Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Rozměr: px
Začít zobrazení ze stránky:

Download "Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled"

Transkript

1 řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte místo otzníku? 6 6 8?. Které číslo oplníte místo otzníku? 7 7? 7. Které číslo oplníte místo otzníku? 9? 8. Které číslo ue místo otzníku? 6 7 8? Kžé sué číslo je ělitelné, je ělitelné 7, 9 není ělitelné je ělitelné 7. Nul je elé číslo prvočíslo lihé číslo záporné číslo 8. Číslo opčné k číslu je 9. Asolutní honot reálného čísl je vžy klná záporná neklná nezáporná. ro čísl pltí: = < > jiná opověď. ro čísl pltí: = < > jiná opověď. S využitím prviel pro umoňování ověřte, že pltí: Výsleek opere : Výrz lze psát ve tvru: je pro všehn, R, roven 6 6 6

2 řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. k Výsleek opere lze psát ve tvru, ke k je k rovno: 6. Usměrněním zlomku se: honot zlomku nemění 7. Trojčlen 8. Dvojčlen 9y k ostrňují zlomky k 8 ostrňují omoniny z čittele zlomku 8 k ostrňují záporná čísl lze psát ve tvru: lze psát ve tvru: y y y y jiná opověď Výrz je roven Zpište zlomkem v záklním tvru číslo,.. Rovnie, ke R má: kořen rovný jené kořen rovný nule práznou množinu nekonečné kořenů mnoho kořenů. Rovnie lineární funke f : y, která prohází oy y y y y.,,, má tvr Definiční oor funke. Je án lineární funke y 6. růsečíky se souřniovými osmi jsou -průsečík s osou, - průsečík s osou y) ( y je, y,,,,,, 6,, 6, 6,, 6. Vypočtěte y log 8. y y y y 6. Určete honotu prmetru m tk, y o M, m ležel n m m m 6 m 6 příme y. 7. Řešte rovnii s neznámou R : ; ; ; ;

3 řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 7 8. osloupnost je án rekurentně vzorem n 7n n, přičemž 6,. Člen je roven 9. římk y protíná prolu. římky p, q o rovniíh p : y, q : 8y, jsou y v oeh:, ; ;, ; ;, ; ; přímk prolu neprotíná rovnoěžně různé mimoěžné kolmé totožné. Kružnie y má stře v oě,,,,. Kvrtiká rovnie má iskriminnt D D D D. y 6 y 8 je rovnií kružnie elipsy proly hyperoly. Řešením nerovnie 9 jsou reálná čísl z intervlu: 9; 9. Grf kvrtiké funke y protíná souřniovou osu y v oeh: 6. Vypočtěte:! = 7. Oená rovnie přímky, která prohází oy,,, má tvr: 8. Vrhol proly, která je ná rovnií y 6, je v oě 9. 9 Je-li, pk 7 9. Kolik způsoy si stuent může z 6 volitelnýh přemětů vyrt o svého rozvrhu v přeměty?. Opere # je efinován tkto: #.. k # je rovno 9; 9 9 ; ; 9, ;,,,, ;, 6 8 y y y y ; ; ; ; 6

4 řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Opere je efinován násleovně: A A. Je-li A 9, pk A je rovno. Opere je efinován násleovně: y y. ro které pltí 8 8? Opere * je efinován tkto: k je rovno. Opere je efinován tkto:. k je rovno 6. Jestliže je 6, pk je rovno 9 7. loh ného oélník je. Zmenší-li je jeho strny vkrát, pk ploh vzniklého oélník je 8. Žeřík louhý m se poství ke kolmé omovní zi v ostupu m o ní. Do jké výšky žeřík osáhne? 9. orovnejte vě honoty 9 8% z I 8 9% z. lehovky jsou nrovnány v eseti řáh n seou. Kžá vyšší ř má o jenu plehovku méně. Ve sponí řě je plehovek. Kolik je všeh plehovek?. Ay součet všeh přirozenýh čísel o jené o n přesáhl, musí ýt n rovno lespoň:. V rámi úspornýh optření rozholo veení poniku, že n koni kžého čtvrtletí klesne počet změstnnů poniku o 7 % oproti stvu n počátku čtvrtletí. O kolik proent klesne počet změstnnů o zčátku roku k počátku len roku násleujíího?. Řešením rovnie v ooru reálnýh čísel je 9 8,m m,m m Honoty v oou sloupíh jsou stejné. V prvém sloupi je vyšší honot. V levém sloupi je vyšší honot. Nelze zjistit, která honot je vyšší rovnie má v ooru reálnýh čísel nekonečně mnoho řešení rovnie nemá v ooru reálnýh čísel řešení

5 řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Řešením rovnie log. Určete všehn reálná řešení soustvy rovni 6. Jsou ány reálné funke y y v ooru reálnýh čísel je, y,, y, f : y 6 g : y všehn reálná čísl, pro která pltí f g.. Určete 7. 6 Vypočtěte: log 6 8. Dvnát ělníků provee zemní práe z ní. Z jk louho y provelo tyto práe evět ělníků z přepoklu, že výkon všeh ělníků je stejný? 9. Kolik mjí společnýh oů přímk p : y kružnie k : y 9 6. Kolik různýh pětiifernýh čísel lze sestvit z čísli,,,, přičemž žáná číslie se nesmí opkovt. rovnie má v ooru reálnýh čísel nekonečně mnoho řešení, y, rovnie nemá v ooru reálnýh čísel řešení, y, 8 ní ní 9 ní ní

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2014/2015 Bc. studium Kompletní znění testových otázek matematika Přijímcí řízení kemický rok 0/0 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázky Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které

Více

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled

( 5 ) 6 ( ) 6 ( ) Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - matematický přehled řijímcí řízení k. r. / Kompletní znění testových otázek - mtemtický přehled Koš Znění otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo otzníku? 8?. Které číslo

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E)

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E) . Když c + d + bc + bd = 68 c+ d = 4, je + b+ c+ d rovno: 9 7 34 64 4. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n + 3n + n je totožná s posloupností: n n =. n+ = 3, = n Povrch rotčního

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

Repetitorium z matematiky

Repetitorium z matematiky Rovnie, nerovnie jejih soustvy (lineární, kvdrtiké, irionální) Reetitorium z mtemtiky Podzim Ivn Vulová A) Rovnie jejih řešení Mnoho fyzikálníh, tehnikýh jinýh úloh lze mtemtiky formulovt jko úlohu tyu:

Více

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90

3. ROVNICE A NEROVNICE 85. 3.1. Lineární rovnice 85. 3.2. Kvadratické rovnice 86. 3.3. Rovnice s absolutní hodnotou 88. 3.4. Iracionální rovnice 90 ROVNICE A NEROVNICE 8 Lineární rovnice 8 Kvdrtické rovnice 8 Rovnice s bsolutní hodnotou 88 Ircionální rovnice 90 Eponenciální rovnice 9 Logritmické rovnice 9 7 Goniometrické rovnice 98 8 Nerovnice 0 Úlohy

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010

Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010 Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Okruhy a doporučená literatura písemné přijímací zkoušky - obor Přístroje a metody pro biomedicínu specifická část testu

Okruhy a doporučená literatura písemné přijímací zkoušky - obor Přístroje a metody pro biomedicínu specifická část testu Okruhy oporučená litertur písemné přijímí zkoušky - oor Přístroje metoy pro iomeiínu speiiká část testu Mtemtik v rozshu klářského stui ooru Biomeiínský tehnik (BMT) n FBMI: A Diereniální počet unkí jené

Více

skripta MZB1.doc 8.9.2011 1/81

skripta MZB1.doc 8.9.2011 1/81 skript MZB.doc 8.9. /8 skript MZB.doc 8.9. /8 Osh Osh... Zlomk... Dělitelnost v množině přirozených čísel... Trojčlenk... 9 Výrz s mocninmi s celočíselným eponentem ()... Výrz s mocninmi s rcionálním eponentem...

Více

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu:

Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu: Název školy: ZŠ MŠ ÚOLÍ ESNÉ, RUŽSTEVNÍ 125, RPOTÍN Název projektu: Ve svzkové škole ktivně - interktivně Číslo projektu: Z107/1400/213465 utor: Mgr Monik Vvříková Temtiký okruh: Geometrie 7 Název:VY_32_INOVE_16_Čtyřúhelníky

Více

Zlomky závěrečné opakování

Zlomky závěrečné opakování 2.2. Zlomky závěrečné opkování Přepokly: 02022 Př. : Vypočti. ) + b) 8 2 4 0 c) 2 4 2 : : 4 24 ) 2 22 4 2 2 9 + 0 9 ) + = + = = 8 2 8 2 2 24 24 8 = 4 2 2 = 4 4 2 4 2 b) 0 = = = 2 4 8 2 4 4 c) 4 2 4 24

Více

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA 1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

MATEMATIKA. Základní poznatky z matematiky. Olomouc 2010

MATEMATIKA. Základní poznatky z matematiky. Olomouc 2010 MATEMATIKA Záklní pozntky z mtemtiky Cvičenie s klíčem Olomou 00 Autor Mgr. Dn Kprálová Zprováno v rámi projektu Digitální škol ICT ve výue tehnikýh přemětů registrční číslo projektu CZ..0/..0/0.0 Projekt

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n,

ZÁKLADNÍ POZNATKY. p, kde ČÍSELNÉ MNOŽINY (OBORY) N... množina všech přirozených čísel: 1, 2, 3,, n, ZÁKLADNÍ POZNATKY ČÍSELNÉ MNOŽINY (OBORY) N... množin všech přirozených čísel: 1, 2, 3,, n, N0... množin všech celých nezáporných čísel (přirozených čísel s nulou: 0,1, 2, 3,, n, Z... množin všech celých

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1:

Kvadratické rovnice. Řešení kvadratických rovnic. Kvadratická rovnice bez lineárního členu. Příklad 1: Kvadratické rovnice V zadání lineární rovnice se může vyskytovat neznámá ve vyšší než první mocnině. Vždy ale při úpravě tato neznámá ve vyšší než první mocnině zmizí, odečte se, protože se vyskytuje na

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Funkce jedné proměnné

Funkce jedné proměnné Funkce jedné proměnné Lineární funkce f: y = kx + q, D f = R, H f = R, grf je přímk množin odů [x, y], x D f, y = f(x) q úsek n ose y, tj. od [0, q], k směrnice, k = tn φ = 2 2 1 1, A[ 1, 2 ], B[ 1, 2

Více

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek makroekonomie

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek makroekonomie řijímí řízení kemiký rok 2013/2014 NvMg. stuium Kompletní znění testovýh otázek mkroekonomie Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 1 Ekonomiké veličiny, které jsou měřeny

Více

Výpočet obsahu rovinného obrazce

Výpočet obsahu rovinného obrazce Výpočet oshu rovinného orzce Pro výpočet oshu čtverce, odélník, trojúhelník, kružnice, dlších útvrů, se kterými se můžeme setkt v elementární geometrii, máme k dispozici vzorce Kdchom chtěli vpočítt osh

Více

1.3.6 Řešení slovních úloh pomocí Vennových diagramů I

1.3.6 Řešení slovních úloh pomocí Vennových diagramů I 1.3.6 Řešení slovníh úloh pomoí Vennovýh igrmů I Přepokly: 010304, řešení rovni Pegogiká poznámk: Řešení slovníh množinovýh úloh pomoí Vennovýh igrmů mně přije zjímvé přínosné z těhto ůvoů: je o první

Více

Maturitní příklady 2011/2012

Maturitní příklady 2011/2012 Mturitní příkldy 0/0 Výroková logik, množiny, důkzy Ve třídě je 0 dívek 5 hohů Jedn čtvrtin dívek nosí rýle elkem 0% žáků ve třídě má rýle Kolik hohů nenosí rýle? Ze 00 studentů se 0 učí němeky, 8 špnělsky

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4;

je pravoúhlý BNa ose y najděte bod, který je vzdálený od bodu A = [ 4; 1 BUAnlytická geometrie - bod, souřdnice bodu, vzdálenost bodů 11 1BRozhodněte, zd trojúhelník s vrcholy A [ ; ], B [ 1; 1] C [ 11; 6] je prvoúhlý 1 1BN ose y njděte bod, který je vzdálený od bodu A [

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.

Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Goniometrické funkce obecného úhlu

Goniometrické funkce obecného úhlu 0 Goniometrické funkce oecného úhlu V prvoúhlém trojúhelníku ABC jsou definovány funkce,, tg, cotg liovolného úhlu tkto: α α tg α cotg α Význmné hodnoty gon. funkcí 0 0 60 90 α 0 α 0 tg α 0 nedef. cotg

Více

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b +

Více

Matematika II: Testy

Matematika II: Testy Mtemtik II: Testy Petr Schreiberová Ktedr mtemtiky deskriptivní geometrie VŠB - Technická univerzit Ostrv Mtemtik II - testy 69. Řy 9 - Test Ktedr mtemtiky deskriptivní geometrie, VŠB - Technická univerzit

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropská unie Evropský soiální fon Prh & EU: Investujeme o vší uounosti ávrh čítče jko utomtu Osh ÁVRH ČÍAČE JAKO AUOMAU.... SYCHROÍ A ASYCHROÍ AUOMA..... Výstupy utomtu mohou ýt přímo ity pměti stvu.....

Více

3 Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď

3 Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď Přijímí řízení kemiký rok 2012/2013 Kompletní znění testovýh otázek společensko-historiký přehle 3 Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 2 Kolik státníh symolů má Česká

Více

Matematika v rozsahu bakalářského studia oboru Biomedicínský technik (BMT) na FBMI:

Matematika v rozsahu bakalářského studia oboru Biomedicínský technik (BMT) na FBMI: Temtiké okruhy, oporučená litertur vzorový test pro písemné přijímí zkoušky ooru Přístroje metoy pro iomeiínu speiiká část ooru (5 otázek z mtemtiky 5 otázek z iomeiíny) Mtemtik v rozshu klářského stui

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek mikroekonomie

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek mikroekonomie Přijímí řízení kemiký rok 2013/2014 NvMg. stuium Kompletní znění testovýh otázek mikroekonomie Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď 1. 1 Která z násleujííh situí může způsoit

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 )

Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) Rovinné orze 1) Určete velikost úhlu α. (19 ) 32 103 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) x d y x y 3) Vypočítejte osh orze znázorněného ve čtverové síti. (2 500 m 2 ) C A B

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

1.7.4 Výšky v trojúhelníku II

1.7.4 Výšky v trojúhelníku II 1.7.4 Výšky v trojúhelníku II Předpokldy: 010703 Opkování z minulé hodiny Výšk trojúhelníku: úsečk, která spojuje vrhol trojúhelníku s ptou kolmie n protější strnu. 0 0 v v 0 Př. 1: Nrýsuj trojúhelník

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Kvadratická funkce Autor: Kubešová

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Rovnice s parametrem (17. - 18. lekce)

Rovnice s parametrem (17. - 18. lekce) Rovnice s parametrem (17. - 18. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října 2011 Lineární rovnice s parametrem

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6 Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN!

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika 017 ZADÁNÍ NEOTVÍREJTE, POČKEJTE NA POKYN! Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na jeho řešení máte 90 minut čistého času. n V průběhu

Více

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia

Konzultace z předmětu MATEMATIKA pro první ročník dálkového studia - - Konzultce z předmětu MATEMATIKA pro první ročník dálkového studi ) Číselné obor ) Zákldní početní operce procentový počet ) Absolutní hodnot reálného čísl ) Intervl množinové operce ) Mocnin ) Odmocnin

Více

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny.

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny. 4.3.9 Sinus ostrého úhlu I Předpokldy: 040308 Správně vyplněné hodnoty funke z minulé hodiny. α 10 20 30 40 50 60 70 80 poměr 0,17 0,34 0,50 0,64 0,77 0,87 0,94 0,98 Funke poměr se nzývá sinus x (zkráeně

Více

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :

Více

Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C

Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76

Více

Logaritmická funkce teorie

Logaritmická funkce teorie Výukový mteriál pro předmět: MATEMATIKA reg. č. projektu CZ..07/..0/0.0007 Logritmická funkce teorie Eponenciální funkce je funkce prostá, proto k ní eistuje inverzní funkce. Tto inverzní funkce se nzývá

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

14 Kuželosečky v základní poloze

14 Kuželosečky v základní poloze 4 Kuželosečk v zákldní poloze Následující tet 4 7 se týkjí geometrie v rovině. Až dosud jsme studovli útvr lineární (v nltickém vjádření l vžd proměnné,, z v první mocnině). Nní se udeme zývt některými

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Přehled základních vzorců pro Matematiku 2 1

Přehled základních vzorců pro Matematiku 2 1 Přehled zákldních vzorců pro Mtemtiku 1 1. Limity funkcí definice Vlstní it v bodě = : f() = ɛ > 0, δ > 0 tk, že pro : ( δ, δ), pltí f() ( ɛ, ɛ) Vlstní it v bodě = : f() = ɛ > 0, c > 0 tk, že pro : > c,

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

VY_42_Inovace_13_MA_4.01_ Aritmetická posloupnost pracovní list. Jednotlivé snímky lze použít jako studijní materiál.

VY_42_Inovace_13_MA_4.01_ Aritmetická posloupnost pracovní list. Jednotlivé snímky lze použít jako studijní materiál. Čílo projektu Čílo mteriálu CZ..07/.5.00/34.0394 VY_4_Iovce_3_MA_4.0_ Aritmetická poloupot prcoví lit Název školy Střeí oborá škol Střeí oboré učiliště, Hutopeče, Mrykovo ám. Autor Temtický celek Mgr.

Více

Planimetrie. Obsah. Stránka 668

Planimetrie. Obsah. Stránka 668 Obsh 3. Plnimetrie... 669 3.. Úhel... 669 3.. Prvidelné mnohoúhelníky... 67 3.3. Pythgorov vět Eukleidovy věty konstruke úseček... 678 3.4. Euklidovy věty, prvoúhlý trojúhelník... 683 3.5. Obvody obshy

Více

ů ů ř É ř řřň ů ů ř ř Ú ó ó ó ť ň ó ó ř ř ř š ř ů ů ů ů š ů ů ř ů ů ř ř ř ř ř ů ř ř ó ň ó š ř É ó š řó š ó řó óž ř ř ž ř ž ř ř ř ř Í ř š ů Š ů ř š Š ř ň Š š Š Š ř ž ť ň ň Š š š ň ř Š ň ň ř š Š Š š Í š

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výuk technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuk směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrz, výrz s mocninmi odmocninmi Kpitol Člen

Více

Iracionální nerovnice a nerovnice s absolutní hodnotou ( lekce)

Iracionální nerovnice a nerovnice s absolutní hodnotou ( lekce) Iracionální nerovnice a nerovnice s absolutní hodnotou (15. - 16. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 22. října

Více

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3

Cvičení 4.ročník rovnice, nerovnice, výrazy, funkce . 4 3 Cvičení.ročník rovnice, nerovnice, výrzy, funkce ) Vypočítejte: ) [0 (8. 0 7. 0 )] b) [ ( ). ( ) ( 7)]: ( ) c) (9 ): ( ) + [ 8 (0 )] d)[. ( 9 + 7) ( ). ( )]. e). 9. 9 f). 7 + 9 ) Vyjádřete jko jedinou

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Nadměrné daňové břemeno

Nadměrné daňové břemeno Nměrné ňové břemeno Nměrné ňové břemeno je efinováno jko ztrát přebytku spotřebitele přebytku výrobe, ke kterému ohází v ůsleku znění. Něky se tož nzývá jko ztrát mrtvé váhy. Připomenutí: Přebytek spotřebitele:

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Užitečné základní vzorce počítačové grafiky

Užitečné základní vzorce počítačové grafiky řenáš Vetorové oere Veliot vetoru Užitečné zální vzore očítčové rfi oučet vou vetorů lární oučin Vetorový oučin Litertur zroje: Žár, J., Beneš, B., Felel,.: Moerní očítčová rfi. Brno : Comuter re, 998.

Více

a) 5.3 + 12 26 [výrok, 1] b) Kolik je hodin? [není výrok] c) 2x + 3 0 [výroková forma] d) [výrok, 0] e) Pro každé reálné číslo x platí sin x 1

a) 5.3 + 12 26 [výrok, 1] b) Kolik je hodin? [není výrok] c) 2x + 3 0 [výroková forma] d) [výrok, 0] e) Pro každé reálné číslo x platí sin x 1 . Výroková logik. Určete, které zápisy předstvují výroky, které hypotézy, které výrokové formy které nejsou výroky. U výroků určete prvdivostní hodnotu. ). 6 [výrok, ] Kolik je hodin? [není výrok] c) 0

Více

M - Kvadratická funkce

M - Kvadratická funkce M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně

Více

Maturitní témata z Matematiky

Maturitní témata z Matematiky Mturitní témt z Mtemtik. Výrz jejich úprv. Lineární rovnice nerovnice, lineární rovnice s prmetrem. vdrtická rovnice nerovnice, kvdrtická rovnice s prmetrem. Rovnice nerovnice v součinovém podílovém tvru.

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

26. listopadu a 10.prosince 2016

26. listopadu a 10.prosince 2016 Integrální počet Přednášk 4 5 26. listopdu 10.prosince 2016 Obsh 1 Neurčitý integrál Tbulkové integrály Substituční metod Metod per-prtes 2 Určitý integrál Geometrické plikce Fyzikální plikce K čemu integrální

Více