Architektura a princip funkce počítačů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Architektura a princip funkce počítačů"

Transkript

1 Architektura a princip funkce počítačů

2 Co je architektura obecně: souhrn znalostí o prvcích, ze kterých se skládá nebo dá složit nějaký celek o způsobech, kterými lze tyto prvky využít pro dosažení požadovaných vlastností celku dále se omezíme na architekturu počítačů

3 Systém soubor prvků, mezi kterými existují určité vztahy nebo vazby prvky systému neexistují osamoceně, jsou součástí mnohem rozsáhlejší množiny (např. vesmíru) všechny ostatní entity, které nepatří do systému, označujeme jako okolí systému vzájemné vazby mezi prvky systému jsou obvykle silnější než vazby mezi prvky systému a prvky okolí vazby mezi prvky systému a prvky okolí způsobují, že mezi systémem a okolím existuje interakce. Abychom rozlišili směr působení při interakci, používáme pojmy vstup a výstup systému

4 Systém

5 Systém hranice systému určují, které prvky do systému patří a které ne obvykle existují přirozené hranice systému, dané vazbami mezi prvky např. atom, molekula, součástka, modul... kde leží hranice systému z hlediska jeho pozorování určuje pozorovatel přirozené hranice systému pro nás nejsou závazné hranice systému můžeme volit podle okamžité potřeby pozorovatel systému může volit rozlišovací úroveň a tím velikost a počet rozlišovaných prvků při přechodu na nižší rozlišovací úroveň splyne několik prvků rozlišitelných na vyšší rozlišovací úrovni do jediného prvku počítač můžeme vnímat jako množinu jednotek, modulů, registrů, hradel, součástek

6 Systém u systému můžeme studovat interakce s okolím vnitřní strukturu systému interakci systému s okolím označujeme jako chování systému chování se snažíme popsat algoritmem, vyjadřujícím závislost výstupu (odezev, akcí) na vstupu (podnětech, stimulech) vnitřní strukturu systému můžeme popsat objektivně detailním popisem jeho prvků a vazeb pomocí modelu podobnost modelu a modelovaného systému na určité úrovni rozlišení posuzujeme podle podobnosti jejich chování (izomorfismus, homomorfizmus).

7 Stroj každý stroj má vstup zpracovávané suroviny výstup zpracované suroviny funkci (způsob zpracování vstupní suroviny na výstupní) důležitým atributem stroje je jeho ovladatelnost člověkem zpracování suroviny probíhá podle záměrů člověka řízení stroje může být přímé (typické pro jednoduché stroje a nástroje) člověk působí na ovládací prvky stroje a dosahuje tak požadovaného výsledku nepřímé (typické pro složité stroje) způsob zpracování suroviny je jednoznačně určen konstrukcí a nastavením stroje, který pak již pracuje automaticky, bez zásahu člověka oba způsoby řízení lze kombinovat

8 Počítač počítač můžeme definovat jako stroj na zpracování informací vstupem i výstupem počítače jsou informace řízení počítače je převážně nepřímé (programem) ale může být i přímé (interaktivní ovládání) program je předpis, jednoznačně určující způsob odvození výstupních dat z dat vstupních jeden program lze použít opakovaně pro zpracování různých kolekcí vstupních dat program počítače lze změnit a tak způsob zpracování dat přizpůsobit okamžitým potřebám

9 Kybernetika věda o řízení v neživých a živých systémech základy položil Norbert Wiener knihou Cybernetics: or, Control and Communication in the Animal and the Machine (1948) kybernetika studuje systémy z hlediska toku a zpracování informací její vztah k pojmu informace je podobný jako vztah matematiky k pojmu číslo, fyziky k pojmu hmota...

10 Kybernetický systém průběžně vyhodnocuje vstupní informace (podněty) a reaguje na ně výstupní aktivitou (odezvou), která je dána určitými pravidly chování pokud má systém paměť, může do ní ukládat historii, tj. časový záznam podnětů a odezev odezvy systému s pamětí mohou být závislé nejen na aktuálních podnětech, ale také na historii vazby mezi vyhodnocovacím a paměťovým blokem tvoří uzavřenou smyčku, tzv. zpětnovazební vazba mezi vyhodnocovacím blokem a blokem pravidel chování umožňuje systému měnit na základě získaných zkušeností pravidla chování (optimalizace, učení)

11 Schéma kybernetického systému

12 Schéma počítače co je zde? není náhoda, že (až na názvy bloků) je shodné se schématem kybernetického systému

13 Chování počítače v kybernetickém systému je v pozici? blok pravidel chování u smysluplně reagujících systémů se obvykle jedná o nějakou formu dlouhodobé paměti zkušenost, genetická paměť... souhrn pravidel, umožňujících systému řešit "informační situace", do kterých se dostane během své existence pravidla chování lze většinou vyjádřit ve tvaru děje-li se (stalo-li se) to a to, reaguj tak a tak

14 Program a programátor nejvhodnějším způsobem ovládání počítače je vkládání a modifikace pravidel chování jestliže místo přímého řízení systému dokážeme do systému vložit pravidla chování, můžeme určit nejen jeho okamžité chování (jako např. při řízení automobilu), ale také jeho chování kdykoliv v budoucnosti blok? je tedy vhodné implementovat jako paměť, jejíž obsah program bude určovat člověk programátor pokud do bloku zahrneme program i programátora, jsou obě schémata zcela shodná pokud programátora vyčleníme mimo systém, objeví se na tomto místě nový typ interakce systému s okolím - vstup programu

15 Schéma počítače program vstup programu programátor

16 Program počítače program je zvláštní formou vstupních dat formálně se od vstupních dat nijak neliší jeho úloha v počítači je specifická tím, že program není zpracováván ale prováděn pokud neuvažujeme strojový překlad programu jinak řečeno, představuje pokyny, podle kterých počítač postupuje při zpracování vstupních informací počítač těmto pokynům pochopitelně musí rozumět a program proto musí být napsán podle určitých pravidel, kterým říkáme programovací jazyk rozdíl mezi programem a vstupními daty je také v tom, že jeden program může být použit opakovaně pro zpracování různých kolekcí dat srovnáme-li proces zpracování dat v počítači s chemickými procesy, hraje program podobnou roli jako katalyzátor vstupuje do procesu transformace vstupních dat na data výstupní, ale z procesu vyjde nezměněn a lze ho opakovaně použít.

17 Role počítače počítač je velmi vhodný pro roli univerzálního řídícího prvku automatizace, vestavěné systémy, robotika... počítač je téměř ideálním prostředkem pro simulaci jakéhokoliv kybernetického systému počítače umožňují novou interpretaci rozsáhlých kolekcí dat, které by člověk jinak nedokázal zpracovat a vyhodnotit počítače umožnily řadu významných objevů ve fyzice, chemii, biologii, astronomii...

18 Harwardské schéma historicky starší koncepce používá pro program a pro data dvě nezávislé paměti označení podle počítače Harward Mark I, uvedeného do provozu na Harwardské univerzitě (1943)

19 Von Neumannovo schéma dnes nejrozšířenější architektura program i data jsou uloženy ve společné paměti (Stored Program Computer) označení podle autora této koncepce (1945)

20 Von Neumannovo schéma Operační paměť slouží k uchování prováděného programu a zpracovávaných dat Aritmeticko-logická jednotka (ALU, Arithmetic-Logic Unit) provádí podle pokynů řadiče požadované operace s daty (aritmetické výpočty, logické operace) Řadič postupně čte z operační paměti jednotlivé instrukce programu a interpretuje (provádí) je generuje řídící signály pro ovládání ostatních částí počítače umožňuje počítači reagovat na stavové informace z ostatních částí počítače a synchronizovat návaznost jednotlivých akcí Vstupní zařízení zajišťují vstup programu a dat Výstupní zařízení zajišťují výstup dat (výsledků)

21 Porovnání Harwardského a Von Neumannova počítače Harwardské schéma dnes se používá u specializovaných procesorů signálové procesory, jednočipové počítače... výhody: vysoká bezpečnost (paměť programu je typu ROM, takže program ji nemůže přepsat) u paměti programu lze použít jinou šířku slova (počet bitů) než u paměti dat nevýhody: vyšší cena hardware (dvě paměti) malá pružnost systému (program lze změnit jen obtížně nebo vůbec ne)

22 Porovnání Harwardského a Von Neumannova počítače Von Neumannovo schéma používá se u univerzálních počítačů (PC) výhody: nižší cena systému (jedna paměť) vysoká pružnost systému (program lze snadno měnit a zpracovávat jako data) nevýhody: je nutný kompromis mezi šířku toku programu a dat program může být nežádoucím způsobem ovlivněn (chybami v programu, viry)

23 Změny terminologie řadič a ALU dnes vnímáme jako jeden celek procesor (CPU, Central Procesing Unit) ALU se dnes považuje spíše za stavební prvek nižší úrovně (jako registr, multiplexor ) pro vstupní zařízení a výstupní zařízení se používá společný název vnější (periferní) zařízení alternativně I/O zařízení (Input/Output Device), V/V zařízení (vstup/výstup), periferie řada periferních zařízení je obousměrná, tj. slouží pro vstup i výstup dat (disky, terminály ) způsob připojení a ovládání vnějších zařízení se sjednotil

24 Další vývoj architektury v počítačích se vystřídalo několik generací prvků relé, elektronky, tranzistory, integrované obvody MSI, LSI, VLSI Von Neumannova koncepce získala převahu výhoda větší pružnosti převážila nad nevýhodami V průmyslových a vestavěných systémech obě koncepce koexistují přibyly nové architektonické prvky a řešení sběrnice, přerušovací systém, DMA, hierarchická paměť, zřetězené zpracování instrukcí (pipelining), multiprocesorové systémy došlo k výraznému pokroku v programování programovací jazyky, operační systémy, objektové programování

25 Princip funkce počítače prvotní úlohou počítačů bylo zrychlit provádění matematických výpočtů první počítače kopírovaly obvyklý postup manuálního provádění výpočtů pokyny pro zpracování dat (program) a vstupní data si operátor nejprve zapíše (vstup) do poznámek (paměti) nyní operátor (řadič) může po malých částech (instrukcích) číst postup, vyhledávat potřebná vstupní data a pomocí kalkulátoru (ALU) s nimi provádět požadované operace do poznámek (paměti) si operátor může zapsat i jakékoliv mezivýsledky, které pak lze použít opakovaně konečné výsledky operátor zapíše do výstupního protokolu (výstup)

26 Instrukční soubor instrukce je elementární operace, kterou počítač dokáže provést instrukční soubor (Instruction Set) je množina všech instrukcí, kterým počítač rozumí a dokáže je provádět program může obsahovat pouze instrukce, kterým daný počítač rozumí jedná se vlastně o formu jazyka, který musí programátor ovládat, aby se s počítačem dokázal domluvit What is your name? půl šesté! proveditelný program (ve strojovém kódu) je zápis postupu řešení úlohy ve formě posloupnosti instrukcí, dostupných v instrukčním souboru daného počítače na počítači s jiným instrukčním souborem tento program není použitelný!

27 Instrukce instrukce se obvykle skládá z několika částí (polí) ADD m[1234] + m[1235] m[1287] operační kód=součet odkud kam operační kód určuje, jaká operace s daty se má provést specifikace operandu určuje, odkud se mají číst data, kam se má uložit výsledek nebo jak má program pokračovat (skoky)

28 Provádění instrukce dobu provádění instrukce obvykle dělíme na dvě základní fáze: fázi načtení a dekódování instrukce FETCH Cycle fázi provedení instrukce EXECUTE Cycle anglické označení (FETCH, EXECUTE) souvisí s činností paměti během provádění instrukce jedna úplná operace s pamětí (čtení nebo zápis) se obvykle označuje jako paměťový cyklus během provádění jednooperandové instrukce proběhnou obvykle dva přístupy k paměti v prvním se načte instrukce, ve druhém se načte operand nebo uloží výsledek po načtení instrukce řadič převede operační kód na posloupnost řídících signálů pro ostatní části počítače registry, multiplexory, ALU, operační paměť

29 Provádění instrukce řadič generuje dva typy signálů: hladinové výběr funkce multiplexoru, ALU, paměti... impulsní časově přesně vymezené akce zápis do registru, inkrementace registru, zápis do paměti... vlastní operace s operandy se provádí v ALU výsledek operace se ukládá do operační paměti... nebo zůstává v registrech procesoru mezivýsledky uložené v registrech jsou v případě potřeby snadněji dostupné při provádění operace se získávají také další informace, umožňující pozdější vyhodnocení nulový nebo záporný výsledek, přetečení, dělení nulou

30 Počet operandů obecně může být v instrukci specifikován libovolný počet operandů v našem příkladu jsou tři jenže adresa slova paměti zabírá v instrukci hodně místa!... instrukce musí být rozdělena do několika slov a proto je její zpracování složitější a pomalejší... nebo je nutné použít velkou šířku slova paměti což vyžaduje více hardware a proto stoupne cena, rozměry a spotřeba energie

31 Formát instrukce Řešení: jednooperandové instrukce (další operandy implicitní) nebo registrově orientované instrukce (specifikace registru je mnohem kratší) operand A B A B ALU ALU implicitní operand výběr registru A výběr registru B registry

32 Specifikace operandu operand může být specifikován různým způsobem přímý (bezprostřední, immediate) operand operand je uveden přímo v instrukci obvykle jen malá celá čísla (např až -128) operand v registru operandy se čtou z (ukládají do) pole registrů v instrukci jsou adresy registrů (např. pro výběr jednoho z 8 registrů stačí 3 bity) operand v operační paměti operandy se čtou z (ukládají do) operační paměti v instrukci je adresa paměťového místa implicitní operand Např. při provádění jednooperandové instrukce ADD 1234 se druhý (implicitní) operand čte z pomocného registru a výsledek se ukládá opět do tohoto registru nepřímé adresování, relativní adresování...

33 Nepřímé adresování nepřímé adresování (indirect addressing) paměťové místo adresované instrukcí neobsahuje data, ale opět adresu operandu nepřímé adresování může být víceúrovňové (řetězené) instrukce: op oa if=1 if if = Indirect Flag (1 bit) oa if=1 if oa if=0 if oa 1... oa = nepřímá adresa 0... oa = adresa operandu operand

34 Relativní adresování relativní adresování adresa se vypočítává jako součet několika složek, např. báze a indexu: oa = báze + index umožňuje realizaci virtuální paměti kvůli rychlosti jsou složky adresy obvykle uloženy v registrech a pro výpočet adresy se používá samostatná ALU báze index ALU adresa operandu

35 Pořadí provádění instrukcí pořadí provádění instrukcí není libovolné algoritmus není komutativní teoreticky lze v každé instrukci pomocí dalšího operandu určit, odkud se má číst následující instrukce... tak byl navržen např. počítač prof. Svobody (5-operandové instrukce) ale takové instrukce by byly neúnosně dlouhé instrukce programu se obvykle provádějí v pevném pořadí sekvenčně, tj. v pořadí, ve kterém jsou za sebou uloženy v operační paměti takže adresu příští instrukce lze získat velmi jednoduše inkrementací registru PC (programového čítače), obsahujícího adresu právě provedené instrukce PC+1 >PC někdy je ale nutné pořadí provádění instrukcí změnit!

36 Skok někdy je nutné pořadí provádění instrukcí změnit při výběru více variant pokračování při volání podprogramu a návratu z něj při obsluze přerušení k tomuto účelu slouží skokové instrukce operandem skokové instrukce je adresa příští instrukce tj. instrukce, která se má provést místo instrukce bezprostředně následující za skokem provedení skoku může být podmíněné tj. závisí na výsledku některé z předchozích operace ALU nebo stavu některé jiné části počítače podmíněné skoky umožňují větvení programu v závislosti na mezivýsledcích rozhodovací operace typu: jestliže platí C, proveď P1, jinak P2

37 Operační paměť počítač potřebuje rychlý přístup k instrukcím programu a operandům data v operační paměti jsou uložena tak, aby vyhledávání dat probíhalo co nejrychleji používá se náhodný přístup (Random Access) paměť je rozdělena na velký počet paměťových míst všechna paměťová místa paměti jsou stejně velká každému paměťovému místu je přiřazena unikátní adresa operační paměť můžeme považovat za jednorozměrné pole paměťových míst, kde adresa je indexem paměťového místa v tomto poli s požadavkem na čtení nebo zápis se paměti předává adresa paměťového místa, se kterým má být operace provedena

38 Operační paměť velikost jednoho adresovatelného paměťového místa je nejčastěji 1 byte (slabika, 1B) s informační kapacitou 8 bitů vyhovuje pro ukládání binárních čísel a instrukcí (v případě potřeby lze použít více slabik za sebou), textu (1 slabika = 1 znak) i dekadických čísel (1 slabika = 2 dekadické řády) s daty se často pracuje po větších celcích po slovech, blocích, stránkách, sektorech, segmentech dosahuje se tím vyšší rychlosti zpracování termínem slovo (word) se obvykle označuje dvojice slabik ale někdy se tímto termínem označuje plná šířka toku dat (např. sběrnice) bez ohledu na počet slabik!! velikost instrukcí a čísel je obvykle mocninou čísla 2 (16, 32, 64 či 128 bitů = 2, 4, 8 či 16 byte)

39 Operační paměť

40 Operační paměť Kromě vstupu adresy, vstupu dat a výstupu dat má operační paměť ještě řídící vstupy a stavové výstupy Řídící vstupy umožňují: určit typ operace (čtení, zápis) určit šířku toku dat (byte, slovo, dvojslovo ) aktivaci (start) paměťové operace Stavové výstupy umožňují řadiči zjistit aktuální stav paměti dokončení operace, chyba parity, chyba zápisu, pokus o přístup k neexistujícímu paměťovému místu, pokus o přístup do zakázané oblasti

41 Časování paměti paměť obvykle pracuje v cyklech délka cyklu je určena časem, který uplyne od okamžiku zahájení operace do okamžiku, kdy lze zahájit další operaci

42 Cyklus čtení (READ) před zahájením a po dobu provádění operace musí byt na vstupy paměti přivedena adresa čtení nějakou dobu trvá; dokončení operace čtení (tj. okamžik, kdy jsou na výstupu platná data) hlásí signál hotovo (Ready) přístupová doba paměti je čas, který uplyne od okamžiku zahájení operace do okamžiku, kdy se objeví signál hotovo

43 Cyklus zápisu (WRITE) před zahájením a po dobu provádění operace musí byt na vstupy paměti přivedena adresa a data zápis nějakou dobu trvá; dokončení operace zápisu (tj. okamžik, kdy adresu a data na vstupech již lze změnit a zahájit novou operaci) hlásí signál hotovo (Ready)

44 Rozhraní paměti celé soustavě propojovacích vodičů se říká rozhraní (interface) termín rozhraní označuje jednak vlastní adresní, datové, řídící a stavové vodiče, např. paměť adresa (24 bitů) vstup dat (16 bitů) výstup dat (16 bitů) R/W STR RDY adresa data řízení/stav... ale také specifikaci, tj. podrobný popis funkce všech vodičů včetně logických úrovní, časování signálů, napájecích napětí, zapojení konektorů z rozhraní mezi pamětí a procesorem se později vyvinuly systémové sběrnice - zobecněná rozhraní pro vzájemné propojení jednotlivých částí počítače (bus). Sběrnicím bude věnována samostatná přednáška

45 Děkuji za pozornost

Architektura počítačů

Architektura počítačů Architektura počítačů Co je architektura obecně: souhrn znalostí o prvcích, ze kterých se skládá nebo dá složit nějaký celek o způsobech, kterými lze tyto prvky využít pro dosažení požadovaných vlastností

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv

Více

Architektury počítačů a procesorů

Architektury počítačů a procesorů Kapitola 3 Architektury počítačů a procesorů 3.1 Von Neumannova (a harvardská) architektura Von Neumann 1. počítač se skládá z funkčních jednotek - paměť, řadič, aritmetická jednotka, vstupní a výstupní

Více

Mikrokontroléry. Doplňující text pro POS K. D. 2001

Mikrokontroléry. Doplňující text pro POS K. D. 2001 Mikrokontroléry Doplňující text pro POS K. D. 2001 Úvod Mikrokontroléry, jinak též označované jako jednočipové mikropočítače, obsahují v jediném pouzdře všechny podstatné části mikropočítače: Řadič a aritmetickou

Více

Architektura počítačů

Architektura počítačů Architektura počítačů Studijní materiál pro předmět Architektury počítačů Ing. Petr Olivka katedra informatiky FEI VŠB-TU Ostrava email: petr.olivka@vsb.cz Ostrava, 2010 1 1 Architektura počítačů Pojem

Více

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů).

Strojový kód k d a asembler procesoru MIPS SPIM. MIPS - prostředí NMS NMS. 32 ks 32bitových registrů ( adresa registru = 5 bitů). Strojový kód k d a asembler procesoru MIPS Použit ití simulátoru SPIM K.D. - cvičení ÚPA 1 MIPS - prostředí 32 ks 32bitových registrů ( adresa registru = 5 bitů). Registr $0 je zero čte se jako 0x0, zápis

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_02 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Inovace výuky

Více

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.8 Procesory. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

Profilová část maturitní zkoušky 2013/2014

Profilová část maturitní zkoušky 2013/2014 Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2013/2014 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: TECHNIKA

Více

Úvod do problematiky návrhu počítačových systémů. INP 2008 FIT VUT v Brně

Úvod do problematiky návrhu počítačových systémů. INP 2008 FIT VUT v Brně Úvod do problematiky návrhu počítačových systémů INP 2008 FIT VUT v Brně Čím se budeme zabývat Budou nás zejména zajímat jednoprocesorové číslicové počítače: Funkce počítače Struktura propojení funkčních

Více

Z{kladní struktura počítače

Z{kladní struktura počítače Z{kladní struktura počítače Cílem této kapitoly je sezn{mit se s různými strukturami počítače, které využív{ výpočetní technika v současnosti. Klíčové pojmy: Von Neumannova struktura počítače, Harvardská

Více

Vstupně - výstupní moduly

Vstupně - výstupní moduly Vstupně - výstupní moduly Přídavná zařízení sloužící ke vstupu a výstupu dat bo k uchovávání a archivaci dat Nejsou připojována ke sběrnici přímo, ale prostřednictvím vstupně-výstupních modulů ( ů ). Hlavní

Více

Jak do počítače. aneb. Co je vlastně uvnitř

Jak do počítače. aneb. Co je vlastně uvnitř Jak do počítače aneb Co je vlastně uvnitř Po odkrytí svrchních desek uvidíme... Von Neumannovo schéma Řadič ALU Vstupně/výstupní zař. Operační paměť Počítač je zařízení, které vstupní údaje transformuje

Více

Architektura procesorů PC shrnutí pojmů

Architektura procesorů PC shrnutí pojmů Architektura procesorů PC shrnutí pojmů 1 Co je to superskalární architektura? Minimálně dvě fronty instrukcí. Provádění instrukcí je možné iniciovat současně, instrukce se pak provádějí paralelně. Realizovatelné

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více

PRINCIPY POČÍTAČŮ Metodický list číslo 1

PRINCIPY POČÍTAČŮ Metodický list číslo 1 Metodický list číslo 1 Téma č.1: Historie, vývoj počítačů, architektura počítače. historický přehled, předpoklady pro vývin a rozvoj počítačů nejvýznamnější osoby, vynálezy a stroje von Neumannova architektura

Více

Y36SAP http://service.felk.cvut.cz/courses/y36sap/

Y36SAP http://service.felk.cvut.cz/courses/y36sap/ Y36SAP http://service.felk.cvut.cz/courses/y36sap/ Úvod Návrhový proces Architektura počítače 2007-Kubátová Y36SAP-Úvod 1 Struktura předmětu Číslicový počítač, struktura, jednotky a jejich propojení. Logické

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana Kubcová Název

Více

Pohled do nitra mikroprocesoru

Pohled do nitra mikroprocesoru Pohled do nitra mikroprocesoru Obsah 1. Pohled do nitra mikroprocesoru 2. Architektury mikroprocesorů 3. Organizace cvičného mikroprocesoru 4. Registry v mikroprocesoru 5. Aritmeticko-logická jednotka

Více

3. Počítačové systémy

3. Počítačové systémy 3. Počítačové systémy 3.1. Spolupráce s počítačem a řešení úloh 1. přímý přístup uživatele - neekonomické. Interakce při odlaďování programů (spusť., zastav.,krok, diagnostika) 2. dávkové zpracování (batch

Více

Struktura a architektura počítačů (BI-SAP) 1

Struktura a architektura počítačů (BI-SAP) 1 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 1 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii

Více

1. části počítače. A. Počítač, jeho komponenty a periferní zařízení funkce základních počítačových komponent

1. části počítače. A. Počítač, jeho komponenty a periferní zařízení funkce základních počítačových komponent A. Počítač, jeho komponenty a periferní zařízení funkce základních počítačových komponent POČÍTAČ = elektronické zařízení, které zpracovává data pomocí předem vytvořeného programu -HARDWARE /HW/ -SOFTWARE

Více

PB002 Základy informačních technologií

PB002 Základy informačních technologií Operační systémy 25. září 2012 Struktura přednašky 1 Číselné soustavy 2 Reprezentace čísel 3 Operační systémy historie 4 OS - základní složky 5 Procesy Číselné soustavy 1 Dle základu: dvojková, osmičková,

Více

Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba.

Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je možné, že někde bude chyba. Odpovědi jsem hledala v prezentacích a na http://www.nuc.elf.stuba.sk/lit/ldp/index.htm Pár odpovědí jsem nenašla nikde, a tak jsem je logicky odvodila, a nebo jsem ponechala odpověď z pefky, proto je

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

Vývojové diagramy 1/7

Vývojové diagramy 1/7 Vývojové diagramy 1/7 2 Vývojové diagramy Vývojový diagram je symbolický algoritmický jazyk, který se používá pro názorné zobrazení algoritmu zpracování informací a případnou stručnou publikaci programů.

Více

BI-JPO (Jednotky počítače) Cvičení

BI-JPO (Jednotky počítače) Cvičení BI-JPO (Jednotky počítače) Cvičení Ing. Pavel Kubalík, Ph.D., 2010 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Evropský sociální fond Praha & EU: Investujeme

Více

LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická

LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická Střední průmyslová škola elektrotechnická a Vyšší odborná škola, Pardubice, Karla IV. 13 LABORATORNÍ CVIČENÍ Střední průmyslová škola elektrotechnická Příjmení: Hladěna Číslo úlohy: 10 Jméno: Jan Datum

Více

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY technické vybavení počítače uchování dat vstupní a výstupní zařízení, paměti, data v počítači počítačové sítě sociální

Více

Přerušení POT POT. Přerušovací systém. Přerušovací systém. skok do obslužného programu. vykonávaný program. asynchronní událost. obslužný.

Přerušení POT POT. Přerušovací systém. Přerušovací systém. skok do obslužného programu. vykonávaný program. asynchronní událost. obslužný. 1 Přerušení Při výskytu určité události procesor přeruší vykonávání hlavního programu a začne vykonávat obslužnou proceduru pro danou událost. Po dokončení obslužné procedury pokračuje výpočet hlavního

Více

Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011

Osobní počítač. Zpracoval: ict Aktualizace: 10. 11. 2011 Osobní počítač Zpracoval: ict Aktualizace: 10. 11. 2011 Charakteristika PC Osobní počítač (personal computer - PC) je nástroj člověka pro zpracovávání informací Vyznačuje se schopností samostatně pracovat

Více

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava

Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Základní pojmy, historie počítačů, jednotky a převody, dvojková soustava Obsah OBSAH... 1 1 ZÁKLADNÍ POJMY... 1 2 HISTORIE POČÍTAČŮ... 2 2.1 GENERACE POČÍTAČŮ... 3 2.2 KATEGORIE POČÍTAČŮ... 3 3 KONCEPCE

Více

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_12_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Způsoby realizace této funkce:

Způsoby realizace této funkce: KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační

Více

Vrstvy programového vybavení Klasifikace Systémové prostředky, ostatní SW Pořizování Využití

Vrstvy programového vybavení Klasifikace Systémové prostředky, ostatní SW Pořizování Využití Programové prostředky PC - 5 Informatika 2 Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Obsah: Vrstvy programového

Více

Databáze Bc. Veronika Tomsová

Databáze Bc. Veronika Tomsová Databáze Bc. Veronika Tomsová Databázové schéma Mapování konceptuálního modelu do (relačního) databázového schématu. 2/21 Fyzické ik schéma databáze Určuje č jakým způsobem ů jsou data v databázi ukládána

Více

OZD. 2. ledna 2013. Logický (Objekty, atributy,...) objekty stejného typu.

OZD. 2. ledna 2013. Logický (Objekty, atributy,...) objekty stejného typu. OZD 2. ledna 2013 1 Paměti Hierarchie: Registry Cache (nejsou viditelné) Primární pamět (RAM) Pamět druhé úrovně (Disky, trvalá úložiště), pomalá Pamět třetí úrovně (CD, pásky) 1.1 Paměti druhé úrovně

Více

Cache paměť - mezipaměť

Cache paměť - mezipaměť Cache paměť - mezipaměť 10.přednáška Urychlení přenosu mezi procesorem a hlavní pamětí Hlavní paměť procesoru je typu DRAM a je pomalá. Proto se mezi pomalou hlavní paměť a procesor vkládá menší, ale rychlá

Více

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz

4-1 4. Přednáška. Strojový kód a data. 4. Přednáška ISA. 2004-2007 J. Buček, R. Lórencz 4-4. Přednáška 4. Přednáška ISA J. Buček, R. Lórencz 24-27 J. Buček, R. Lórencz 4-2 4. Přednáška Obsah přednášky Násobení a dělení v počítači Základní cyklus počítače Charakteristika třech základní typů

Více

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma. Podklady k základnímu popisu a programování PLC, CNC

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma. Podklady k základnímu popisu a programování PLC, CNC Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady k základnímu popisu a programování PLC, CNC Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k základnímu popisu

Více

Principy počítačů. Von Neumannova Architektura. Martin Urza

Principy počítačů. Von Neumannova Architektura. Martin Urza Principy počítačů Von Neumannova Architektura Martin Urza Co je to architektura počítače? Architektura udává, z jakých částí je počítač složen, jakou mají které části funkci a jak jsou mezi sebou propojené,

Více

DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů

DUM č. 10 v sadě. 31. Inf-7 Technické vybavení počítačů projekt GML Brno Docens DUM č. 10 v sadě 31. Inf-7 Technické vybavení počítačů Autor: Roman Hrdlička Datum: 04.12.2013 Ročník: 1A, 1B, 1C Anotace DUMu: jak fungují vnitřní paměti, typy ROM a RAM pamětí,

Více

ZŠ a MŠ, Brno, Horníkova 1 - Školní vzdělávací program

ZŠ a MŠ, Brno, Horníkova 1 - Školní vzdělávací program 4.3. Informační a komunikační technologie Charakteristika předmětu Vzdělávací oblast je realizována prostřednictvím vyučovacího předmětu Informatika. Informatika je zařazena do ŠVP jako povinný předmět

Více

GFK-1913-CZ Prosinec 2001. Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C.

GFK-1913-CZ Prosinec 2001. Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C. Modul slouží pro výstup digitálních signálů 24 Vss. Specifikace modulu Rozměry pouzdra (šířka x výška x hloubka) Připojení 48,8 mm x 120 mm x 71,5 mm dvou- a třídrátové Provozní teplota -25 C až +55 C

Více

Číslicové obvody základní pojmy

Číslicové obvody základní pojmy Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý

VZORCE A VÝPOČTY. Autor: Mgr. Dana Kaprálová. Datum (období) tvorby: září, říjen 2013. Ročník: sedmý Autor: Mgr. Dana Kaprálová VZORCE A VÝPOČTY Datum (období) tvorby: září, říjen 2013 Ročník: sedmý Vzdělávací oblast: Informatika a výpočetní technika 1 Anotace: Žáci se seznámí se základní obsluhou tabulkového

Více

3. Maturitní otázka PC komponenty 1. Počítačová skříň 2. Základní deska

3. Maturitní otázka PC komponenty 1. Počítačová skříň 2. Základní deska 3. Maturitní otázka Počítač, jeho komponenty a periferní zařízení (principy fungování, digitální záznam informací, propojení počítače s dalšími (digitálními) zařízeními) Počítač je elektronické zařízení,

Více

POČÍTAČOVÉ ŘÍZENÍ TECHNOLOGICKÝCH PROCESŮ

POČÍTAČOVÉ ŘÍZENÍ TECHNOLOGICKÝCH PROCESŮ POČÍTAČOVÉ ŘÍENÍ TECHNOLOGICKÝCH PROCESŮ účel a funkce základní struktury technické a programové vybavení komunikace s operátorem zavádění a provoz počítačového řízení Počítačový řídicí systém H iera rc

Více

Hardware. Roman Bartoš

Hardware. Roman Bartoš Hardware Roman Bartoš Copyright istudium, 2005, http://www.istudium.cz Žádná část této publikace nesmí být publikována a šířena žádným způsobem a v žádné podobě bez výslovného svolení vydavatele. Produkce,

Více

pole Princip 1. Zvýšení rychlosti. 2. Zvýšení bezpečnosti uložených dat (proti ztrátě).

pole Princip 1. Zvýšení rychlosti. 2. Zvýšení bezpečnosti uložených dat (proti ztrátě). Rozdělení celkové kapacity disků mezi několik diskových jednotek. Princip Důvody:. Zvýšení rychlosti. Paralelní práce většího počtu diskových jednotek.. Zvýšení bezpečnosti uložených dat (proti ztrátě).

Více

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading)

Operační systémy. Správa paměti (SP) Požadavky na SP. Spojování a zavedení programu. Spojování programu (linking) Zavádění programu (loading) Správa paměti (SP) Operační systémy Přednáška 7: Správa paměti I Memory Management Unit (MMU) hardware umístěný na CPU čipu např. překládá logické adresy na fyzické adresy, Memory Manager software, který

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

Obsah. Kapitola 1 Skříně počítačů 15. Kapitola 2 Základní deska (mainboard) 19. Kapitola 3 Napájecí zdroj 25. Úvod 11

Obsah. Kapitola 1 Skříně počítačů 15. Kapitola 2 Základní deska (mainboard) 19. Kapitola 3 Napájecí zdroj 25. Úvod 11 Obsah Úvod 11 Informace o použitém hardwaru 12 Několik poznámek k Windows 13 Windows XP 13 Windows Vista 13 Kapitola 1 Skříně počítačů 15 Typy skříní 15 Desktop 15 Tower (věžová provedení) 15 Rozměry skříní

Více

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň

Kódování signálu. Problémy při návrhu linkové úrovně. Úvod do počítačových sítí. Linková úroveň Kódování signálu Obecné schema Kódování NRZ (bez návratu k nule) NRZ L NRZ S, NRZ - M Kódování RZ (s návratem k nule) Kódování dvojí fází Manchester (přímý, nepřímý) Diferenciální Manchester 25.10.2006

Více

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT

Laboratorní cvičení z předmětu Elektrická měření 2. ročník KMT MĚŘENÍ S LOGICKÝM ANALYZÁTOREM Jména: Jiří Paar, Zdeněk Nepraš Datum: 2. 1. 2008 Pracovní skupina: 4 Úkol: 1. Seznamte se s ovládáním logického analyzátoru M611 2. Dle postupu měření zapojte pracoviště

Více

Témata profilové maturitní zkoušky

Témata profilové maturitní zkoušky Střední průmyslová škola elektrotechniky, informatiky a řemesel, Frenštát pod Radhoštěm, příspěvková organizace Témata profilové maturitní zkoušky Obor: Elektrotechnika Třída: E4A Školní rok: 2010/2011

Více

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry

18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry 18A - PRINCIPY ČÍSLICOVÝCH MĚŘICÍCH PŘÍSTROJŮ Voltmetry, A/D převodníky - principy, vlastnosti, Kmitoměry, čítače, fázoměry, Q- metry Digitální voltmetry Základním obvodem digitálních voltmetrů je A/D

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT EU-OVK-VZ-III/2-ZÁ-310

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT EU-OVK-VZ-III/2-ZÁ-310 Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň

Více

BIOS. Autor: Bc. Miroslav Světlík

BIOS. Autor: Bc. Miroslav Světlík BIOS Autor: Bc. Miroslav Světlík Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_837 1. 11. 2012 1 1. BIOS

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

Paměti Josef Horálek

Paměti Josef Horálek Paměti Josef Horálek Paměť = Paměť je pro počítač životní nutností = mikroprocesor z ní čte programy, kterými je řízen a také do ní ukládá výsledky své práce = Paměti v zásadě můžeme rozdělit na: = Primární

Více

Management procesu I Mgr. Josef Horálek

Management procesu I Mgr. Josef Horálek Management procesu I Mgr. Josef Horálek Procesy = Starší počítače umožňovaly spouštět pouze jeden program. Tento program plně využíval OS i všechny systémové zdroje. Současné počítače umožňují běh více

Více

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D

TP 304337/b P - POPIS ARCHIVACE TYP 457 - Měřič INMAT 57 a INMAT 57D Měřič tepla a chladu, vyhodnocovací jednotka průtoku plynu INMAT 57S a INMAT 57D POPIS ARCHIVACE typ 457 OBSAH Možnosti archivace v měřiči INMAT 57 a INMAT 57D... 1 Bilance... 1 Uživatelská archivace...

Více

Vývoj architektur PC 1

Vývoj architektur PC 1 Vývoj architektur PC 1 Cíl přednášky Prezentovat vývoj architektury PC. Prezentovat aktuální pojmy. 2 První verze Pentia První verze Pentia: kmitočet procesoru - 200 MHz (dnes vyšší jak 3 GHz) uvádělo

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů

Kapitola 1. Signály a systémy. 1.1 Klasifikace signálů Kapitola 1 Signály a systémy 1.1 Klasifikace signálů Signál představuje fyzikální vyjádření informace, obvykle ve formě okamžitých hodnot určité fyzikální veličiny, která je funkcí jedné nebo více nezávisle

Více

PCMCIA(Personal Computer Memory Card PCMCIA (3) PCMCIA (2) PCMCIA (4)

PCMCIA(Personal Computer Memory Card PCMCIA (3) PCMCIA (2) PCMCIA (4) PCMCIA (1) PCMCIA(Personal Computer Memory Card International Association) - sdružení založené v roce 1989 Úkolem PCMCIA bylo zavést standard pro rozšiřující karty (a jimi využívané sloty) používané zejména

Více

Číselné soustavy a převody mezi nimi

Číselné soustavy a převody mezi nimi Číselné soustavy a převody mezi nimi Základní požadavek na počítač je schopnost zobrazovat a pamatovat si čísla a provádět operace s těmito čísly. Čísla mohou být zobrazena v různých číselných soustavách.

Více

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2

Koncept pokročilého návrhu ve VHDL. INP - cvičení 2 Koncept pokročilého návrhu ve VHDL INP - cvičení 2 architecture behv of Cnt is process (CLK,RST,CE) variable value: std_logic_vector(3 downto 0 if (RST = '1') then value := (others => '0' elsif (CLK'event

Více

PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI

PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI PRVNÍ ELASTICKÝ INFORMAČNÍ SYSTÉM : QI Cyril Klimeš a) Jan Melzer b) a) Ostravská univerzita, katedra informatiky a počítačů, 30. dubna 22, 701 03 Ostrava, ČR E-mail: cyril.klimes@osu.cz b) DC Concept

Více

Historický vývoj výpočetní techniky. Miroslav Flídr Počítačové systémy LS 2006-1/14- Západočeská univerzita v Plzni

Historický vývoj výpočetní techniky. Miroslav Flídr Počítačové systémy LS 2006-1/14- Západočeská univerzita v Plzni Počítačové systémy Historický vývoj výpočetní techniky Miroslav Flídr Počítačové systémy LS 2006-1/14- Západočeská univerzita v Plzni Co je to počítač? Počítač: počítací stroj, převážně automatické elektronické

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Bootkity v teorii a praxi. Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz

Bootkity v teorii a praxi. Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz Bootkity v teorii a praxi Martin Dráb martin.drab@email.cz Http://www.jadro-windows.cz Definice Pod pojmem bootkit budeme rozumět software, který začíná být aktivní během procesu startu počítače ještě

Více

Základní části počítače. Skříň počítače ( desktop, minitower, tower) Monitor Klávesnice Myš

Základní části počítače. Skříň počítače ( desktop, minitower, tower) Monitor Klávesnice Myš Základní části počítače Skříň počítače ( desktop, minitower, tower) Monitor Klávesnice Myš 1. OBSAH SKŘÍNĚ POČÍTAČE 1.1 Základní deska anglicky mainboard či motherboard Hlavním účelem základní desky je

Více

Operační systémy 1. Přednáška číslo 10 26. 4. 2010. Struktura odkládacích zařízení

Operační systémy 1. Přednáška číslo 10 26. 4. 2010. Struktura odkládacích zařízení Operační systémy 1 Přednáška číslo 10 26. 4. 2010 Struktura odkládacích zařízení Základní pojmy Paměťové médium periferní zařízení nejvyšší důležitosti samotný OS je obvykle uložen na paměťovém zařízení.

Více

Paměti personálních počítačů, vývoj pojmů, technologie, organizace

Paměti personálních počítačů, vývoj pojmů, technologie, organizace Paměti personálních počítačů, vývoj pojmů, technologie, organizace 1 Cíl přednášky Popsat architektury vnitřních pamětí personálních počítačů. Zabývat se vývojem pojmů, technologií, organizací. Vyvodit

Více

6.17 Informatika a výpočetní technika

6.17 Informatika a výpočetní technika 6.17 Informatika a výpočetní technika 6.17.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět Informatika a výpočetní technika vychází ze vzdělávací oblasti Informatika

Více

MultiCONT VAŠE HLADINA JE NAŠE PROFESE ŘÍDÍCÍ A PROGRAMOVACÍ JEDNOTKA VYHODNOCOVACÍ A ŘÍDÍCÍ JEDNOTKY

MultiCONT VAŠE HLADINA JE NAŠE PROFESE ŘÍDÍCÍ A PROGRAMOVACÍ JEDNOTKA VYHODNOCOVACÍ A ŘÍDÍCÍ JEDNOTKY MultiCONT ŘÍDÍCÍ A PROGRAMOVACÍ JEDNOTKA VAŠE HLADINA JE NAŠE PROFESE VYHODNOCOVACÍ A ŘÍDÍCÍ JEDNOTKY N A Š E P R O F E S E J E VLASTNOSTI Univerzální řídící a programovací jednotka snímačů disponující

Více

Operační systémy 2. Struktura odkládacích zařízení Přednáška číslo 10

Operační systémy 2. Struktura odkládacích zařízení Přednáška číslo 10 Operační systémy 2 Struktura odkládacích zařízení Přednáška číslo 10 Základní pojmy Paměťové médium periferní zařízení nejvyšší důležitosti samotný OS je obvykle uložen na paměťovém zařízení. Proto je

Více

Práce s počítačem: 5. ročník

Práce s počítačem: 5. ročník 5.3 Vzdělávací oblast: Informační a komunikační technologie 5.3.1 Vzdělávací obor: Informační a komunikační technologie 5.3.1.1 Vyučovací předmět: Práce s počítačem Informatika Charakteristika vyučovacího

Více

Popis a funkce klávesnice BC-2018

Popis a funkce klávesnice BC-2018 Popis a funkce klávesnice BC-2018 originální anglický manuál je nedílnou součástí tohoto českého překladu Klávesnice s čtečkou otisků prstů používá nejnovější mikroprocesorovou technologii k otevírání

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. výstup ELEKTONIKA I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í 1. Usměrňování a vyhlazování střídavého a. jednocestné usměrnění Do obvodu střídavého proudu sériově připojíme diodu. Prochází jí proud

Více

Informatika pro 8. ročník. Hardware

Informatika pro 8. ročník. Hardware Informatika pro 8. ročník Hardware 3 druhy počítačů Vstupní a výstupní zařízení Další vstupní a výstupní zařízení Nezapomeňte Máme tři druhy počítačů: stolní notebook all-in-one Zařízení, která odesílají

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

Číslo projektu: CZ.1.07/1.5.00/34.0290. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Zdeněk Dostál Ročník: 1. Hardware.

Číslo projektu: CZ.1.07/1.5.00/34.0290. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Zdeněk Dostál Ročník: 1. Hardware. Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:

Více

Střední průmyslová škola a Vyšší odborná škola, Hrabákova 271, Příbram. III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola, Hrabákova 271, Příbram. III / 2 = Inovace a zkvalitnění výuky prostřednictvím ICT Škola Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Název sady Téma Anotace Autor Střední průmyslová škola a Vyšší odborná škola, Hrabákova 271, Příbram CZ.1.07/1.5.00/34.0556

Více

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy

MQL4 COURSE. By Coders guru www.forex-tsd.com. -4 Operace & Výrazy MQL4 COURSE By Coders guru www.forex-tsd.com -4 Operace & Výrazy Vítejte ve čtvrté lekci mého kurzu MQL4. Předchozí lekce Datové Typy prezentovaly mnoho nových konceptů ; Doufám, že jste všemu porozuměli,

Více

Kód. Proměnné. #include <iostream> using namespace std; int main(void) { cout << "Hello world!" << endl; cin.get(); return 0; }

Kód. Proměnné. #include <iostream> using namespace std; int main(void) { cout << Hello world! << endl; cin.get(); return 0; } Jazyk C++ Jazyk C++ je nástupcem jazyka C. C++ obsahuje skoro celý jazyk C, ale navíc přidává vysokoúrovňové vlastnosti vyšších jazyků. Z toho plyne, že (skoro) každý platný program v C je také platným

Více

VÝPOČETNÍ TECHNIKA OBOR: EKONOMIKA A PODNIKÁNÍ ZAMĚŘENÍ: PODNIKÁNÍ FORMA: DENNÍ STUDIUM

VÝPOČETNÍ TECHNIKA OBOR: EKONOMIKA A PODNIKÁNÍ ZAMĚŘENÍ: PODNIKÁNÍ FORMA: DENNÍ STUDIUM VÝPOČETNÍ TECHNIKA OBOR: EKONOMIKA A PODNIKÁNÍ ZAMĚŘENÍ: PODNIKÁNÍ FORMA: DENNÍ STUDIUM 1. Historie a vývoj VT. Dnešní parametry PC. Von Neumannovo schéma. a. historie a vznik počítačů b. využití počítačů

Více

Workshop. Vývoj embedded aplikací v systému MATLAB a Simulink. Jiří Sehnal sehnal@humusoft.cz. www.humusoft.cz info@humusoft.cz. www.mathworks.

Workshop. Vývoj embedded aplikací v systému MATLAB a Simulink. Jiří Sehnal sehnal@humusoft.cz. www.humusoft.cz info@humusoft.cz. www.mathworks. Workshop Vývoj embedded aplikací v systému MATLAB a Simulink Jiří Sehnal sehnal@humusoft.cz www.humusoft.cz info@humusoft.cz www.mathworks.com 1 Obsah workshopu Model Based Design model soustavy a regulátoru

Více

Popis programu EnicomD

Popis programu EnicomD Popis programu EnicomD Pomocí programu ENICOM D lze konfigurovat výstup RS 232 přijímačů Rx1 DIN/DATA a Rx1 DATA (přidělovat textové řetězce k jednotlivým vysílačům resp. tlačítkům a nastavovat parametry

Více

Logické řízení s logickým modulem LOGO!

Logické řízení s logickým modulem LOGO! Logické řízení s logickým modulem LOGO! Cíl: Seznámit se s programováním jednoduchého programovatelného automatu (logického modulu) LOGO! a vyzkoušet jeho funkčnost na konkrétních zapojeních. Úkol: 1)

Více

1. Programování proti rozhraní

1. Programování proti rozhraní 1. Programování proti rozhraní Cíl látky Cílem tohoto bloku je seznámení se s jednou z nejdůležitější programátorskou technikou v objektově orientovaném programování. Tou technikou je využívaní rozhraní

Více

Title: IX 6 11:27 (1 of 6)

Title: IX 6 11:27 (1 of 6) PŘEVODNÍKY ANALOGOVÝCH A ČÍSLICOVÝCH SIGNÁLŮ Převodníky umožňující transformaci číslicově vyjádřené informace na analogové napětí a naopak zaujímají v řídícím systému klíčové postavení. Značná část měřených

Více

Logická organizace paměti Josef Horálek

Logická organizace paměti Josef Horálek Logická organizace paměti Josef Horálek Logická organizace paměti = Paměť využívají = uživatelské aplikace = operační systém = bios HW zařízení = uloženy adresy I/O zařízení atd. = Logická organizace paměti

Více

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky

Úvod do problematiky. Význam počítačové grafiky. Trochu z historie. Využití počítačové grafiky Přednáška 1 Úvod do problematiky Význam počítačové grafiky Obrovský přínos masovému rozšíření počítačů ovládání počítače vizualizace výsledků rozšíření možnosti využívání počítačů Bouřlivý rozvoj v oblasti

Více

5.3.1. Informatika pro 2. stupeň

5.3.1. Informatika pro 2. stupeň 5.3.1. Informatika pro 2. stupeň Charakteristika vzdělávací oblasti Vzdělávací oblast Informační a komunikační technologie umožňuje všem žákům dosáhnout základní úrovně informační gramotnosti - získat

Více