple Crter Decson-Mkng, TOPSS Method, Crter Type Úvod Př řešení úloh vícekrterální nlýzy vrnt se čsto relzuje procedur, která před vlstní výpočte odelu určtou etodou nebo etod převede všechn krtér tk, by všechn byl buď nlzční, nebo (čstěj xlzční. S tkto trnsforovný odele se poto nohe lépe příjeněj prcuje, ť jž se počítá ručně (přípdně s využtí výpočetní technky, která le slouží pouze jko ntelgentní klkulčk, npříkld tbulkového procesoru, nebo ť se progrují obecné etody výpočtu odelů vícekrterální nlýzy vrnt v nějké progrovcí jzyce. V toto přípdě ( utoř článku s ní jí osobní zkušenost je úspor prcnost př tvorbě progru zcel evdentní, zején př sestvování deální bzální vrnty; preferovná hodnot je vždy xu, ztíco nejhorší hodnot je vždy nu. Postupů, jk trnsforc krtérí z nlzčních n xlzční provést, je celá řd jsou detlně popsány v ltertuře (npř. [], []. Mez čsto používné způsoby ptří npříkld vynásobení všech hodnot ve sloupc krterální tce s nlzční krtére hodnotou nebo pro kždou vrntu vypočítt, o kolk je její hodnocení lepší než hodnocení nejhůře hodnocené vrnty podle tohoto krtér. ohužel, když je druhý způsob čsto používný, nkde v ltertuře jse nenšl upozornění, že ho nelze užít pro kždou etodu propočtu odelu vícekrterální nlýzy vrnt. V toto článku ukzujee, k čeu ůže vést použtí tohoto způsobu trnsforce odelu př plkc etody TOPSS n trnsforovný odel včetně názorného popsu důvodů, které toto způsobují. Pozntky uvedené v toto článku lze poto s úspěche využít př výuce této oblst etod operční nlýzy.

2 Probléová stuce její příčny Aby se jsně projevl problé, n který chcee v této prác upozornt, sestvl jse fktvní úlohu vícekrterální nlýzy vrnt, která obshuje deset vrnt, které jsou hodnoceny podle dvou rovnocenných krtérí, z nchž první je xlzční druhé nlzční. Model bude propočítán etodou TOPSS dvkrát; prlelně pro původní dt bez předchozího převodu povhy druhého krtér pro trnsforovný odel, ve které jsou obě krtér xlzční, přčež převod povhy krtérí byl relzován jko výpočet bsolutního zlepšení ktuální vrnty oprot nejhorší vrntě. Výchozí údje obě krterální tce jsou v následující tbulce: f x f n f x f x 4 5, ,8 5 0, , ,6 4 4,85 4 0, , ,4 6 4,87 6 0, , , , , , , Tbulk : Výchozí trnsforovná krterální tce Propočtee-l odel etodou TOPSS, dostnee tyto výsledky: c c poř. poř. 0,0 0, ,9 0, ,3 0, ,957 0, ,6 0, ,88 0, ,554 0, ,09 0, ,335 0, ,76 0, Tbulk : Výsledky propočtu etodou TOPSS kde c je ndex vzdálenost vrnt od bzální vrnty, podle kterého se vrnty sestupně řdí. Z tbulky vyplývá jedn vel zjívá věc: v přípdě, kdy jse počítl s netrnsforovný dty, byl vrnt 8 klsfkován jko nejhorší, ztíco v přípdě, kdy jse druhé krtéru převedl výše uvedený způsobe n xlzční, byl tto vrnt klsfkován jko nejlepší; původně nejlepší vrnt 4 klesl n třetí ísto. Proč je tento způsob převodu povhy krtérí nekorektní pro etodu TOPSS? Odpověď n tuto otázku lze nlézt ve vzthu pro stndrdzc krterálních hodnot. Aby byl elnován vlv různých ěřítek, ve kterých jsou kvntfkovány hodnoty vrnt podle různých krtérí, používá se vzth:

3 r j, ( kde jsou hodnoty krterální tce, ze kterých se vypočtou stndrdzovné hodnoty r. Př trnsforc povhy krtér nlyzovný způsobe jsou počítány pro hodnoty ve sloupc kždého nlzčního krtér v krterální tc hodnoty jko x( -. ( ' Dosdíe-l ( do (, vypočtee hodnoty r jko r x( x( - - j. (3 Příčn rozdílu ve výsledcích výpočtu je evdentní z níže uvedených grfů. Pokud zchytíe vrnty v grfcké podobě jko body v xy bodové grfu, kde je n kždé ose vyneseno jedno krtéru, zdá se být všechno v pořádku, protože se pouze zěnlo pořdí vrnt podle nlzčního krtér, přčež bsolutní hodnoty rozdílu ez vše dvojce vrnt zůstly beze zěny (vyplývá z (: Obrázek : Výchozí krterální hodnoty vrnt pro ob odely f ( n Výchozí hodnoty f (x Výchozí hodnoty f ( x f ( x N následující obrázku le uvádíe grfy pro stndrdzovné hodnoty r podle ( resp. (3: Obrázek : Stndrdzovné hodnoty vrnt pro ob odely

4 f (n 0,3 0,5 Stndrdzovné hodnoty f (x 0,3 0,5 Stndrdzovné hodnoty 8 0, 0,5 0, 0,5 0, 8 0, 0,05 0, ,05 0, 0,5 0, 0,5 f (x 0 0 0,05 0, 0,5 0, 0,5 f ( x Nejzjívější zároveň nejnázornější je posun stndrdzovných hodnot vrnty 8. Protože etod TOPSS prcuje s eukldovskou vzdáleností od deální bzální vrnty, je vysvětlení prosté; vzdálenost od deální vrnty pro vrntu 8 zůstl stejná, le výrzně se zvýšl její vzdálenost od bzální vrnty, číž s v konečné hodnocení rozhodující způsobe polepšl. Stndrdzce krterálních hodnot podle ( totž bere v úvhu význnost rozdílu, tkže npříkld jestlže je hodnot rozdílu ez krterální hodnot dvou vrnt 0,5, je tento rozdíl povžován z význnější, jestlže jsou bsolutní hodnoty krtérí 0 0,5 než npříkld 00 00,5, což le nprosto odpovídá chápání význnost rozdílů v prx. Protože je př trnsforc povhy krtérí podle ( utotcky přřzen bzální vrntě hodnot 0, ť už je její původní hodnot v řádu desítek, stovek, lonů nebo jkékolv jné, je původ zkreslení výsledků objsněn. Řešení Problé by vyřešl návrh lterntvního způsobu trnsforce krterálních hodnot, podle kterého by zůstl stejný nejen rozdíl ez deální bzální hodnotou vrnt podle trnsforovného krtér (tto vlstnost je splněn nyní, vz obr., le rozdíl ez stndrdzovnou deální bzální hodnotou vrnt podle trnsforovného krtér. V to přípdě by všechny vzdálenost zůstly zchovány ke zkreslení výsledků by nedošlo. Př stndrdzc hodnot podle ( (tj. před převode povhy krtér lze obecně určt hrnce ntervlu, do kterého ptří všechny stndrdzovné hodnoty vrnt podle dného krter j r jko: n( r (4 x( r. (5 Po převodu povhy tohoto krtér se obecný vzth pro určení horní hrnce ntervlu zění n

5 x( n( r, (6 x( - přčež spodní hrnce ntervlu r 0. Dále určíe, z jkých podínek je šířk obou ntervlů stejná. Musí pltt x( n( x( n( x( - z čehož po úprvě obdržíe podínku x(, (7. (8 Pokud náhodou vzth (8 pltí pro konkrétní vstupní dt, je ožno provést převod povhy krtér podle vzthu ( nedojde ke zkreslení výsledku. Pltnost vzthu (8 všk sozřejě nelze obecně předpokládt. Proto dále určíe konstntu c, jejíž přčtení k původní dtů (tedy krterální hodnotá vrnt podle dného krtér by pltnost vzthu obecně zjstlo pro lbovolná dt: x( + c ( + c z čehož je ožno vyjádřt konstntu c jko, (9 ( c x( x( (0 Ze vzthu (0 vychází náš návrh pro úprvu trnsforce (, která bude vyhovovt lbovolný dtů. Dosdíe-l (0 do (, dostnee ' tkže ' ( x( x( +, (. ( Pokud tedy nebudee př převodu povhy krtér zjšťovt zlepšení vrnty oprot nejhorší vrntě (, le jko zlepšení vrnty oprot dvojnásobku průěru krterálních hodnot vrnt podle převáděného krtér ( dostnee poocí etody TOPSS stejné výsledky jko kdybycho povhu krtérí nepřeváděl. Pokud plkujee nvržený postup n výše uvedený příkld, dostnee následující krterální hodnoty:

6 f x f n f x f x 4 5,3 4 4,54 5 4,8 5 5, , ,4 4 4,85 4 4, , ,94 6 4,87 6 4, , , , , , , ,54 průěr 4,9 Tbulk 3: Původní podle nvrženého vzthu ( trnsforovná krterální tce Po plkc etody TOPSS obdržíe tyto výsledky: c c poř poř 0,05 0, ,89 0, ,36 0, ,9574 0, ,63 0, ,8807 0, ,5536 0, ,094 0, ,3353 0, ,7609 0, Tbulk 4: Výsledky propočtu obou odelů Je vdět, že výsledky propočtu obou odelů jsou nprosto dentcké. Výše uvedené odvození dokzuje, že tou tk bude pro lbovolná vstupní dt. Závěr Nvrhl jse postup, který n rozdíl od stávjícího nezkreslí výsledky propočtu odelu vícekrterální nlýzy vrnt etodou TOPSS tento postup jse ukázl n konkrétní příkldě. Postup řeší výpočetní probléy; jeho nevýhodou je poněkud obtížnější nterpretce trnsforovných krterálních hodnot vrnt; ztíco se původně prcovlo s pochoptelný poje zlepšení oprot nejhorší vrntě, terín zlepšení oprot dvojnásobku průěrné hodnoty nezsvěcenéu užvtel přílš noho nenpoví. Tento fkt sozřejě le neůže být důvode, proč nvržený postup zvrhnout neplkovt. Ltertur [] Chng-L Hwng, Kwngsun Yoon: Multple Attrbute Decson Mkng, Sprnger Verlng erln Hedelberg New York 98 [] Fl P.,Jblonský J., Mňs M.: Vícekrterální rozhodování,vše Prh 997

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co

je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové

Více

Zadání příkladů. Zadání:

Zadání příkladů. Zadání: Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Algoritmus určování rovnice roviny pro laserové skenování

Algoritmus určování rovnice roviny pro laserové skenování Algortus určování rovnce rovny pro lserové skenování Úvod Ing Bronslv Kosk, Ing Mrtn Štroner, PhD, Doc Ing Jří Pospíšl, CSc, ČVU - Fkult stvební, Prh V rác řešení projektu GA ČR Moderní optoelektroncké

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Využití analýzy odchylek při hodnocení ziskovosti finančních institucí

Využití analýzy odchylek při hodnocení ziskovosti finančních institucí 5. meznárodní konference Řízení modelování fnnčních rzk Ostrv VŠB-TU Ostrv, Ekonomcká fkult, ktedr Fnncí 8. 9. září 2010 Využtí nlýzy odchylek př hodnocení zskovost fnnčních nsttucí Dn Foršková, Dgmr Rchtrová

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami:

Laboratorní práce č. 6 Úloha č. 5. Měření odporu, indukčnosti a vzájemné indukčnosti můstkovými metodami: Truhlář Michl 3 005 Lbortorní práce č 6 Úloh č 5 p 99,8kP Měření odporu, indukčnosti vzájemné indukčnosti můstkovými metodmi: Úkol: Whetstoneovým mostem změřte hodnoty odporů dvou rezistorů, jejich sériového

Více

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem

2. Funkční řady Studijní text. V předcházející kapitole jsme uvažovali řady, jejichž členy byla reálná čísla. Nyní se budeme zabývat studiem 2. Funkční řd Studijní text 2. Funkční řd V předcházející kpitole jsme uvžovli řd, jejichž člen bl reálná čísl. Nní se budeme zbývt studiem obecnějšího přípdu, kd člen řd tvoří reálné funkce. Definice

Více

2.3. DETERMINANTY MATIC

2.3. DETERMINANTY MATIC 2.3. DETERMINANTY MATIC V této kpitole se dozvíte: definici determinntu čtvercové mtice; co je to subdeterminnt nebo-li minor; zákldní vlstnosti determinntů, používné v mnoh prktických úlohách; výpočetní

Více

13. Exponenciální a logaritmická funkce

13. Exponenciální a logaritmická funkce @11 1. Eponenciální logritmická funkce Mocninná funkce je pro r libovolné nenulové reálné číslo dán předpisem f: y = r, r R, >0 Eponent r je konstnt je nezávisle proměnná. Definičním oborem jsou pouze

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Vícebytová celočíselná aritmetika

Vícebytová celočíselná aritmetika IMTEE 7 / 8 Přednášk č. 7 Vícebytová celočíselná ritmetik = bitová šířk zprcovávných dt > než šířk slov PU npř.: 8 b PU zprcovává b dt dále teoretické příkldy: b PU zprcovává 6 b slov Uložení dt v pměti

Více

25 Měrný náboj elektronu

25 Měrný náboj elektronu 5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Datamining a AA (Above Average) kvantifikátor

Datamining a AA (Above Average) kvantifikátor Dtmining AA (Above Averge) kvntifikátor Jn Burin Lbortory of Intelligent Systems, Fculty of Informtics nd Sttistics, University of Economics, W. Churchill Sq. 4, 13067 Prgue, Czech Republic, burinj@vse.cz

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla

Dobývání znalostí z databází (MI-KDD) Přednáška číslo 4 Asociační pravidla Dobývání znlostí z dtbází (MI-KDD) Přednášk číslo 4 Asociční prvidl (c) prof. RNDr. Jn Ruch, CSc. KIZI, Fkult informtiky sttistiky VŠE zimní semestr 2011/2012 Evropský sociální fond Prh & EU: Investujeme

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL

INTEGRACE KOMPLEXNÍ FUNKCE KŘIVKOVÝ INTEGRÁL INTEGRAE KOMPLEXNÍ FUNKE KŘIVKOVÝ INTEGRÁL N konci kpitoly o derivci je uveden souvislost existence derivce s potenciálním polem. Existuje dlší chrkterizce potenciálného pole, která nebyl v kpitole o derivci

Více

Příloha č. 1. Obchodní podmínky. Revize 10 leden 2009

Příloha č. 1. Obchodní podmínky. Revize 10 leden 2009 Operátor trhu s elektřinou,.s. 186 00 Prh 8 Příloh č. 1 Smlouvy o zúčtování odchylek Smlouvy o přístupu n orgnizovný krátkodobý trh s elektřinou Smlouvy o přístupu n vyrovnávcí trh s regulční energií Smlouvy

Více

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln

V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

Potřeba tepla na vytápění budovy

Potřeba tepla na vytápění budovy SPJ1 Podkldy pro cvičení Potřeb tepl n vytápění budovy In. Kil Stněk, 10/2010 kil.stnek@sv.cvut.cz 1 Sché výpočtu 1.1 Potřeb tepl n vytápění Potřebu tepl n vytápění budovy nd [kwh] vypočtee bilncování

Více

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2)

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2) METODA PCA A JEJÍ IMPLEMENTACE V JAZYCE C++ Lukáš Frtsch, Ing. ČVUT v Praze, Fakulta elektrotechncká, Katedra radoelektronky Abstrakt Metoda PCA (Prncpal Coponent Analyss- analýza hlavních koponent) ůže

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Přednáška 9: Limita a spojitost

Přednáška 9: Limita a spojitost 4 / XI /, 5: Přednášk 9: Limit spojitost V minulých přednáškách jsme podrobněji prozkoumli důležitý pojem funkce. Při řešení konkrétních problémů se nše znlosti (npř. nměřená dt) zpisují jko funkční hodnoty

Více

Nařízení Evropského parlamentu a Rady (ES) č. 1935/2004

Nařízení Evropského parlamentu a Rady (ES) č. 1935/2004 ze dne 27. říjn 2004 Nřízení Evropského prlmentu Rdy (ES) č. 1935/2004 o mteriálech předmětech určených pro styk s potrvinmi o zrušení směrnic 80/590/EHS 89/109/EHS EVROPSKÝ PARLAMENT A RADA EVROPSKÉ UNIE,

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

1.1.6 Měření pohybu. Předpoklady: Pomůcky: papírový šnek

1.1.6 Měření pohybu. Předpoklady: Pomůcky: papírový šnek 6 Měření pohybu Předpokldy: 0005 Poůcky: ppírový šnek Pedgogická poznák: Pokud nebudete provádět pokus se šneke (což nedoporučuji žáků se pokus líbí) ůžete stihnout látku této následující hodiny z jednu

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

. Potom (2) B pro danou periodickou funkci f ( ) x se nazývá Fourierova analýza.

. Potom (2) B pro danou periodickou funkci f ( ) x se nazývá Fourierova analýza. Učební text k přednášce UFY Fourierov nlýz, Fourierov trnsforce nhronické periodické vlny Fourierov nlýz Fourierův teoré: Funkce f ( x ) s prostorovou periodou ůže být rozvinut do řdy hronických funkcí

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Sté py TEMAP - elenng Modul 3 Geoefeencování Ing. Mkét Potůčková, Ph.D. 3 Příodovědecká fkult UK v Pze Kted plkovné geonfotky ktogfe Motvce Sté py nohdy neyly vyhotoveny v ktogfcké zození č je toto zození

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1).

A DIRACOVA DISTRIBUCE 1. δ(x) dx = 1, δ(x) = 0 pro x 0. (1) Graficky znázorňujeme Diracovu distribuci šipkou jednotkové velikosti (viz obr. 1). A DIRACOVA DISTRIBUCE A Dircov distribuce A Definice Dircovy distribuce Dircovu distribuci δx) lze zvést třemi ekvivlentními způsoby ) Dirc [] ji zvedl vzthy δx) dx, δx) pro x ) Grficky znázorňujeme Dircovu

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

Automaty a gramatiky(bi-aag)

Automaty a gramatiky(bi-aag) BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 2/33 Převod NKA ndka BI-AAG (2011/2012) J. Holu: 3. Operce s konečnými utomty p. 4/33 Automty grmtiky(bi-aag) 3. Operce s konečnými utomty Jn

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

Metoda konečných prvků. Robert Zemčík

Metoda konečných prvků. Robert Zemčík Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn 2014 1 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Přibližné řešení algebraických rovnic

Přibližné řešení algebraických rovnic Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Hlavní body - magnetismus

Hlavní body - magnetismus Mgnetismus Hlvní body - mgnetismus Projevy mgt. pole Zdroje mgnetického pole Zákldní veličiny popisující mgt. pole Mgnetické pole proudovodiče - Biotův Svrtův zákon Mgnetické vlstnosti látek Projevy mgnetického

Více

Posouzení stability svahu

Posouzení stability svahu Verifikční nuál č. 3 Aktulizce 04/016 Posouzení stbility svhu Progr: Soubor: Stbilit svhu Deo_v_03.gst V toto verifikční nuálu je uveden ruční výpočet posouzení stbility svhu posouzení stbility svhu zbezpečeného

Více

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48

Formální jazyky. M. Kot, Z. Sawa (VŠB-TU Ostrava) Úvod do teoretické informatiky 6. března / 48 Formální jzyky M. Kot, Z. Sw (VŠB-TU Ostrv) Úvod do teoretické informtiky 6. březn 2007 1/ 48 Motivce 1: Vyhledávání v textu Potřebujeme řešit následující problém: Máme řdu různých textů(npř. soubory n

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor

Návrh základních kombinačních obvodů: dekodér, enkodér, multiplexor, demultiplexor Předmět Ústv Úloh č. 2 BDIO - Digitální obvody Ústv mikroelektroniky Návrh zákldních kombinčních obvodů: dekodér, enkodér, multiplexor, demultiplexor Student Cíle Porozumění logickým obvodům typu dekodér,

Více

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na

R n výběr reprezentantů. Řekneme, že funkce f je Riemannovsky integrovatelná na Mtemtik II. Určitý integrál.1. Pojem Riemnnov určitého integrálu Definice.1.1. Říkáme, že funkce f( x ) je n intervlu integrovtelná (schopná integrce), je-li n něm ohrničená spoň po částech spojitá.

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět.

vás seznámí s učivem, které v dané kapitole poznáte a které byste po jejím prostudování měli umět. POKYNY KE STUDIU Pokyny ke studiu V úvodu si vysvětlíme jednotnou pevnou strukturu kždé kpitoly tetu, která by vám měl pomoci k rychlejší orientci při studiu Pro zvýrznění jednotlivých částí tetu jsou

Více

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x.

ZÁKLADY. y 1 + y 2 dx a. kde y je hledanou funkcí proměnné x. VARIAČNÍ POČET ZÁKLADY V prxi se čsto hledjí křivky nebo plochy, které minimlizují nebo mximlizují jisté hodnoty. Npř. se hledá nejkrtší spojnice dvou bodů n dné ploše, nebo tvr zvěšeného ln (má minimální

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M

1 i= VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ. OTAKAR TRNKA a MILOSLAV HARTMAN. i M Chem. Listy, 55 53 (7) VLIV ZMĚN FYZIKÁLNÍCH PARAMETRŮ FLUIDNÍCH VRSTEV NA CHARAKTERISTIKY TLAKOVÝCH FLUKTUACÍ OTAKAR TRNKA MILOSLAV HARTMAN Ústv chemických procesů, AV ČR, Rozvojová 35, 65 Prh 6 trnk@icpf.cs.cz

Více

(Text s významem pro EHP)

(Text s významem pro EHP) 9.9.2015 L 235/7 PROVÁDĚCÍ NAŘÍZENÍ KOMISE (EU) 2015/1502 ze dne 8. září 2015, kterým se stnoví minimální technické specifikce postupy pro úrovně záruky prostředků pro elektronickou identifikci podle čl.

Více

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál)

Integrální počet - IV. část (aplikace na určitý vlastní integrál, nevlastní integrál) Integrální počet - IV. část (plikce n určitý vlstní integrál, nevlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednášk z AMA Michl Fusek (fusekmi@feec.vutbr.cz) / 4 Obsh

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

2.7.7 Obsah rovnoběžníku

2.7.7 Obsah rovnoběžníku 77 Osh rovnoěžníku Předpokldy: 00707 Osh (znčk S): kolik míst útvr zujímá, počet čtverečků 1 x 1, které se do něj vejdou, kolik koerce udeme muset koupit, ychom pokryli podlhu, Př 1: Urči osh čtverce o

Více

RYCHLOST NEBO POHYB CHODCE DLE POŠKOZENÍ ZANECHANÝCH NA VOZIDLE

RYCHLOST NEBO POHYB CHODCE DLE POŠKOZENÍ ZANECHANÝCH NA VOZIDLE RYCHLOST NEBO POHYB CHODCE DLE POŠKOZENÍ ZANECHANÝCH NA VOZIDLE ABSTRAKT: PEDESTRIAN S SPEED OR MOVEMENT BASED ON IMPACT MARKS REMAINED ON THE VEHICLE Gbriel Pdurru 23 U nehod s chodci, které byly nlyzovány,

Více

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám

Stavební mechanika, 2.ročník bakalářského studia AST. Téma 4 Rovinný rám Stvební mechnik,.ročník bklářského studi AST Tém 4 Rovinný rám Zákldní vlstnosti rovinného rámu Jednoduchý otevřený rám Jednoduchý uzvřený rám Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět MR 1 Pvel Pdevět PŘÍHRADOVÉ KONTRUKCE REAKCE A VNITŘNÍ ÍLY PŘÍHRADOVÉ KONTRUKCE jsou prutové soustvy s kloubovým vzbm. Příhrdová konstrukce je tvořen z přímých prutů nvzájem spojených ve styčnících kloubovým

Více