MASARYKOVA UNIVERZITA

Rozměr: px
Začít zobrazení ze stránky:

Download "MASARYKOVA UNIVERZITA"

Transkript

1 MASARYKOVA UNIVERZITA Přírodovědecká fakulta Bc. Veronika MOŽNÁ Studium laserové ablace ocelí ve spojení s ICP-OES a ICP-MS Diplomová práce Vedoucí práce: Mgr. Markéta Holá, Ph. D. Brno,

2 Prohlašuji, že jsem práci vypracovala samostatně a čerpala jsem z literatury uvedené v kapitole 7 a ze znalostí získaných studiem a na základě měření na katedře analytické chemie Masarykovy univerzity a katedře anorganické chemie na Eidgenössische Technische Hochschule v Zürichu. V Brně dne Veronika Možná 2

3 Děkuji tímto vedoucí mé diplomové práce Mgr. Markétě Holé, Ph. D. za cenné rady, pomoc a za přístup, se kterým vedla mou diplomovou práci. Rovněž bych ráda poděkovala Mgr. Aleši Hrdličkovi a prof. RNDr. Viktoru Kanickému, DrSc. za rady a čas, který mi věnovali. Můj dík patří rovněž Ing. Pavlu Krásenskému za přípravu kovových vzorků. V neposlední řadě bych chtěla poděkovat skupině Detlefa Günthera v Zürichu, zvláště pak Dr. Jorge Pisonero za rady, pomoc, čas a trpělivost, Prof. Dr. Detlefu Günter za konzultace, Mgr. Ivaně Krošlákové za její čas a cenné rady a Danielu Fliegel za pomoc při měření u elektronového mikroskopu. 3

4 1 Úvod Teoretická část Použité spektrální metody Optická emisní spektrometrie Hmotnostní spektrometrie Budící zdroje Budící zdroje v OES Budící zdroje v MS Indukčně vázané plazma Plazmové zdroje buzení Charakteristika zdroje ICP Princip výboje Topografie výboje Generace iontů v plazmatu Fyzikální vlastnosti ICP Vlastnosti ICP Výpočet teploty v ICP Výpočet excitační teploty s využitím Boltzmannova zákona Výpočet excitační teploty metodou poměru dvou čar ICP-MS a ICP-OES Rozdíly mezi ICP-MS a ICP-OES Výhody a nevýhody metod Robustnost ICP-OES vs ICP-MS Metody vzorkování LA-ICP-MS, LA-ICP-OES Lasery Princip laseru Pevnolátkové lasery Neodymový laser Excimerové lasery Vlastnosti laserového paprsku Vlnová délka Délka pulzu Energie pulzu Laserová ablace Ablační krátery Vliv nosného plynu Frakcionace Frakcionační index Distribuce velikosti částic Ztráty částic během transportu Techniky pro určení PSD Optické měření velikosti částic

5 3 Experimentální část Lasery Nanosekundové lasery Nd:YAG lasery Excimerový laser Femtosekundový laser Ablační komory Quantel Brilliant LSX Excimerový a femtosekundový laser ICP spektrometry Optický spektrometr Měření na monochromátoru Měření na polychromátoru Hmotnostní spektrometr Chemikálie, standardy, vzorky Pevné vzorky Úprava pevných vzorků před měřením Rozpouštění reálných vzorků pro roztokovou analýzu Chemikálie Měřič velikosti částic Filtrace aerosolu Elektronový mikroskop Separátor Praktická část ICP-OES Teplota v ICP Výběr vhodných spektrálních čar Vliv pohybu vzorku při ablaci Vliv výšky pozorování na excitační teplotu v ICP Vliv průtoku kapaliny zmlžovačem na excitační teplotu v ICP Vliv průtoku nosného plynu při ablaci na excitační teplotu v ICP Filtrování aerosolu Skelná vata Separátor Ztráty uvolněného materiálu ICP-MS Optimalizace parametrů LA pro měření ICP-MS Porovnání ns a fs ablace kovových materiálů Ablační krátery Signály Skleněný standard Kovový standard Reálný vzorek Frakcionační index

6 Velikost a struktura uvolněného materiálu Distribuce velikosti částic Struktura aerosolu Kvantifikace s použitím kovového a skleněného standardu Excimerový laser Nd:YAG Femtosekundový laser Skleněný standard GSE-1G Optimalizace ns vzorkování Kvantifikace reálných vzorků Závěr Literatura Použité zkratky

7 1 Úvod Metody indukčně vázaného plazmatu ve spojení s hmotnostní a optickou spektrometrií (ICP-MS/OES) jsou vhodné pro analýzu plynných, kapalných i pevných vzorků. Velké množství analyzovaných materiálů je dostupné v pevné formě a proto se rozvíjí metody přímého vzorkování. Mezi nejpoužívanější metodu přímého vzorkování patří laserová ablace (LA). Při přímém vzorkování není nutné převádění pevných vzorků do roztoku, což vede ke zkrácení doby nutné k přípravě vzorku a eliminaci agresivních chemikálií používaných pro rozklad. Navíc zdlouhavé rozklady často vedou ke kontaminaci nebo ztrátám těkavých prvků. I přes mnoho výhod přímé analýzy je stále nejčastější metodou vzorkování zmlžování kapalin, a to díky nižším limitům detekce, vyšší stabilitě signálů získaných při roztokové analýze a jednoduché kvantifikaci analytů. Pro kvantitativní analýzu metodou LA-ICP-MS/OES zůstává problémem dostupnost standardních materiálů, jejichž složení a charakter se musí co nejvíce podobat analyzovaným vzorkům. Cílem této práce bylo optimalizovat systém pro laserovou ablaci kovových materiálů ve spojení s ICP-MS/OES. Jedním z úkolů bylo lokalizovat ztráty, ke kterým během ablace dochází a nížit limity detekce. Dalším úkolem bylo nalézt optimální systém vzorkování kovového materiálu. Byla porovnávána ablace s použitím nanosekundových a femtosekundových laserů jak z hlediska struktury uvolněného materiálu, tak z hlediska kvantifikace tohoto materiálu. Dalším důležitým parametrem při analýze kovových vzorků je teplota v ICP, neboť ovlivňuje odpaření ionizaci a excitaci částic. Byl tedy sledován vliv různých parametrů na excitační teplotu v ICP. 7

8 2 Teoretická část 2.1 Použité spektrální metody Optická emisní spektrometrie Optická emisní spektrometrie (OES) je založena na registrování fotonů vzniklých přechody valenčních elektronů z vyšších energetických stavů na stavy nižší. Měří se tedy záření emitované atomy nebo ionty v excitovaném stavu, které vzniká jejich zářivou deexcitací. Emisní spektrum má čárový charakter, což znamená, že při příslušných vlnových délkách zaznamenáváme spektrální čáry odpovídající jednotlivým přechodům. Poloha čar ve spektru (vlnová délka) charakterizuje prvky přítomné ve vzorku (kvalitativní složení) a intenzita jednotlivých čar charakterizuje koncentraci prvku ve vzorku (kvantitativní složení) [1] Hmotnostní spektrometrie Analýza organických i anorganických sloučenin pomocí hmotnostní spektrometrie (MS) se provádí po ionizaci na kladně nabité ionty podle poměru M/z + (M molární hmotnost, z náboj). Po ionizaci vznikají nejčastěji ionty s jedním kladným nábojem, méně pak ionty se dvěma náboji, občas také ionizované molekuly. Ionty s různými M/z + opisují po předchozí fokusaci podle energie v radiálním elektrickém poli různé dráhy v sektorovém stabilním magnetickém poli. Hmotnostní spektrum zde tvoří ostré čáry podle poměru M/z + o různých intenzitách. Intenzita čar je úměrná koncentraci prvku v analytu a odezva je lineární v rozsahu několika řádů koncentrace. Všechny operace od dávkování, ionizace po identifikaci se provádí ve vakuu [2]. 2.2 Budící zdroje Budící zdroje v OES Abychom mohli zaznamenat atomové čárové spektrum musí být prvky ve vzorku v atomární formě a musí být excitovány do vyšších energetických stavů. Toho se nejčastěji dosahuje termickým buzením, kdy se vzorek zahřívá na vysokou teplotu. Používané budící zdroje se značně liší nejen dosahovanou teplotou, ale i celou řadou dalších parametrů ovlivňujících 8

9 získané analytické výsledky. V běžné praxi jsou používány následující typy budících zdrojů: plamen, elektrický oblouk, řízený elektrický oblouk, elektrická jiskra, rotační grafitová elektroda, plazmové buzení a netermické buzení [1] Budící zdroje v MS Pro ionizaci v MS je k dispozici řada technik: ionizace nárazem elektronů, ionizace fotony, ionizace v silném elektrickém poli, Penningova ionizace metastabilním atomem Ar, chemická ionizace (metan, isobutan, voda), které jsou vhodné pro plyny a zplyněné organické molekuly, dále pak jiskrovým výbojem a indukčně vázaným plazmatem pro zplynění a ionizaci anorganických molekul [2]. 2.3 Indukčně vázané plazma Plazmové zdroje buzení Plazmové zdroje buzení pro spektrální analýzu lze rozdělit na stejnosměrné a vysokofrekvenční. Plazmata jsou generována za atmosférického nebo sníženého tlaku. Vysokofrekvenční plazmata se dělí na mikrovlnná a radiofrekvenční. Mikrovlnná plazmata jsou buzená v rozmezí frekvencí 300 až 2450 MHz a podle přenosu energie z generátoru do plazmatu se dělí na indukčně a kapacitně vázaná. V oboru frekvencí 4 až 100 MHz se generuje indukčně vázané radiofrekvenční plazma. [3] Charakteristika zdroje ICP Indukčně vázané plazma (ICP) je doposud komerčně nejvyužívanějším typem plazmového zdroje [4] a uplatňuje se v chemické prvkové analýze již téměř po čtyři desetiletí. Výboj ICP byl nejdříve použit jako budící zdroj pro optickou emisní spektrometrii (ICP-OES), později jako rezervoár atomů pro atomovou fluorescenční spektrometrii (ICP-AFS) a počátkem 80. let jako zdroj iontů pro hmotnostní spektrometrii (ICP-MS) [3] Princip výboje Plazma je ionizovaný, makroskopicky neutrální plyn. Do výboje ICP je dodávána energie volným elektronům z vnějšího zdroje, kterým je elektromagnetické pole indukční cívky. Obrázek 1 Výboj ICP je iniciován ionizací jiskrovým výbojem z Teslova transformátoru. Vytvořené 9

10 elektrony jsou urychlovány vysokofrekvenčním elektromagnetickým polem a způsobují další lavinovou ionizaci pracovního plynu. Vzniká tak nepřetržitý výboj (Obrázek 1), kterému je dodávána energie vysokofrekvenčními vířivými proudy indukovanými v povrchové vrstvě plazmatu (viz Rovnice 1) [3]. vf e - + Ar e - + e - + Ar + (1) Obrázek 1: Indukčně vázané plazma. ( Topografie výboje Plazmová hlavice je tvořena ze tří křemenných trubic (vnitřní trubice, střední trubice a injektoru vzorku). Mezi vnější a střední trubku je zaveden vnější plazmový plyn, jenž tvoří plazma. Střední plazmový plyn je zaváděn mezi střední trubici a injektor vzorku a izoluje plazma od prostřední trubice. Třetí nosný plyn nese vzorek ze vzorkovacího systému (Obrázek 2) [4]. Topografie výboje rozlišuje dvě zásadně odlišné oblasti a to indukční zónu, v níž dochází k přenosu energie elektromagnetického pole cívky do plazmatu, a analytický kanál, v němž je soustředěn vzorek transportovaný nosným plynem. Podle procesů probíhajících v analytickém kanálu se tento člení na počáteční zářivou zónu, analytickou zónu a chvost výboje (Obrázek 2). Největší pozornost je věnována analytické zóně, která je oblastí přednostní excitace iontů [3]. Prstencový tvar ICP výboje s centrálním kanálem umožňuje účinné vnášení vzorku. Tato ojedinělá geometrie výboje je příčinou mimořádně příznivých analytických vlastností 10

11 ICP [3]. Plazma je u ICP-OES většinou orientováno vertikálně, zatímco v ICP-MS je orientováno horizontálně [5]. Obrázek 2: Schéma plazmové hlavice. ( Generace iontů v plazmatu Částice aerosolu putují přes různé zóny v ICP a jsou vysušeny, odpařeny, atomizovány a ionizovány. V analytické zóně plazmatu (teplota kolem 6000 K) pak existují jako excitované atomy a ionty, které prezentují elementární složení vzorku [6]. V ICP vznikají kladně i záporně nabité ionty, pro detekci se však většinou používají jen kladně nabité ionty. Ionizaci prvků můžeme ovlivnit podmínkami v plazmatu [4]. Pokud nedochází k plné ionizaci prvků v plazmatu, je nutné použít více robustních podmínek (změna příkonu do plazmatu, rychlosti průtoku nosného plynu) nebo jiné kombinace plynů [6] Fyzikální vlastnosti ICP Přestože lze plazma vytvořit z libovolného plynu, v praxi se dává přednost vzácným plynům, které mají jednoduchá spektra a netvoří nestabilní sloučeniny. Jejich vysoké hodnoty ionizační energie navíc umožňují účinnou ionizaci většiny prvků. Helium je zajímavé díky své nejvyšší 1. ionizační energii (24,6 ev) a výborné tepelné vodivosti. Vzhledem k vysokým 11

12 provozním nákladům se však dává přednost argonu. Největší nevýhodou argonu je jeho nízká tepelná vodivost, která omezuje účinnost atomizačních procesů [3]. Viskozita plazmatu vzácných plynů roste výrazně s teplotou. Koncentrace elektronů v ICP je vysoká, což má za následek jednak malý vliv i vysoké koncentrace snadno ionizovaných prvků na ionizační rovnováhy, jednak vysoké pozadí v ultrafialové (UV) a viditelné (VIS) oblasti spektra. Teplota plazmatu a koncentrace elektronů závisí na pozorované oblasti výboje [3] Vlastnosti ICP Dvěmi důležitými vlastnostmi ICP jsou excitační teplota a hustota náboje. Teplota v ICP je velmi důležitá, neboť energetické stavy a distribuce atomů, iontů a molekul mohou být významně ovlivněny právě teplotou. Hustota náboje je rovněž důležitá, neboť může být použita k určení stupně ionizace ve výboji [7]. Excitační teplota a hustota náboje mohou být ovlivněny množstvím uvolněného materiálu zavedeného do plazmatu [8] Výpočet teploty v ICP Znalost excitační teploty je významná, neboť určuje distribuci atomů v plazmatu. Excitační teplota je funkcí výkonu a se zvyšujícím se výkonem roste, naopak klesá s rostoucím průtokem nosného plynu a může být ovlivněna některými prvky. Například se zvyšující se koncentrací Na ve vzorku dochází k jejímu snížení. Excitační teplota se pohybuje v rozsahu 5700 K až 6000 K [7]. Pro výpočet excitační teploty se využívá nejčastěji metody výpočtu excitační teploty z Boltzmannova zákona nebo metody poměru dvou čar [9]. Excitační teplota vypočtená metodou poměru dvou čar vykazuje větší chyby než excitační teplota vypočtená metodou podle Boltzmanna [8]. Na druhou stranu je tato metoda velmi užitečná k určení změn excitační teploty po změně parametrů v plazmatu [9]. 12

13 Výpočet excitační teploty s využitím Boltzmannova zákona Excitační teplota je parametrem v Boltzmannově vztahu (Rovnice 2), který za podmínek termodynamické rovnováhy popisuje rozdělení částic v jednotlivých energetických stavech: N N Em m g m kt =. e (2) a Z a Kde N m je počet atomů daného prvku v jednotkovém objemu v energetickém stavu m, N a je celkový počet atomů tohoto prvku v jednotkovém objemu, g m je statistická váha stavu m, E m je energie hladiny m, k je Boltzmannova konstanta, T je excitační teplota a Z a je partiční funkce. Pro měření excitační teploty je tento vztah upraven do formy: log I mn λ g n f 3 nm mn 3, = konst Texc 22 E Kde f mn je síla oscilátoru, I mn je intenzita čáry, g n je statistická váha dolního energetického stavu a λ mn je vlnová délka spektrální čáry. Pro určení excitační teploty T exc v plazmovém výboji se používá sada atomových čar železa, uvedených spolu s hodnotami v Tabulce 1. Vypočtená teplota pak odpovídá průměrné teplotě v analytické zóně [10]. m (3) 3 λ g n f nm nm Tabulka 1: Spektrální čáry železa, vlnočty σ m, horní energetické hladiny E m, faktory ze síly oscilátoru f mn a statistické váhy g n : λ mn [nm] λ 3 nm g n f mn [m 3 ] σ m [m -1 ] 371,933 1, ,713 1, ,826 5, ,948 3, ,823 5, ,379 8, ,719 1,

14 Výpočet excitační teploty metodou poměru dvou čar Pro výpočet excitační teploty metodou poměru dvou čar je nutné znát excitační energie, statistické váhy daných stavů a pravděpodobnosti přechodu u daných čar. Excitační teplota může být vypočtena pomocí vztahu: T 0,625( E = g1a1λ 2 log g A λ E2 ) I log I kde T je excitační teplota, E 1, E 2 jsou energie horních hladin, g 1, g 2 jsou stupně degenerace (jak se daná spektrální čára rozštěpí v magnetickém poli) obou spektrálních čár, A 1, A 2 je počet přechodů za sekundu u obou spektrálních čár, λ 1, λ 2 vlnové délky spektrálních čar a I 1,I 2 jsou intenzity naměřené pro obě spektrální čáry [9]. Pro tento výpočet není možné použít libovolné dvojice. Je důležité, aby se jednalo o čáry atomů či iontů ve stejném ionizačním stavu, které se příliš neliší hodnotou vlnových délek, ale liší se jejich energie horních hladin E 1, E 2 a intenzita [8]. 1 2 (4) 2.4 ICP-MS a ICP-OES ICP-MS/OES jsou analytické spektrální techniky kombinující ICP jako zdroj atomů a iontů a MS/OES pro detekci iontů a iontů/atomů. ICP-MS byla komercializována v roce 1983 a prvních 10 let jejího vývoje byla využívána hlavně kvadrupólová hmotnostní technologie. Po 18-ti letech bylo celosvětově instalováno jen 4000 ICP-MS systémů. I když byla ICP-OES komercializována dříve, po 18-ti letech bylo na trh zavedeno okolo 9000 ICP-OES systémů. Jedním z důvodů širšího využití ICP-OES je jeho nižší cena [11] Rozdíly mezi ICP-MS a ICP-OES ICP-OES pracuje na principu generace a detekce fotonů světla vznikajících při přechodu excitovaných elektronů na nižší energetickou hladinu. Emitované fotony mají specifickou vlnovou délku charakterizující daný prvek. U ICP-MS se výboj používá jako iontový zdroj. Díky produkci a detekci velkého množství iontů má ICP-MS charakteristické schopnosti ultrastopové detekce. Limity detekce u ICP-MS (ng g -1 ) jsou o tři řády nižší než u ICP-OES (µg g -1 ) [5]. Schémata zapojení obou metod jsou uvedena na Obrázcích 3 a 4. 14

15 Obrázek 3: Schéma ICP-OES Obrázek 4: Schéma ICP-MS Výhody a nevýhody metod ICP-OES výhody: vysoká flexibilita, přijatelná přesnost a spránost v širokém rozsahu koncentrací, obvykle dostatečné limity detekce, odolnost [12]. 15

16 ICP-OES nevýhody: rozklad pevných látek může způsobit problémy navzdory dostupnosti řady moderních rozpouštěcích metod, vyšší meze detekce [12]. ICP-MS výhody: je vhodná pro mapující analýzu rozpuštěného materiálu, výborná možnost korekcí spektrálních interferencí [12], vysoká citlivost, nízké limity detekce, široký lineární dynamický rozsah, schopnost multielementární analýzy, minimální vliv matrice [13]. ICP-MS nevýhody: odolnost je menší než u ICP-OES, velký objem kapaliny působí problémy, vysoké pořizovací náklady, vysoké provozní náklady [12] Robustnost ICP-OES vs ICP-MS Prvním aspektem je volba rozpouštědla, která je více limitována u ICP-MS, než u ICP-OES. Dalším rysem je ovlivnění citlivosti koncentrací kyselin. Vliv koncentrace kyselin na signál je u ICP-MS mnohem silnější a specifičtější. Třetí aspekt se týká paměťového efektu, který je pro ICP-MS kritický [12] Metody vzorkování Vnášení vzorku do výboje je Achillovou patou optické spektrometrie. V ICP-OES/MS převažuje analýza vzorků ve formě roztoků. Nejčastěji je roztok zaváděn do ICP v podobě aerosolu generovaného zmlžovačem umístěným v mlžné komoře. Vlhký aerosol generovaný různými typy zmlžovačů je vnášen do ICP výboje proudem nosného argonu. Zmlžovací systémy jsou charakterizovány rozdělením velikosti částic a modifikací aerosolu v průběhu jeho transportu do ICP [3]. 16

17 Dalším typem vzorkování je přímá analýza, která má oproti roztokové analýze řadu výhod i nevýhod [3]. K hlavním kladům roztokové analýzy patří to, že je množství materiálu vstupujícího do plazmatu určeno zmlžovačem a je stejné během měření standardu i vzorku. Množství materiálu vstupujícího při laserové ablaci do ICP záleží na matrici vzorku a vlastnostech laseru. Během ablace standardu a vzorku se tak může do plazmatu dostat různé množství materiálu [8]. Výhody přímého vzorkování spočívají ve zkrácení doby analýzy, eliminaci agresivních chemikálií a minimalizaci nebezpečných odpadů. Dále se snižuje zředění vzorku a tak i riziko kontaminace a ztrát těkavých prvků. Přítomnost tavidel a kyselin v roztocích je rovněž příčinou nespektrálních interferencí v procesu zmlžování, transportu aerosolu i při následném vypařování, atomizaci, excitaci a ionizaci v ICP [3]. Výhodou přímého vzorkování je rovněž uchování prostorových charakteristik vzorku [12, 13]. Pevné vzorky můžeme v podstatě rozdělit na práškové vzorky a kompaktní materiály. K vzorkování práškových materiálů může být použito: zmlžování suspenzí, fluidní lože, elektrotermické vypařování, přímé vsouvání vzorku do ICP a laserová ablace. K vzorkování kompaktních materiálů můžeme využít: eroze elektrickým obloukem nebo jiskrou a laserové ablace [3] LA-ICP-MS, LA-ICP-OES Laserová ablace ve spojení s hmotnostní spektrometrií nebo optickou spektrometrií s indukčně vázaným plazmatem (LA-ICP-MS, LA-ICP-OES) má široké možnosti využití v geologii, životním prostředí, odpadovém hospodářství, soudnictví, biologii a výrobě polovodičů [14, 15]. Pro analýzu pevných vzorků je příprava pevných standardů z různých prvků, matric a velkého rozsahu koncentrací obtížný úkol. Existují tři druhy kalibračních strategií u pevných vzorků: přímá ablace za účasti matrice, současný přívod vzorku a standardu (dvojí vzorkování) a přímá kapalinová ablace. Standard by se měl podobat (fyzikálně i chemicky) analyzovanému vzorku, jak jen je to možné, protože se frakcionace a ablační rychlost mění s matricí. V ideálním případě by odezva neměla být na matrici závislá [16]. Limity detekce a stabilita signálu u laserové ablace se však stále nevyrovnají hodnotám dosaženým při použití zmlžovačů a to hlavně díky hmotnostním ztrátám v ablační cele, transportní hadici a během excitace. Bylo vypracováno mnoho studií, které měly za úkol zvýšit citlivost LA-ICP-MS. Většina z nich byla zaměřena na vzorkování. Zkoušel se vliv 17

18 vlnové délky laseru, délky pulzu, nosného plynu, designu ablační cely jako důležitých parametrů, které mohou ovlivnit vlastnosti aerosolu [17]. Různé zdroje ICP dávají různé odezvy, z čehož plyne, že účinnost ionizace není stejná pro všechny ICP zdroje. Navíc optimální vzorkování nastává při různých pozicích uvnitř ICP a není tedy stejné pro všechny prvky, a to zvláště pro aerosol s většími částicemi, které nejsou v ICP plně ionizovány [17]. Jednou z nevýhod LA-ICP-MS/OES je výskyt elementární frakcionace [18]. 2.5 Lasery Vznik stimulované emise, jenž se stala základem všech kvantových zesilovačů a oscilátorů poprvé vysvětlil Albert Einstein v roce Výrazný pokrok v oblasti laserů nastal až po sestrojení prvního rubínového laseru v roce 1959 a He-Ne laseru v roce Laserového záření se dnes využívá v chemii, medicíně, biologickém i materiálovém výzkumu [19] Princip laseru Laser je optický kvantový generátor, který využívá zesílení světla stimulovanou emisí záření. Záření vzniká důsledkem stimulované emise fotonů při lavinovém přechodu elektronů z metastabilních hladin atomů nebo molekul. Stimulovaná emise převládne, jestliže je hustota excitovaných atomů a fotonů v daném optickém systému vysoká. V excitovaném stavu musí být více atomů nebo molekul než ve stavu základním [2]. Lasery se dělí podle aktivního prostředí na pevnolátkové, plynové a kapalinové a podle provozu na kontinuální a pulzní [20] Pevnolátkové lasery Aktivním prostředím u pevnolátkových laserů jsou krystalické nebo amorfní látky. Aktivní ionty jsou zdrojem stimulovaného záření. Přes absorpční pásy těchto iontů se obsazují příslušné energetické hladiny, mezi kterými dochází k inverzi. Jedním z nejpoužívanějších laserů tohoto typu je neodymový laser [20]. 18

19 Neodymový laser Neodym patří k nejpoužívanějším aktivním prvkům v laserech s pevnou fází. Pro své výhodné krystalografické a chemické vlastnosti byl vyzkoušen snad v největším počtu nosných prostředí. Jako nosné prostředí se nejčastěji využívá monokrystal yttrito-hlinitého granátu (Y 3 Al 5 O 12 ) s aktivními Nd 3+ ionty v krystalové mřížce (Obrázek 5). Krystaly granátu jsou mechanicky pevné a tepelně stálé. Neodymový laser je provozován při své základní vlnové délce 1064 nm nebo na harmonických frekvencích s odpovídajícími vlnovými délkami 532, 355, 266 a 213 nm [20]. Obrázek 5: krystal Y 3 Al 5 O 12, ( Excimerové lasery U tohoto typu laseru nižší stav neexistuje. Vzniká exciplex, což je kombinace dvou atomů, které existují jen v excitovaném stavu. Exciplex disociuje okamžitě po odevzdání excitační energie. Tyto pulzní lasery emitují v UV oblasti spektra. Jedním z nejpoužívanějších excimerových laserů je ArF*, jenž je provozován při vlnové délce 193 nm [15] Vlastnosti laserového paprsku Vlastnosti laserového paprsku, které ovlivňují ablaci jsou vlnová délka, délka pulzu, energie a prostorový energetický profil. Důležitou charakteristikou laseru je rovněž ozáření (energie která dopadne na plochu v daném čase), jenž hraje hlavní roli a definuje kvantitu a složení uvolněného materiálu [21] Vlnová délka Vlnová délka laseru je důležitým parametrem, který ovlivňuje účinnost elektronového přenosu do centra ozařovaného vzorku [22]. Pro LA-ICP-MS bylo použito snad všech vlnových délek. Používané vlnové délky se měnily od infračervené (IR) až po ultrafialovou 19

20 (UV) oblast. Širší využití kratších vlnových délek je dáno jejich výhodami. Jednou z hlavních výhod je snadnější průnik laserové energie do vzorku vedoucí k vyšší hustotě energie. Toto zvýšení absorptivity vede k menším ablačním rychlostem v průhledných materiálech a zmenšuje zónu tepelných efektů ve vzorku [18]. Přechod z IR do UV oblasti rovněž vede k výrazné redukci frakcionace. Tento fakt je ale ovlivněn různým množstvím uvolněného materiálu při různých vlnových délkách. Při ablaci laserem s vlnovou délkou 266 nm dochází k většímu uvolňování vzorku než při ablaci laserem s vlnovou délkou 193 nm. Ablací s laserem o vlnové délce 193 nm vznikají menší částice než ablací při 266 nm [23]. Krátery po IR a UV ablaci nejsou stejné. Ablace IR laserem produkuje širší a plytší krátery než ablace UV laserem. Díky tomu je možné při UV ablaci dosáhnout hlubších kráterů o menším průměru. Rozdíly vlnových délek se projeví u různých materiálů různě. Rychlost ablace je závislá na vlnové délce použitého laseru [24]. Mank pozoroval, že u skleněných standardů NIST 610 je účinnost ablace při použití laseru s vlnovou délkou 193 nm téměř 2 vyšší než u ostatních, zatímco intenzity jsou vyšší při použití laseru s vlnovou délkou 266 nm, což je patrně způsobeno větším objemem uvolněného materiálu [25]. U kovových vzorků vlnová délka jen částečně ovlivňuje ablační charakteristiky a délka pulzu se jeví jako nejdůležitější parametr, jenž ovlivňuje tvorbu roztaveného materiálu v místě ablace a rovněž má vliv na stechiometrii aerosolu [18] Délka pulzu Ablace s využitím ultra krátkých femtosekundových (fs) pulzů se liší od ablace s využitím krátkých nanosekundových (ns) pulzů. Toto je způsobeno různým rozptylem energie po fs a ns pulzech. V případě fs laserových pulzů vzniká na konci laserového pulzu jen velmi horký elektronový plyn a mřížka materiálu je prakticky neporušená, zatímco v případě delších ns pulzů materiál prodělá termodynamické změny při přechodu z pevné látky na kapalinu a do plazmatu (Obrázek 6) [26]. Přenos laserové energie do mřížky materiálu a jeho následné uvolnění trvá zhruba 10 ps. U ns ablace tento čas nestačí pro rozptyl tepla ani u takových materiálů jako jsou kovy, jenž se vyznačují vysokou konstantou tepelného rozptylu [26]. U fs ablace se tedy laserová energie předá vzorku bez laser-plazma interakce, zatímco při ns ablaci dochází ke stínění plazmatem a tím k snížení energie laserového paprsku, která se dostane k povrchu. Proto je ablační účinnost u ns ablace menší [27]. 20

21 Rovněž plazmata, která vznikají po ns a fs ablaci se liší. Na počátku expanze plazmatu je ns plazma teplejší díky absorpci energie laserového pulzu, což vede k vyšší elektronové hustotě. U fs laseru neexistuje žádná interakce mezi laserem a plazmatem a plazma tedy expanduje bez jakýchkoliv ohřívacích procesů a vlastní intenzita emise je menší. Hustota a teplota fs plazmatu jsou také menší a klesají rychleji v porovnání s ns plazmatem díky různým mechanismům depozice energie. Nárazové vlny generované ns laserem expandují sféricky (kruhově), zatímco nárazové vlny generované fs laserem expandují objemově (dimensionálně) [27]. Interakce ns a fs laserového pulzu s materiálem se liší. V případě fs pulzů je zóna materiálu zasažená laserovým paprskem velká jen několik desítek nanometrů. Zatímco v případě ns pulzů je tato zóna velká asi 1 µm [26]. Jak u fs laseru, tak u ns laseru roste hloubka kráteru s počtem pulzů lineárně (v omezeném rozsahu počtu pulzů). Pro stejný počet pulzů je ale kráter po ablaci fs laserem dvakrát hlubší než kráter získaný po ablaci ns laserem. Po ablaci ns laserem vzniká vyšší napařenina okolo kráteru než při ablaci fs laserem, což ukazuje, že při použití fs laseru dochází k redukci tání vzorku. Po ablaci ns laserem vznikají většinou velké kapky vymrštěné z taveného povrchu s poloměrem od několika set nanometrů až k několika mikrometrům a aglomeráty těchto částic [27]. Russo zjistil, že nanosekundová ablace je narozdíl od ablace femtosekundové závislá na matrici. Femtosekundová ablace v UV oblasti poskytovala lepší přesnost a správnost při analýze Pb ve slitinách v porovnání s nanosekundovou ablací [16]. Obrázek 6: Srovnání interakce ns a fs laseru s materiálem (tops.phys.strath.ac.uk/research/machining.html) 21

22 Energie pulzu Zvyšováním laserové energie se zvýší velikost kráteru, z čehož plyne, že je ze vzorku uvolněno více materiálu [13]. 2.6 Laserová ablace Laserová ablace (LA) se stává vedoucí technologií pro přímou chemickou analýzu pevných vzorků. Je jednou z mála metod, která může být použita pro analýzy za atmosférického tlaku a pro analýzu jakéhokoliv vzorku. Může poskytnout rychlé informace jak v laboratoři, tak v terénu [21]. LA je nejpoužívanější z mnoha vzorkovacích technik a nabízí mnoho výhod, mezi než patří aplikace u vodivých i nevodivých materiálů s minimální před úpravou vzorku [28]. Mechanismus LA se skládá z několika kroků, při kterých vznikají různé produkty odpaření. Počáteční fází je elektronová excitace uvnitř vzorku doprovázená vyrážením elektronů z povrchu vzorku v důsledku fotoelektrické a termické emise. V tomto okamžiku jsou elektrony přenášeny v důsledku řady rozptylových mechanismů. Na povrchu vzorku pak dochází k tání, vypařování, následuje ionizace a formace plazmového oblaku, který se skládá ze složek vzorku. Expandovaný oblak pak dále interaguje s okolním plynem a vytváří se tlakové vlny, které způsobí další ionizaci. Expandované vysokotlaké plazma pak způsobí odplavení roztaveného materiálu, což může produkovat částice o větší velikosti (i několik µm) [14]. Nárazové vlny rovněž vedou k drolení vzorku. Vlivem ultrafialového záření také vznikají přímé shluky štěpů a fragmentů (Obrázek 7) [28]. 22

23 Obrázek 7: Interakce laserového paprsku s materiálem (myweb.ncku.edu.tw/~linjem/laserlab/nano.htm) Ablace nemusí nutně produkovat stejné množství vzorku po každém laserovém pulzu a distribuce částic se může měnit s každým pulzem. V průběhu ablace se rozdíly mezi uvolněným materiálem prohlubují. Toto může hrát významnou roli v hloubkovém profilování [21, 28]. Způsob, jakým je materiál po LA odstraněn hraje velkou roli při reprezentativnosti vzorkování [28]. Účinnost ablace je vyšší u prvních pulzů na neporušeném povrchu a postupně dochází k její stabilizaci [14]. Teplota tání není hlavním faktorem, který ovlivňuje ablační procesy. Absolutní množství materiálu uvolněného laserem záleží hlavně na vlastnostech materiálu [24]. Guillong zjistil, že při ablaci průhledných vzorků vznikají hlavně částice o velikosti 1 µm, zatímco při ablaci neprůhledného materiálu vznikají částice menší než 0,2 µm. Poměr malých k velkým částicím roste s hloubkou kráteru [23] Ablační krátery Při interakci laserového paprsku s povrchem materiálu vznikají útvary, které se nazývají ablační krátery (Obrázek 8, 9). Geometrie ablačního kráteru je závislá na vlnové délce laseru. Během ablace mohou být těkavější prvky selektivně odstraněny z povrchu vzorku [28]. Povrch kráteru má strukturu roztaveného a ztuhnutého materiálu. Během laserové ablace 23

24 vzniká tekutá fáze, ze které jsou vystřelovány malé kapičky. Okolo kráteru se usazuje roztavený materiál [29]. Obrázek 8: Kráter (pohled shora) po ablaci 250 laserových pulzů Nd:YAG paprskem o energii pulzu 750µJ a průměru 50µm v atmosféře He zvětšený 50. Obrázek 9: Průřez kráterem Vliv nosného plynu Použití He jako nosného plynu, snižuje množství materiálu, které se usazuje okolo ablačního kráteru jak u excimerového laseru 193 nm, tak i u Nd:YAG laseru 266 nm. Je to pravděpodobně způsobeno menší tvorbou plazmatu nad kráterem [30]. Struktura signálu při ablaci v He i Ar je u obou plynů podobná, ale pokles signálu byl u ablace v He dvakrát tak pomalý než pokles při ablaci v Ar. Tento pokles signálu je funkcí objemu ablační cely a může být redukován použitím menších ablačních cel. Celkové množství uvolněného materiálu bylo v případě excimerového laseru stejné u obou plynů, v případě Nd:YAG laseru bylo množství uvolněného materiálu v He atmosféře vyšší. Při ablaci v He uvolní Nd:YAG laser mnohem více vzorku, a proto normalizované intenzity poklesnou o 20 %, i když absolutní intenzity vzrostou [30]. 24

25 Zvýšení signálu získaného pro 193 nm excimerový laser souvisí se zlepšením účinnosti přenosu vzhledem k menší velikosti přenášených částic. V případě excimerového laseru je helium mnohem účinnějším nosným plynem, díky jeho nižší hustotě, viskozitě a ionizační energii v porovnání s argonem [30]. Argon je vhodný pro přenos větších částic generovaných při ablaci 266 nm laserem. Tlaková vlna, jenž vzniká po interakci laseru se vzorkem, redukuje hustotu částic v ablační oblasti a může být zodpovědná za snížení depozice materiálu [30]. Ztráty materiálu v ablační komoře patří k největším, ke kterým během přenosu materiálu z cely do ICP dochází. Během ablace mosazného materiálu bylo při použití He jako nosného plynu pozorováno méně částic usazených na povrchu vzorku okolo ablačního kráteru než při ablaci v Ar atmosféře, proto je účinnost přenosu v He atmosféře vyšší [29]. Helium snižuje usazování materiálu okolo kráteru a zvyšuje účinnost přenosu. Toto může být způsobeno různou hustotou a viskozitou a různými vlastnostmi laserem indukovaného mikroplazmatu v obou plynech [24]. U vlnové délky 266 nm je počet a velikost částic transportovaných v heliu a argonu stejná, zatímco při použití 193 nm laseru nastane při použití He trojnásobné zvýšení intenzity oproti měření v argonu. To je dáno zvýšením rychlosti transportu v heliu [23] Frakcionace Frakcionace je separační proces, v němž je část směsi rozdělena na větší množství menších částic, které nemají stejné složení [31]. K frakcionaci může dojít během laserové ablace, transportu vzorku i v samotném ICP. Bylo zjištěno, že použitím kratších vlnových délek, vyšší intenzity ozáření a menší délky pulzu se frakcionace redukuje [21, 25]. Ke snížení frakcionace dojde použijeme-li místo ablace do bodu rastrovací ablaci nebo také vhodným zaostřením laserového paprsku vůči povrchu vzorku [30, 23]. V ICP dochází k frakcionaci kvůli nekompletnímu odpaření, atomizaci a ionizaci velkých částic. Při vytváření částic jsou malé částice obohaceny o více těkavé prvky, což vede k různé účinnosti odpaření v ICP. K frakcionaci dochází zvlášť, když vznikají částice větší než 1 µm (u skleněných vzorků) a 400 nm (u kovů) [17]. Frakcionaci ovlivňuje také vlnová délka laseru. Elementární frakcionace u skleněných materiálů je při ablaci Nd:YAG laserem významná, zatímco při ablaci excimerovým lasem je zanedbatelná [30]. Frakcionaci můžeme rovněž snížit použitím laserů s krátkou délkou pulzu [21]. V některých případech je uváděno, 25

26 že nosný plyn neovlivňuje frakcionaci [30], zatímco jiné uvádí, že frakcionace není při ablaci v heliu tak významná jako při ablaci v argonu [28]. Ne všechny prvky jsou frakcionací ovlivněny [17]. Během frakcionace dochází k různé distribuci prvků do částic o různé velikosti. Hans-Rudolf Kuhn při analýze mosazi zjistil, že při ablaci jsou malé částice obohaceny o více těkavý zinek, zatímco větší částice jsou obohaceny o méně těkavou měď [29]. Ke snížení frakcionace v ICP se Kuhn a Guillong snažili využít separační zařízení, které z aerosolu odstranilo větší částice, ale přesnost stanovení se tím značně snížila. Není tedy výhodné odstraňovat velké částice z uvolněného matriálu [32], i když jejich odstranění vede ke stechiometrické ionizaci v ICP [6] Frakcionační index Frakcionační index (FI) popisuje, jak se signál mění během vytváření kráteru [25]. FI závisí na analytickém zařízení, typu vzorku a délce trvání ablace. Výpočet FI je založen na vnitřní standardizaci za použití Ca, a proto nemusí být stejný pro různé poměry prvků [30]. F I I I E Ca t 2 = (5) E I I Ca t1 kde F I je frakcionační index, I E intenzita prvku, I Ca intenzita referenčního prvku, t 1 první a t 2 druhá polovina signálu (Obrázek 10) [23]. Ca je velmi dobrým vnitřním porovnávacím prvkem, protože jeho účinnost přenosu do ICP je u alkalických kovů, prvků vzácných zemin, Zr, Hf, Th a U zhruba stejná a navíc se vyskytuje ve většině minerálů [33]. Obrázek 10: Průměrované intenzity pro výpočet frakcionačního indexu. Intenzita [count] 1,E+09 1,E+08 1,E+07 1,E+06 1,E+05 1,E+04 t 1 t 2 E Ca 1,E+03 1,E Čas [s] 26

27 2.6.4 Distribuce velikosti částic Počet a velikost částic generovaných při laserové ablaci záleží na energii laserového pulzu, poloměru laserového paprsku, vlnové délce a vlastnostech vzorku [34]. Při ablaci je důležité, aby měl aerosol stejné složení jako uvolněný materiál. Bylo zjištěno, že po prvním laserovém pulzu vznikají částice s reprodukovatelnějším složením než při dalších pulzech. Počet částic, které vznikly po prvním pulzu byl vždy menší než počet částic produkovaných po dalších pulzech. Po laserové ablaci byly na povrchu skleněného materiálu nalezeny kapičky vzorku. Rovněž byly pozorovány praskliny v náhodném směru okolo ablační oblasti. Tyto změny povrchu vzorku mohou vést k lepšímu energetickému spojení pro pozdější pulzy díky malé povrchové odrazivosti nebo mnohonásobnému odrazu laserového paprsku mezi povrchem vzorku díky trhlinám nebo kapičkám [34]. Relativní počet velkých částic se snižuje s rostoucí plošnou hustotou výkonu. Měřitelné změny velikosti částic byly pozorovány pouze při hodnotách plošné hustoty výkonu okolo 0,4 až 0,5 GW cm -2. Tato hodnota byla rovněž označena jako prahová hodnota pro stínění plazmatem u mnoha materiálů. A je oblastí, ve které bylo dosaženo dramatických změn v rychlosti ablace [34]. I když se plošná hustota výkonu laseru snižuje s růstem průměru laserového paprsku, počet částic všech velikostí roste s rostoucím poloměrem kráteru. Poloměr laserového paprsku je tedy významnější parametrem než hustota výkonu u skleněných vzorků [34]. ICP-MS signál neposkytuje přesné informace o distribuci částic. Částice jsou ze vzorku vyráženy pod různými úhly a pohybují se různou rychlostí (přibližně cm s -1 ). Větší částice mají větší pohybovou energii a urazí delší vzdálenost od povrchu vzorku. Po stržení nosným plynem se však částice všech velikostí pohybují stejnou rychlostí. Rozptyl částic během transportu je minimální. Velké částice, které se neusadí v ablační trubici, vstupují do ICP dříve než částice malé. Generace většího počtu velkých částic může vést k rychlejšímu transportu a kratšímu vzrůstu signálu u MS. Signál velkých částic je intenzivní, neboť tyto částice obsahují mnoho materiálu. S rostoucím poloměrem kráteru se počáteční rychlost nárůstu signálu snižuje. Zvýšením energie laseru nedojde k vzrůstu maximální intenzity signálu. Relativní počet malých částic se zvyšuje s růstem energie pulzu od 0,04 do 0,7 mj. Tento nárůst počtu malých částic vede k posunu maxima ICP-MS signálu intenzity k pozdějším časům. Zvětšení poloměru laserového paprsku vede k zvýšení intenzity signálu ICP-MS [34]. 27

28 Velikost částic, která je zodpovědná za matriční efekty, se pohybuje od 1 do 1,5 µm. Vlnová délka a absorpční vlastnosti vzorku jsou nejdůležitějšími parametry, které zodpovídají za distribuci velikosti částic (PSD). Stupeň odpaření a excitace částic různých velikostí je ovlivňován robustností ICP. Použitím kratších vlnových délek UV laserů dochází k slabší frakcionaci a následně k lepšímu odpaření a excitaci většiny částic v ICP [23] Ztráty částic během transportu Částice, jenž vznikají v ablační komoře, jsou neseny nosným plynem do ICP-MS/OES pomocí transportních trubic. Během přenosu částic může dojít k jejich ztrátě na stěnách trubice v důsledku nárazu, gravitačního usazování, laminární nebo turbulentní difúze a elektrostatické přitažlivosti, pokud jsou mezi stěnami trubic statické síly. Ztráty malých částic jsou způsobeny difúzí do stěn trubice, ztráty velkých částic většinou gravitačním usazováním nebo v důsledku nárazu do stěn potrubí [34] Techniky pro určení PSD Cílem měření velikosti částic v LA-ICP-MS a LA-ICP-OES je zjistit, jaký materiál vstupuje do ICP. Charakteristika uvolněného materiálu je důležitá neboť ovlivňuje signál ICP-MS a ICP-OES [35]. Měření distribuce částic je obtížné, neboť aerosol se skládá jak z natavených kulových, tak z aglomerovaných nano částic. Dostupné techniky jsou založeny na různých principech a každá má své specifické omezení a nevýhody. Jedním z parametrů použitých pro dělení částic je aerodynamický poloměr. Při LA vznikají částice o velikostech od několika nm až po několik desítek µm. Elektrická mobilita je dalším parametrem použitým pro klasifikaci a je měřena přístroji pro měření diferenční elektrické mobility (DMA). Tato metoda povoluje kvazi on line detekci dokonce 10 nm částic a horní dosažitelný limit je nad 1µm. Další možností je využití optického měření velikosti pomocí rozptylu laserového záření. Je to alternativní technika pro stanovení velikosti částic v laserem generovaných aerosolech. Ke spolehlivému měření velikosti jsou dostupné vhodné kalibrační standardy [35]. Vizualizací jednotlivých částic za použití skenovacího elektronového mikroskopu (SEM) je také možné rozeznat velikost jednotlivých částic. Částice se buď zachycují na vodivý povrch, nebo se pokrývají vodivou vrstvičkou [35]. 28

29 Optické měření velikosti částic Princip metody spočívá v ozáření částic paprskem laseru a měření rozptylu světla, který závisí na velikosti částic. Při vhodném uspořádání je téměř všechno rozptýlené světlo ze všech úhlů zachyceno a změřeno. Tato technika povoluje simultánní měření širokého rozmezí velikostí. Měření optického poloměru využívá tři různé tipy rozptylu (geometrický rozptyl, Mieho rozptyl a Rayleigho rozptyl). Geometrický rozptyl nastane, když je částice podstatně větší než vlnová délka světla. Týká se částic s velikostí okolo 1 µm. U částic, jejichž velikost je srovnatelná s vlnovou délkou dominuje Mieho rozptyl. Odražené světlo je rozptýleno do všech směrů, ale hlavně ve směru laserového paprsku. U menších částic je frakcionace rozptýleného záření omezena (Rayleigho rozptyl) a rozptýlené světlo je redukováno. Pomocí optického měření velikosti částic je možné nalézt částice do velikosti 100 µm [35]. 29

30 3 Experimentální část 3.1 Lasery Pro měření byly použity tři nanosekundové a jeden femtosekundový laser. Z nanosekundových laserů byly použity Nd:YAG laser a excimerový laser a jako femtosekundový laser byl použit Ti-safírový laser Nanosekundové lasery Nd:YAG lasery Pro vzorkování materiálu před vlastním stanovením na optickém spektrometru Jobin-Yvon 170 Ultrace byl použit pulzní Nd:YAG laser Brilliant (Quantel) (Obrázek 11) s Gaussovským profilem paprsku. Lze pracovat při základní vlnové délce 1064 nm a s využitím krystalů pro násobení frekvence při vlnových délkách 532 nm (druhá harmonická frekvence) a 266 nm (čtvrtá harmonická frekvence). V této práci byla použita čtvrtá harmonická frekvence. Měření tedy probíhalo v ultrafialové oblasti s energií pulzu 7 mj. Maximální frekvence je 10 Hz a je možné ji snížit. Měření na kovech bylo prováděno při frekveci10 Hz. Pro vzorkování materiálu před stanovením na hmotnostním spektrometru Agilent 7500c byl použit pulzní Nd:YAG laser LSX 500 (Obrázek 11) s plochým profilem paprsku, který pracoval při vlnové délce 266 nm. Délka pulzu je 3 5 ns a průměr paprsku mohl být měněn v rozsahu od 10 do 200 µm. Frekvenci bylo možné měnit v rozmezí 1 20 Hz. Frekvence zvolená při těchto měřeních byla 4 Hz pro kovové vzorky a 10 Hz pro materiály skleněné. Energie pulzu tohoto laseru nebyla u všech měření stejná, ale pohybovala se v rozmezí µj. Energie pulzu použité u jednotlivých měření jsou vždy uvedeny u daných výsledů. Obrázek 11: Fotografie nanosekundových laserů Quantel Brilliant (vlevo) a LSX 500 (vpravo) 30

31 Excimerový laser Jako další nanosekundový laser byl použit excimerový laser GeoLas M (Obrázek 12), který pracoval při vlnové délce 193 nm. Délka pulzu je 15 ns a průměr kráteru může být volen v rozmezí od 4 do 120 µm. Pro měření byl zvolen poloměr laserového paprsku 105 µm. Frekvenci bylo možno měnit v rozsahu 1 20 Hz. Pro skleněné materiály byla použita frekvence 10 Hz a pro kovové vzorky 4 Hz. Podmínky byly voleny tak, abych se jimi co nejvíce přiblížila ablaci s Nd:YAG laserem. Energie laserového paprsku nebyla během všech měření stejná, ale pohybovala se v rozmezí od 260 do 447 µj. Energie pulzu použité u jednotlivých měření jsou vždy uvedeny u daných výsledků. Obrázek 12: Fotografie nanosekundového laseru GeoLas M Femtosekundový laser Jako fs laser byl použit fs Ti-safírový laser Mira 900 (Obrázek 13). Délka fs pulzu je menší než 100 fs. Energie paprsku při 1 khz byla 1 mj. Fs systém je složen z fs oscilátoru, jímž je Ti-safírový laser (Mira 900), který produkuje fs pulzy o vlnové délce asi 800 nm a nízké energii (nj). Pro zesílení fs pulzu byl použit Chirped zesilovač pulzu (Evolution) a čerpací laser (Legend). Tímto byly získány fs pulzy o vlnové délce 800 nm a energii 3 mj. Nakonec byly použity generátory harmonických frekvencí pro získání třetí (266 nm) a čtvrté (200 nm) harmonické frekvence. Pro tato měření byla použita vlnová délka 266 nm. Profil laserového paprsku je Gaussovský a poloměr kráteru je možno měnit podle zaostření. Námi používaný poloměr byl 105 µm. Energie laserového paprsku nebyla během všech měření stejná, ale pohybovala se v rozmezí od 200 do 240 µj. Energie pulzu použité u jednotlivých měření jsou vždy uvedeny u daných výsledků. 31

32 Obrázek 13: Fotografie fs laseru fs oscilátor harmonické generátory ablační komora čerpající laser zesilovač pulzu 3.2 Ablační komory Ablace byla provedena ve třech typech ablačních komor. U všech komor svíral vzorek s paprskem laseru úhel Quantel Brilliant Pro tento laser byla použita ablační komora o objemu 14 ml. Tato komora je znázorněna na Obrázku 14. Ablační celou proudil argon o rychlosti průtoku 0,8 l.min -1, který dále pokračoval do ICP spektrometru Yobin-Yvon 170 Ultrace. Vzorky byly umístěny v držáku, který byl připevněn k XY translátoru s programovatelným pohybem. K pohybu sloužil translátor OWIS. Laserová ablace byla prováděna buď do bodu a nebo vzorek vykonával pohyb po kruhové trajektorii s poloměrem 2 mm. 32

33 Obrázek 14: Ablační komora použitá při ablaci laserem Quantel Brilliant LSX 500 U laseru LSX 500 byla použita ablační komora o objemu 30 ml. Tato komora je znázorněna na Obrázku 15. Komorou proudilo He o průtoku 1 l min -1, jenž dále pokračovalo do ICP spektrometru Agilent 7500c. Obrázek 15: Ablační komora použitá při ablaci laserem LSX Excimerový a femtosekundový laser U těchto laserů byla použita stejná ablační komora vyfotografovaná na Obrázku 16. Tato komora má objem 20 ml a rychlostí 1 l min -1 jí protékalo helium, které neslo uvolněný materiál dále do spektrometru Agilent 7500c. Obrázek 16: Ablační komora použitá při ablaci excimerovým (vlevo) a fs (vpravo) laserem. 33

34 3.3 ICP spektrometry K měření byly použity dva typy spektrometrů. Jednalo se o optický spektrometr Jobin-Yvon 170 Ultrace a hmotnostní spektrometr Agilent 7500c Optický spektrometr Měření bylo prováděno na ICP spektrometru Jobin-Yvon 170 Ultrace (ISA, Francie) s plazmovým výbojem v laterárním uspořádání. Pracovní frekvence je 40,68 MHz, příkon je pevně nastaven (1000 nebo 1200 W). Měření bylo prováděno při příkonu 1200 W. Průtok vnějšího plazmového argonu byl 14 l min -1, průtok pomocného argonu 0,2 l min -1 a průtok nosného argonu 0,6 l min -1. Přístroj obsahuje monochromátor typu Czerny-Turner (Obrázek 18) s ohniskovou vzdáleností 1 m, dvěmi holografickými mřížkami (4320 mm -1 pro rozsah vlnových délek nm a 2400 mm -1 pro rozsah nm), dvěmi vstupními (10 a 22 µm ) a dvěmi výstupními štěrbinami (15 a 80 µm). Dále obsahuje polychromátor v uspořádání Paschen-Runge (Obrázek 19) s nastavenými čarami pro 13 prvků. Pro ovládání přístroje slouží software JYESS Obrázek 17: Optický spektrometr Jobin-Yvon 170 Ultrace 34

35 Měření na monochromátoru Monochromátor umožňuje sekvenční měření postupným nastavením zvolených vlnových délek spektrálních čar. Měřilo se na následujících čárách Fe (II) (260,64 nm, 259,94 nm, 259,15 nm, 256,25 nm, 256,35 nm) Fe (I) (381,58 nm, 382,59 nm), Zn (I) 307,59 nm, 328,23 nm) a Ti (II) (390,48 nm, 392,45 nm, 310,62 nm, 313,08 nm, 333,21 nm, 334,03 nm, 332,28 nm, 322,42 nm). Obrázek 18: Monochromátor Czerny-Turner Měření na polychromátoru Polychromátor umožňuje simultánní měření, což znamená, že se na všech čarách měří současně. Měřilo se na následujících čarách: Al (I) (308,220 nm), Fe (II) (259,94 nm), Si (I) (251,611 nm), Ni (II) (231,608 nm), Cr (II) (267,720 nm), Cu (I) (324,759 nm), Mo (II) (204,60 nm) a Mn (II) (257,610 nm). Obrázek 19: Polychromátor Paschen-Runge 35

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra)

ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra) ATOMOVÁ SPEKTROMETRIE (v UV a Vis oblasti spektra) Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce fotonu je spojena s excitací

Více

Emise vyvolaná působením fotonů nebo částic

Emise vyvolaná působením fotonů nebo částic Emise vyvolaná působením fotonů nebo částic PES (fotoelektronová spektroskopie) XPS (rentgenová fotoelektronová spektroskopie), ESCA (elektronová spektroskopie pro chemickou analýzu) UPS (ultrafialová

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie

Více

OPTICKÁ EMISNÍ SPEKTROMETRIE

OPTICKÁ EMISNÍ SPEKTROMETRIE OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických

Více

4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie

4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 4. Spektrální metody pro prvkovou analýzu léčiv optická atomová spektroskopie Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE doc. Ing. David MILDE, Ph.D. tel.: 585634443 E-mail: david.milde@upol.cz (c) -017 Doporučená literatura Černohorský T., Jandera P.: Atomová spektrometrie. Univerzita Pardubice 1997.

Více

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY

ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +

Více

Zdroje optického záření

Zdroje optického záření Metody optické spektroskopie v biofyzice Zdroje optického záření / 1 Zdroje optického záření tepelné výbojky polovodičové lasery synchrotronové záření Obvykle se charakterizují zářivostí (zářivý výkon

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální

Více

Vybrané spektroskopické metody

Vybrané spektroskopické metody Vybrané spektroskopické metody a jejich porovnání s Ramanovou spektroskopií Předmět: Kapitoly o nanostrukturách (2012/2013) Autor: Bc. Michal Martinek Školitel: Ing. Ivan Gregora, CSc. Obsah přednášky

Více

OPTICK SPEKTROMETRIE

OPTICK SPEKTROMETRIE OPTICK TICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických

Více

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů

Více

Aplikace AAS ACH/APAS. David MILDE, Úvod

Aplikace AAS ACH/APAS. David MILDE, Úvod Aplikace AAS ACH/APAS David MILDE, 2017 Úvod AAS: v podstatě 4atomizační techniky: plamenová atomizace (FA), elektrotermická atomizace (ETA), generování těkavých hydridů (HG), určené pro stanovení As,

Více

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013

Lasery. Biofyzikální ústav LF MU. Projekt FRVŠ 911/2013 Lasery Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png http://cs.wikipedia.org/wiki/ Soubor:Spectre.svg Bezkontaktní termografie 2 Součásti laseru

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

OPTICKÁ EMISNÍ SPEKTROMETRIE

OPTICKÁ EMISNÍ SPEKTROMETRIE OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2017 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických

Více

OES S BUZENÍM V PLAZMATU

OES S BUZENÍM V PLAZMATU OES S BUZENÍM V PLAZMATU (c) -2010 PLAZMA PLAZMA = ionizovaný plyn obsahující dostatečný počet kladně nabitých (iontů) a záporně nabitých částic (e - ), který je navenek elektroneutrální. Celá soustava

Více

Základy spektroskopických metod

Základy spektroskopických metod Základy spektroskopických metod Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Spektroskopické metody Optické metody pro stanovení chemického složení materiálů Založeny na vzájemném působení

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj

DOUTNAVÝ VÝBOJ. Další technologie využívající doutnavý výboj DOUTNAVÝ VÝBOJ Další technologie využívající doutnavý výboj Plazma doutnavého výboje je využíváno v technologiích depozice povlaků nebo modifikace povrchů. Jedná se zejména o : - depozici povlaků magnetronovým

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.2. Základní konstrukční součásti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č.2 Základní konstrukční součásti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Konstrukce laseru 1 - Aktivní prostředí 2 - Čerpací zařízení 3 - Optický

Více

ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra)

ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra) ATOMOVÁ SPEKTROMETRIE VALENČNÍCH ELEKTRONŮ (UV a Vis oblast spektra) (c) -2014 Atomová spektrometrie 1. OES (AES) 2. AAS 3. AFS 1 Atomová spektra Na s elektronovou konfigurací [Ne] 3s 1 (1 val. e - ) Absorpce

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Aplikace ICP-OES (MS)

Aplikace ICP-OES (MS) (MS) ACH/APAS David MILDE, 2017 Úvod ICP-OES je citlivá a dostatečně selektivní analytická metoda pro stanovení většiny prvků. Jedná se především o roztokovou metodu, i když existují modifikace pro přímou

Více

LASEROVÁ ABLACE S HMOTNOSTNÍ SPEKTROMETRIÍ V INDUKČNĚ VÁZANÉM PLAZMATU PRO 2D MAPOVÁNÍ MOČOVÝCH KAMENŮ

LASEROVÁ ABLACE S HMOTNOSTNÍ SPEKTROMETRIÍ V INDUKČNĚ VÁZANÉM PLAZMATU PRO 2D MAPOVÁNÍ MOČOVÝCH KAMENŮ Chem. Listy 13, s193 s197 (29) Cena Merck 29 LASEROVÁ ABLACE S HMOTNOSTNÍ SPEKTROMETRIÍ V INDUKČNĚ VÁZANÉM PLAZMATU PRO 2D MAPOVÁNÍ MOČOVÝCH KAMENŮ MONIKA NOVÁČKOVÁ, MARKÉTA HOLÁ a VIKTOR KANICKÝ Oddělení

Více

GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS

GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených

Více

Kalibrace a testování spektrometrů

Kalibrace a testování spektrometrů Kalibrace a testování spektrometrů Viktor Kanický 5.3.014 1 Kalibrace ICP-OES V ICP-OES je lineární závislost intenzity emise na koncentraci analytu v rozsahu 4 až 6 řádů. V analytické praxi se obvykle

Více

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ; (c) David MILDE,

SPEKTRÁLNÍ METODY. Ing. David MILDE, Ph.D. Katedra analytické chemie Tel.: ;   (c) David MILDE, SEKTRÁLNÍ METODY Ing. David MILDE, h.d. Katedra analytické chemie Tel.: 585634443; E-mail: david.milde@upol.cz (c) -2008 oužitá a doporučená literatura Němcová I., Čermáková L., Rychlovský.: Spektrometrické

Více

AUTOMATICKÁ EMISNÍ SPEKTROMETRIE

AUTOMATICKÁ EMISNÍ SPEKTROMETRIE AUTOMATICKÁ EMISNÍ SPEKTROMETRIE SPEKTROGRAFIE Jako budící zdroj slouží plazma elektrického výboje, kdy se výkon generátoru mění v plazmatu na teplo, ionizační a budící práci a zářivou E. V praxi se spektrografie

Více

OES S BUZENÍM V PLAZMATU

OES S BUZENÍM V PLAZMATU OES S BUZENÍM V PLAZMATU PLAZMA He Ar PLAZMA = ionizovaný plyn obsahující dostatečný počet kladně nabitých (iontů) a záporně nabitých částic (e - ), který je navenek elektroneutrální. Celá soustava je

Více

INSTRUMENTÁLNÍ METODY

INSTRUMENTÁLNÍ METODY INSTRUMENTÁLNÍ METODY ACH/IM David MILDE, 2014 Dělení instrumentálních metod Spektrální metody (MILDE) Separační metody (JIROVSKÝ) Elektroanalytické metody (JIROVSKÝ) Ostatní: imunochemické, radioanalytické,

Více

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace

DOUTNAVÝ VÝBOJ. 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace DOUTNAVÝ VÝBOJ 1. Vlastnosti doutnavého výboje 2. Aplikace v oboru plazmové nitridace Doutnavý výboj Připomeneme si voltampérovou charakteristiku výboje v plynech : Doutnavý výboj Připomeneme si, jaké

Více

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz

Více

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE) Elektromagnetické vlnění SVĚTLO Charakterizace záření Vlnová délka - (λ) : jednotky: m (obvykle nm) λ Souvisí s povahou fotonu Charakterizace záření

Více

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým

Více

Fluorescence (luminiscence)

Fluorescence (luminiscence) Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

2 Nd:YAG laser buzený laserovou diodou

2 Nd:YAG laser buzený laserovou diodou 2 Nd:YAG laser buzený laserovou diodou 15. května 2011 Základní praktikum laserové techniky Zpracoval: Vojtěch Horný Datum měření: 12. května 2011 Pracovní skupina: 1 Ročník: 3. Naměřili: Vojtěch Horný,

Více

Lasery optické rezonátory

Lasery optické rezonátory Lasery optické rezonátory Optické rezonátory Optickým rezonátorem se rozumí dutina obklopená odrazovými plochami, v níž je pasivní dielektrické prostředí. Rezonátor je nezbytnou součástí laseru, protože

Více

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie 10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých

Více

METODY - spektrometrické

METODY - spektrometrické Analýza Analýza - prvková METODY - spektrometrické atomová emisní/absorpční spektrometrie rentgenová fluorescenční analýza emise elektronů - povrchová analýza ESCA (elektronová spektroskopie pro chemickou

Více

OPTICKÁ EMISNÍ SPEKTROMETRIE

OPTICKÁ EMISNÍ SPEKTROMETRIE OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) Lenka Veverková, 2013 OES je založena na registrování fotonů vzniklých přechody valenčních e - z

Více

Plazmové svařování a dělení materiálu. Jaromír Moravec

Plazmové svařování a dělení materiálu. Jaromír Moravec Plazmové svařování a dělení materiálu Jaromír Moravec 1 Definice plazmatu Definice plazmatu je následující: Plazma je kvazineutrální soubor částic s volnými nosiči nábojů, který vykazuje kolektivní chování.

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018

DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018 DETEKTORY pro kapalinovou chromatografii Izolační a separační metody, 2018 Detektory v kapalinové chromatografii Typ detektoru Zkratka Měřená veličina Refraktometrický detektor RID index lomu Spektrofotometrický

Více

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.

Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1. Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Dělení a svařování svazkem plazmatu

Dělení a svařování svazkem plazmatu Dělení a svařování svazkem plazmatu RNDr. Libor Mrňa, Ph.D. Osnova: Fyzikální podstat plazmatu Zdroje průmyslového plazmatu Dělení materiálu plazmou Svařování plazmovým svazkem Mikroplazma Co je to plazma?

Více

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence

- Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl. - fluorescence - fosforescence ROZPTYLOVÉ a EMISNÍ metody - Rayleighův rozptyl turbidimetrie, nefelometrie - Ramanův rozptyl - fluorescence - fosforescence Ramanova spektroskopie Každá čára Ramanova spektra je svými vlastnostmi závislá

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Glass temperature history

Glass temperature history Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES 1 Rozsah a účel Metoda je určena pro stanovení makroprvků vápník, fosfor, draslík, hořčík

Více

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie Klinická a farmaceutická analýza Petr Kozlík Katedra analytické chemie e-mail: kozlik@natur.cuni.cz http://web.natur.cuni.cz/~kozlik/ 1 Spojení separačních technik s hmotnostní spektrometrem Separační

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5

MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 MODERNÍ METODY CHEMICKÉ FYZIKY I lasery a jejich použití v chemické fyzice Přednáška 5 Ondřej Votava J. Heyrovský Institute of Physical Chemistry AS ČR Opakování z minula Light Amplifier by Stimulated

Více

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické).

3. Vlastnosti skla za normální teploty (mechanické, tepelné, optické, chemické, elektrické). PŘEDMĚTY KE STÁTNÍM ZÁVĚREČNÝM ZKOUŠKÁM V BAKALÁŘSKÉM STUDIU SP: CHEMIE A TECHNOLOGIE MATERIÁLŮ SO: MATERIÁLOVÉ INŽENÝRSTVÍ POVINNÝ PŘEDMĚT: NAUKA O MATERIÁLECH Ing. Alena Macháčková, CSc. 1. Souvislost

Více

Průtokové metody (Kontinuální měření v proudu kapaliny)

Průtokové metody (Kontinuální měření v proudu kapaliny) Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.

Více

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II FOTOELEKTRICKÝ JEV VNĚJŠÍ FOTOELEKTRICKÝ JEV na intenzitě záření závisí jen množství uvolněných elektronů, ale nikoliv energie jednotlivých elektronů energie elektronů

Více

Barevné principy absorpce a fluorescence

Barevné principy absorpce a fluorescence Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 27.9.2007 2 1 Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické

Více

VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS

VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS 1 VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS JAN KNÁPEK Katedra analytické chemie, Přírodovědecká fakulta MU, Kotlářská 2, Brno 611 37 Obsah 1. Úvod 2. Tepelný zmlžovač 2.1 Princip 2.2 Konstrukce 2.3 Optimalizace

Více

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Úvod do koroze (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají) Koroze je proces degradace kovu nebo slitiny kovů působením

Více

Porovnání metod atomové spektrometrie

Porovnání metod atomové spektrometrie Porovnání metod atomové spektrometrie ACH/APAS David MILDE, 2017 Úvod Metody našeho zájmu: plamenová atomizace v AAS (FA-AAS) elektrotermická atomizace v AAS (ETA-AAS, GF-AAS) ICP-OES ICP-MS Výhody a nevýhody

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence)

Luminiscence. Luminiscence. Fluorescence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) chemicky (chemiluminiscence) Luminiscence Luminiscence emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence chemicky (chemiluminiscence) teplem (termoluminiscence) zvukem (sonoluminiscence)

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE MASS SPECTROMETRY (MS) Alternativní názvy (spojení s GC, LC, CZE, ITP): Hmotnostně spektrometrický (selektivní) detektor Mass spectrometric (selective) detector (MSD) Spektrometrie

Více

Plynové lasery pro průmyslové využití

Plynové lasery pro průmyslové využití Laserové technologie v praxi I. Přednáška č.3 Plynové lasery pro průmyslové využití Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Využití plynových laserů v průmyslových aplikacích Atomární - He-Ne

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.8. Laserové zpracování materiálu. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č.8 Laserové zpracování materiálu Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Lasery pro průmyslové zpracování materiálu E (ev) 0,12 1,17 1,17 1,2 1,5 4,17

Více

Optické metody emisní spektrofotometrie. Mgr. Jana Gottwaldová

Optické metody emisní spektrofotometrie. Mgr. Jana Gottwaldová Optické metody emisní spektrofotometrie Mgr. Jana Gottwaldová Spektrofotometrie-rozdělení Podle typu interakce elektromagnetického záření: absorpční spektrofotometrii emisní spektrofotometrii Turbidimetrii,

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Základy spektroskopie a její využití v astronomii

Základy spektroskopie a její využití v astronomii Ing. Libor Lenža, Hvězdárna Valašské Meziříčí, p. o. Základy spektroskopie a její využití v astronomii Hvězdárna Valašské Meziříčí, p. o. Krajská hvezdáreň v Žiline Světlo x záření Jak vypadá spektrum?

Více

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip:

IONTOVÉ ZDROJE. Účel. Požadavky. Elektronové zdroje. Iontové zdroje. Princip: Účel IONTOVÉ ZDROJE vyrobit svazek částic vytvarovat ho a dopravit do urychlovací komory předurychlit ho (10 kev) Požadavky intenzita svazku malá emitance svazku trvanlivost zdroje stabilita zdroje minimální

Více

Rentgenová difrakce a spektrometrie

Rentgenová difrakce a spektrometrie Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz

Více

ZÁKLADNÍ ČÁSTI SPEKTROMETRŮ

ZÁKLADNÍ ČÁSTI SPEKTROMETRŮ ZÁKLADNÍ ČÁSTI SPEKTROMETRŮ pro atomovou spektrometrii valenčních elektronů (c) -2010 Dělení metod atomové spektrometrie (z hlediska instrumentace) Atomová spektrometrie valenčních elektronů UV a Vis (+

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie

Více

Anizotropie fluorescence

Anizotropie fluorescence Anizotropie fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 6 1 Jev anizotropie Jestliže dochází k excitaci světlem kmitajícím v jedné rovině, emise fluorescence se často

Více

ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES

ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES 30074. Analýza extraktu podle Mehlicha 3 Strana ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES Účel a rozsah Postup je určen především pro stanovení obsahu základních živin vápníku, hořčíku, draslíku,

Více

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 Sluneční energie, fotovoltaický jev Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113 1 Osnova přednášky Slunce jako zdroj energie Vlastnosti slunečního

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Orbitaly ve víceelektronových atomech

Orbitaly ve víceelektronových atomech Orbitaly ve víceelektronových atomech Elektrony jsou přitahovány k jádru ale také se navzájem odpuzují. Repulzní síly způsobené dalšími elektrony stíní přitažlivý účinek atomového jádra. Efektivní náboj

Více

Fyzikální podstata DPZ

Fyzikální podstata DPZ Elektromagnetické záření Vlnová teorie vlna elektrického (E) a magnetického (M) pole šíří se rychlostí světla (c) Charakteristiky záření: vlnová délka (λ) frekvence (ν) Fyzikální podstata DPZ Petr Dobrovolný

Více

ELEKTROTERMICKÁ ATOMIZACE. Electrothermal atomization AAS (ETA-AAS)

ELEKTROTERMICKÁ ATOMIZACE. Electrothermal atomization AAS (ETA-AAS) ELEKTROTERMICKÁ ATOMIZACE Electrothermal atomization AAS (ETA-AAS) FA nedosahuje detekčních mezí potřebných pro chemickou praxi (FA mg/l, ETA g/l). ETA: atomizátor obvykle ve tvaru trubičky (Massmannova

Více

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka

Metody povrchové analýzy založené na detekci iontů. Pavel Matějka Metody povrchové analýzy založené na detekci iontů Pavel Matějka Metody povrchové analýzy založené na detekci iontů 1. sekundárních iontů - SIMS 1. Princip metody 2. Typy bombardování 3. Analyzátory iontů

Více

Barevné principy absorpce a fluorescence

Barevné principy absorpce a fluorescence Barevné principy absorpce a fluorescence Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr Světlo je elektromagnetické vlnění Skládá se z elektrické složky a magnetické složky, které

Více

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ

ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ ROZDĚLENÍ SNÍMAČŮ, POŽADAVKY KLADENÉ NA SNÍMAČE, VLASTNOSTI SNÍMAČŮ (1.1, 1.2 a 1.3) Ing. Pavel VYLEGALA 2014 Rozdělení snímačů Snímače se dají rozdělit podle mnoha hledisek. Základním rozdělení: Snímače

Více

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje

Přednáška 4. Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Přednáška 4 Úvod do fyziky plazmatu : základní charakteristiky plazmatu, plazma v elektrickém vf plazma. Doutnavý výboj : oblasti výboje Jak nahradit ohřev při vypařování Co třeba bombardovat ve vakuu

Více