Praktikum z ekonometrie Panelová data

Rozměr: px
Začít zobrazení ze stránky:

Download "Praktikum z ekonometrie Panelová data"

Transkript

1 Praktikum z ekonometrie Panelová data Jan Zouhar Katedra ekonometrie, FIS VŠE v Praze, zouharj@vse.cz 9. května Terminologie a značení Sledujeme-li pro všechny průřezové jednotky stejná časová období, hovoříme o vyrovnaném panelu; pro jednoduchost se budeme zabývat pouze vyrovnanými panely (zjednoduší to značení a modifikace pro nevyrovnané panely bývají zpravidla jednoduché). Počet průřezových jednotek značíme N, počet časových období T, počet vysvětlujících proměnných K. Indexy: průřezové jednotky i, časová období t, vysvětlující proměnné j. Rozlišují se tzv. krátké a dlouhé panely podle délky časové řady (vzhledem k počtu pozorování); rozlišení není přesně dáno, jde o to, zdali chceme uplatňovat asymptotickou teorii pro N nebo pro T. Příklady na krátké vs. dlouhé panely: 500 jednotlivců sledovaných v 5 navazujících obdobích vs. Visegrádská čtyřka v letech Krátké panely koncepčně jednodušší asymptotické úvahy opět ve smyslu náhodného výběru jedinců z populace. Aspekty náhodných procesů, zejména stacionarita a heteroskedasticita v čase, se řeší o poznání méně než u dlouhých panelů. 2 Model s nepozorovanou heterogenitou S panelovými daty lze počítat běžný LRM, tj. y = α + β 1 x β K x K + u = α + xβ + u. Z jistého důvodu, který bude patrný za chvíli, jsme oproti předchozím zápisům oddělili intercept od vektoru β, jinak je ovšem všechno při starém. Rozepíšeme-li model pro jednotlivá

2 Praktikum z ekonometrie: Panelová data 2 pozorování v náhodném výběru, je situace trochu méně přehledná kvůli dvěma rozměrům (průřezovému a časovému): y it = α + β 1 x it1 +...β K x }{{ itk + u } it = α + x it β + u it. [x it1...x itk ][β 1...β K ] =x it β Jedním z důvodů použití panelových dat je snaha vypořádat se s tím, že není v naší moci sledovat (a zahrnout do modelu) všechny charakteristiky, které ovlivňují závisle proměnnou. Například v modelu, kde vysvětlujeme mzdu jedince, nejsme zpravidla schopni změřit jeho motivaci, talent a další vlastnosti označované souhrnně jako nepozorovaná heterogenita. Panelová struktura dat nám umožní velmi efektivně obejít problémy s tou složkou nepozorované heterogenity, která je neměnná v čase, jako třeba zmiňovaný talent, nebo též tělesná výška, vlivy výchovy v dětství apod. Označme souhrnný vliv všech nepozorovaných faktorů, v čase neměnných, jako c. V lineárním modelu vypadá situace takto: y it = α + x it β + c i + u it. (1) Všimněte si, že proměnná c nepotřebuje časový index t, nebot je pro každou průřezovou jednotku v čase neměnná. Díky přítomnosti interceptu α si můžeme dovolit bez okolků a újmy na obecnosti předpokládat, že průměrný dopad nepozorované heterogenity je ve zkoumané populaci nulový, tj. Ec = 0. (2) 3 Různé přístupy k odhadu modelu s nepozorovanou heterogenitou 3.1 Diferencování (first-difference estimator, FD) Zapíšeme-li rovnici (1) zpožděnou o jedno období, a odečteme od (1), dostaneme y i,t 1 = α + x i,t 1 β + c i + u i,t 1, y it = x it β + u it, (3) kde y it = y it y i,t 1 a podobně x it = x it x i,t 1 a u it = u it u i,t 1. Za zmínku stojí několik pozorování: (ii) V (3) se nevyskytuje nepozorovaná heterogenita c i (ani intercept α). Naopak parametr β je shodný jako v původním modelu (1). Máme-li data pro y a x, snadno z nich připravíme první diference y a x. (iii) Chceme-li tedy odhadnout parametr β, můžeme aplikovat OLS přímo na model (3).

3 Praktikum z ekonometrie: Panelová data 3 (iv) Je-li původní náhodná složka u it nekorelovaná v čase, pak u it vykazuje negativní autokorelaci prvního řádu, konkrétně corr( u it, u i,t 1 ) = 0.5. Pokud má naopak u it podobu náhodné procházky (čili u it = u i,t 1 + šum, krajní případ pozitivní autokorelace), pak jsou u it v čase nekorelované. Autokorelace Irelevantní při T = 2. Testování autokorelace po FD: (ii) Při T 3 uložíme rezidua z (3), u it, a odhadneme u it = ρ u i,t 1 + šum it a testujeme nulovou hypotézu H 0 : ρ = 0 (nulová hypotéza říká, že u it je nekorelovaná). (iii) Při zamítnutí H 0 použijeme robustní standardní chyby, příp FDGLS (viz pokročilý Wooldridge). Je-li ale ˆρ poblíž 0.5, naznačuje to, že původní náhodná složka u it byla možná nekorelovaná (viz výše); za takových podmínek je výhodnější použít FE. 3.2 Fixní efekty (fixed-effects estimator, within estimator, FE) Zprůměrujeme rovnici (1) pro i-tou průřezovou jednotku přes všechna časová období; získáme y i = α + x i β + c i + u i, kde y i = 1 T T t=1 y it a podobně x i = 1 T T t=1 x it a u i = 1 T T t=1 u it. Tuto rovnici odečteme od (1) a dostaneme ÿ it = ẍ it β + ü it, (4) kde ÿ it = y it y i a podobně ẍ it = x it x i a ü it = u it u i. Přechod od proměnné k její dvojitě tečkované verzi, tj. např. od y k ÿ, se někdy označuje jako časové centrování (time demeaning). Za zmínku stojí několik pozorování: V (4) se nevyskytuje nepozorovaná heterogenita c i (ani intercept α). Naopak parametr β je shodný jako v původním modelu (1). (ii) Máme-li data pro y a x, snadno připravíme jejich časově centrované protějšky ÿ a ẍ. (iii) Chceme-li tedy odhadnout parametr β, můžeme aplikovat OLS přímo na model (4). (iv) Časové centrování zanáší korelaci do náhodných složek ü it. Lze ukázat, že je-li původní náhodná složka u it v čase nekorelovaná, pak corr(ü it,ü is ) = T 1 1 pro s t. Metoda fixních efektů je dostupná ve všech moderních statistických/ekonometrických SW, operaci časového centrování není tedy třeba ručně provádět. Většina SW vypíše ještě odhad interceptu α, který není v odhadované rovnici (4) obsažen. Tento odhad se získá jako ˆα = y ˆβx.

4 Praktikum z ekonometrie: Panelová data 4 Autokorelace Testování autokorelace po FE: Komplikované. (ii) Irelevantní při T = 2. (iii) Při T 3 lze odhadnout model ˆü it = ρ ˆü i,t 1 + šum it a testovat nulovou hypotézu H 0 : ρ = T 1 1 (nulová hypotéza říká, že původní náhodná složka u it je nekorelovaná, viz výše). Pro test je třeba použít standardní chyby robustní vůči autokorelaci. (iv) Při zamítnutí H 0 použijeme robustní standardní chyby. Lze též zvážit útěk k FD (viz též níže) nebo FEGLS (viz pokročilý Wooldridge). 3.3 Odhad pomocí průřezových dummy proměnných (dummy variable regression, DVR) Souhrnný vliv nepozorované heterogenity lze chápat jako parametr, který je třeba odhadnout. Můžeme psát y it = α i + x it β + u it, (5) kde α i nahrazuje výraz α + c i z modelu (1). Ačkoli rozdíl oproti předchozímu modelu je nepatrný, zde chápeme α i jako intercept pro i-tou průřezovou jednotku, potažmo jako parametr, který je třeba odhadnout. Model můžeme ekvivalentně přepsat jako y it = α 1 d1 i + α 2 d2 i α N dn i + x it β + u it, (6) kde d1 i je proměnná, která nabývá hodnoty 1 pro všechna pozorování první průřezové jednotky (tj. pokud i = 1) a hodnoty 0 jinak; proměnné d2 i až dn i jsou definovány analogicky. (Např. v Gretlu lze tyto proměnné vyrobit po nastavení panelové struktury dat příkazem Add Unit dummies.) V této podobě lze model běžným způsobem odhadnout v SW pomocí OLS. Tato metoda není příliš praktická v případě, že máme velký počet průřezových jednotek. Vezměme výše zmíněný příklad panelového souboru 500 respondentů sledovaných v pěti navazujících časových obdobích. Ačkoli není problém připravit proměnné d1 až d500 a spočítat požadovaný regresní model, výsledková tabulka bude nečitelný kolos s více než 500 řádky, navíc nám zbytečně naroste datový soubor o 500 proměnných. Kromě této ryze praktické nevýhody je tu problém statistického rázu, který je daleko závažnější. Odhady parametrů α i nemají dobré statistické vlastnosti, konkrétně nejsou konzistentní. Tento problém má jednoduchý intuitivní důvod. Zvětšujeme-li rozsah výběru co do počtu průřezových jednotek (tj. roste N), s každou novou jednotkou přibývá jeden odhadovaný parametr (tzv. incidental parameters problem). Při N tedy nedochází k jinak

5 Praktikum z ekonometrie: Panelová data 5 obvyklému hromadění informace o jednotlivých parametrech α i. Jinými slovy, jednotlivé odhady ˆα i nelze brát příliš vážně. Je nicméně pravda, že při dodržení obvyklých G-M předpokladů jsou ˆα i a BLUE. (Mimochodem, jedná se o klasický příklad odhadové statistiky, která je nestranná, nikoli však konzistentní.) Obecně vzato, odhady ˆα i bývají přesnější v modelech s delšími časovými řadami (větší T ). Ačkoli konkrétní hodnoty ˆα i pro jednotlivé průřezové jednotky zpravidla neinterpretujeme, lze si na základě celého souboru odhadů (pro všechna i) udělat rámcovou představu o rozdělení heterogenity v populaci (zdali je hodně koncentrovaná okolo svého průměru nebo naopak hodně rozptýlená, zdali je symetrická nebo sešikmená apod.). Předchozí výhrady k odhadům parametrů α i ovšem neplatí pro odhady parametrů β tyto odhady se při růstu N klasickým způsobem zpřesňují, tj. jsou konzistentní. Ve skutečnosti je to ještě zajímavější: lze ukázat, že odhady parametrů z DVR jsou identické s odhady pořízené metodou FE. V tomto smyslu je tedy jedno, kterou z obou metod použijeme. Je třeba se mít ale na pozoru: tento výsledek platí čistě jen pro námi uvažovaný lineární model. Konkrétně, podobné vztahy neplatí v hojně používaných nelineárních panelových modelech s nepozorovanou heterogenitou (např. pro čítací modely nebo modely diskrétní volby). V takových případech jsou zpravidla odhady β pomocí průřezových dummy proměnných nekonzistentní! 3.4 Náhodné efekty 3.5 Metody ignorující nepozorovanou heterogenitu prostá (hromadná) OLS, meziskupinový model 4 FE nebo FD? Pro T = 2 metody stejné. Rozhodnutí řešíme jen pro T 3. Je-li u it v čase nekorelovaná, je FE vydatnější než FD. Vykazuje-li u it výraznou pozitivní autokorelaci, je FD vydatnější než FE. Testovat lze způsoby uvedenými výše. FE i FD jsou konzistentní pouze při striktně exogenních regresorech lze testovat jak v FD, tak v FD (viz pokročilý Wooldridge).

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 9 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Stochastický proces Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2 } se nazývá stochastický proces

Více

AVDAT Klasický lineární model, metoda nejmenších

AVDAT Klasický lineární model, metoda nejmenších AVDAT Klasický lineární model, metoda nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model y i = β 0 + β 1 x i1 + + β k x ik + ε i (1) kde y i

Více

Časové řady, typy trendových funkcí a odhady trendů

Časové řady, typy trendových funkcí a odhady trendů Časové řady, typy trendových funkcí a odhady trendů Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Jiří Neubauer (Katedra ekonometrie UO Brno) Časové

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 7: Autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Autokorelace - teorie Zopakujte si G-M

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 5 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Matematické modelování Náhled do ekonometrie. Lukáš Frýd

Matematické modelování Náhled do ekonometrie. Lukáš Frýd Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK11 Základy ekonometrie Autokorelace Cvičení 5 Zuzana Dlouhá Gauss-Markovy předpoklady Náhodná složka: Gauss-Markovy předpoklady 1. E(u) = náhodné vlivy se vzájemně vynulují. E(uu T ) = σ I n konečný

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

Ilustrační příklad odhadu LRM v SW Gretl

Ilustrační příklad odhadu LRM v SW Gretl Ilustrační příklad odhadu LRM v SW Gretl Podkladové údaje Korelační matice Odhad lineárního regresního modelu (LRM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

AVDAT Geometrie metody nejmenších čtverců

AVDAT Geometrie metody nejmenších čtverců AVDAT Geometrie metody nejmenších čtverců Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Lineární model klasický lineární regresní model odhad parametrů MNČ y = Xβ + ε, ε

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK Základy ekonometrie Odhad klasického lineárního regresního modelu II Cvičení 3 Zuzana Dlouhá Klasický lineární regresní model - zadání příkladu Soubor: CV3_PR.xls Data: y = maloobchodní obrat potřeb

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou

Více

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel

Regresní analýza. Ekonometrie. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel Regresní analýza Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Regresní analýza 1 / 23

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základ ekonometrie Odhad klasického lineárního regresního modelu I Cvičení 2 Zuzana Dlouhá Metodologický postup tvor EM 1. Specifikace modelu určení proměnných určení vzájemných vaze mezi proměnnými

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Predikce Multikolinearita Cvičení 4 Zuzana Dlouhá Aplikace EM predikce obecně ekonomické prognózování, předpověď, předvídání hlavním cílem je odhad hodnot vysvětlované proměnné

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Posloupnost náhodných veličin {Y t, t = 0, ±1, ±2... } se nazývá stochastický

Více

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.

RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 7 Jak hodnotit vztah spojitých proměnných

Více

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0

Přepoklady KLM a Gauss Markov teorém. Blue odhad - GM. KLM Klasický lineární model. 1) Lineární v parametrech. 2) E ε = 0 Heteroskedasticita Přepoklady KLM a Gauss Markov teorém KLM Klasický lineární model 1) Lineární v parametrech ) E ε = 0 Blue odhad - GM Nezkreslený odhad 1) Lineární v parametrech ) E ε = 0 3) E( ȁ ε X)=

Více

METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC.

METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC. METODY ODHADU REDUKOVANÉHO A STRUKTURNÍHO TVARU MODELŮ SIMULTÁNNÍCH ROVNIC. ZÁKLADNÍ HARRODŮV-DOMARŮV MODEL RŮSTU A JEHO VERZE VE FORMĚ MULTIPLIKÁTOR AKCELERÁTOR. Parametry modelu simultánních rovnic ve

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,

Více

Ilustrační příklad odhadu SM v SW Gretl

Ilustrační příklad odhadu SM v SW Gretl Ilustrační příklad odhadu SM v SW Gretl Odhad simultánního modelu (SM) Verifikace modelu PEF ČZU Praha Určeno pro posluchače předmětu Ekonometrie Needitovaná studijní pomůcka MM2011 Úvodní obrazovka Gretlu

Více

Klasická a robustní ortogonální regrese mezi složkami kompozice

Klasická a robustní ortogonální regrese mezi složkami kompozice Klasická a robustní ortogonální regrese mezi složkami kompozice K. Hrůzová, V. Todorov, K. Hron, P. Filzmoser 13. září 2016 Kompoziční data kladná reálná čísla nesoucí pouze relativní informaci, x = (x

Více

LINEÁRNÍ MODELY. Zdeňka Veselá

LINEÁRNÍ MODELY. Zdeňka Veselá LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou

Více

Diagnostika regrese pomocí grafu 7krát jinak

Diagnostika regrese pomocí grafu 7krát jinak StatSoft Diagnostika regrese pomocí grafu 7krát jinak V tomto článečku si uděláme exkurzi do teorie regresní analýzy a detailně se podíváme na jeden jediný diagnostický graf. Jedná se o graf Předpovědi

Více

Přednáška 4. Lukáš Frýd

Přednáška 4. Lukáš Frýd Přednáška 4 Lukáš Frýd Časová řada: stochastický (náhodný) proces, sekvence náhodných proměnných indexovaná časem Pozorovaná časová řada: jedna realizace stochastického procesu Analogie: Průřezový výběr,

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28

Základy ekonometrie. XI. Vektorové autoregresní modely. Základy ekonometrie (ZAEK) XI. VAR modely Podzim / 28 Základy ekonometrie XI. Vektorové autoregresní modely Základy ekonometrie (ZAEK) XI. VAR modely Podzim 2015 1 / 28 Obsah tématu 1 Prognózování s VAR modely 2 Vektorové modely korekce chyb (VECM) 3 Impulzní

Více

MÍRY ZÁVISLOSTI (KORELACE A REGRESE)

MÍRY ZÁVISLOSTI (KORELACE A REGRESE) zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 10: Heteroskedasticita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Heteroskedasticita - teorie Druhý

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Pokračování z minula:

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOS A SAISIKA Regresní analýza - motivace Základní úlohou regresní analýzy je nalezení vhodného modelu studované závislosti. Je nutné věnovat velkou pozornost tomu aby byla modelována REÁLNÁ

Více

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD

REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Politická ekonomie 45: (2), str. 281-289, VŠE Praha, 1997. ISSN 0032-3233. (Rukopis) REGRESNÍ ANALÝZA NESTACIONÁRNÍCH EKONOMICKÝCH ČASOVÝCH ŘAD Josef ARLT, Vysoká škola ekonomická, Praha 1. Úvod Pro modelování

Více

Ekonometrie. Jiří Neubauer

Ekonometrie. Jiří Neubauer Úvod do analýzy časových řad Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Úvod do analýzy

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Bodové a intervalové odhady parametrů v regresním modelu 1 Odhady parametrů 11 Bodové odhady Mějme lineární regresní model (LRM) kde Y = y 1 y 2 y n, e = e 1 e 2 e n Y = Xβ + e, x 11 x 1k, X =, β = x n1

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Vícenásobná regresní a korelační analýza 1 1 Tto materiál bl vtvořen za pomoci grantu FRVŠ číslo 1145/2004. O vícenásobné závislosti mluvíme tehd, jestliže je závisle proměnná závislá na více nezávislých

Více

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme,

z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové funkce, ze kterého vycházíme, Úloha 1: V naší studii se zabýváme poptávkovou funkcí životního pojištění, vycházíme z dat nasbíraných v letech 1959 1994. Ke zpracování dat byl použit statistický software R. Základní model poptávkové

Více

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ

ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ ZOBECNĚNÝ LINEÁRNÍ REGRESNÍ MODEL. METODA ZOBECNĚNÝCH NEJMENŠÍCH ČTVERCŮ V následujícím textu se podíváme na to, co dělat, když jsou porušeny některé GM předpoklady. Nejprve si připomeňme, o jaké předpoklady

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Časová řada konečná posloupnost reálných hodnot určitého sledovaného ukazatele měřeného v určitých

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantativní metody I Přednáška 8 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie Úvod do předmětu obecné informace Základní pojmy ze statistiky / ekonometrie Úvod do programu EViews, Gretl Některé užitečné funkce v MS Excel Cvičení 1 Zuzana Dlouhá Úvod do

Více

AVDAT Nelineární regresní model

AVDAT Nelineární regresní model AVDAT Nelineární regresní model Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Nelineární regresní model Ey i = f (x i, β) kde x i je k-členný vektor vysvětlujících proměnných

Více

Základy ekonometrie. X. Regrese s časovými řadami. Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim / 47

Základy ekonometrie. X. Regrese s časovými řadami. Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim / 47 Základy ekonometrie X. Regrese s časovými řadami Základy ekonometrie (ZAEK) X. Regrese s časovými řadami Podzim 2015 1 / 47 Obsah tématu 1 ADL model 2 Regrese se stacionárními řadami 3 Regrese s řadami

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

LWS při heteroskedasticitě

LWS při heteroskedasticitě Stochastické modelování v ekonomii a financích Petr Jonáš 7. prosince 2009 Obsah 1 2 3 4 5 47 1 Předpoklad 1: Y i = X i β 0 + e i i = 1,..., n. (X i, e i) je posloupnost nezávislých nestejně rozdělených

Více

Cross-section pozorování Firma, člověk Časový úsek

Cross-section pozorování Firma, člověk Časový úsek Pooled data y = Xβ + ε Cross-section pozorování Firma, člověk ds = αsdt + σsdw Časový úsek Základní soubor Výběrový soubor Základní soubor Je Proces 1 konkrétní realizace Co sledovat firmu(y), osobu(y)

Více

Základy lineární regrese

Základy lineární regrese Základy lineární regrese David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5. 7. 8. 2015 Tato akce

Více

7 Regresní modely v analýze přežití

7 Regresní modely v analýze přežití 7 Regresní modely v analýze přežití Předpokládané výstupy z výuky: 1. Student rozumí významu regresního modelování dat o přežití 2. Student dokáže definovat pojmy poměr rizik a základní riziková funkce

Více

odpovídá jedna a jen jedna hodnota jiných

odpovídá jedna a jen jedna hodnota jiných 8. Regresní a korelační analýza Problém: hledání, zkoumání a hodnocení souvislostí, závislostí mezi dvěma a více statistickými znaky (veličinami). Typy závislostí: pevné a volné Pevná závislost každé hodnotě

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Testy hypotéz na základě více než 2 výběrů Na analýzu rozptylu lze pohlížet v podstatě

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Mějme dvojici proměnných, které spolu nějak souvisí. x je nezávisle (vysvětlující) proměnná y je závisle (vysvětlovaná) proměnná Chceme zjistit funkční závislost y = f(x).

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Korelační a regresní analýza

Korelační a regresní analýza Korelační a regresní analýza Analýza závislosti v normálním rozdělení Pearsonův (výběrový) korelační koeficient: r = s XY s X s Y, kde s XY = 1 n (x n 1 i=0 i x )(y i y ), s X (s Y ) je výběrová směrodatná

Více

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi

Více

8 Coxův model proporcionálních rizik I

8 Coxův model proporcionálních rizik I 8 Coxův model proporcionálních rizik I Předpokládané výstupy z výuky: 1. Student umí formulovat Coxův model proporcionálních rizik 2. Student rozumí významu regresních koeficientů modelu 3. Student zná

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 6: Multikolinearita, umělé proměnné LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Otevřete si data z

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

Stavový model a Kalmanův filtr

Stavový model a Kalmanův filtr Stavový model a Kalmanův filtr 2 prosince 23 Stav je veličina, kterou neznáme, ale chtěli bychom znát Dozvídáme se o ní zprostředkovaně prostřednictvím výstupů Příkladem může býapř nějaký zašuměný signál,

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 3 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

4EK201 Matematické modelování. 11. Ekonometrie

4EK201 Matematické modelování. 11. Ekonometrie 4EK201 Matematické modelování 11. Ekonometrie 11. Ekonometrie Ekonometrie Interdisciplinární vědní disciplína Zkoumá vztahy mezi ekonomickými veličinami Mikroekonomickými i makroekonomickými Ekonomie ekonomické

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

6 Vícerovnicové ekonometrické soustavy 1

6 Vícerovnicové ekonometrické soustavy 1 6 Vícerovnicové ekonometrické soustavy Obsah 6 Vícerovnicové ekonometrické soustavy 1 6.1 SUR - Seemingly unrelated regression (zdánlivě nepropojené regrese).......... 3 6.2 Panelová data.........................................

Více

Úvod do ekonometrie Minitesty

Úvod do ekonometrie Minitesty Úvod do ekonometrie Minitesty Poznámka k zadání Použité značení odpovídá přednáškám, v případě nejasností nahlédněte do zveřejněných prezentací. V zadání jsou všude použity desetinné tečky (kvůli souladu

Více

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných)

Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) Teorie časových řad Test 2 Varianta A HODNOCENÍ (max. 45 bodů z 50 možných) 1. SPECIFIKACE (12 bodů): (1) Graf průběhu proměnných (1) Obě řady se chovají stejně, lze předpokládat jejich lineární vztah

Více

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model

EKONOMETRIE 9. přednáška Zobecněný lineární regresní model EKONOMETRIE 9. přednáška Zobecněný lineární regresní model Požadavky (některé) pro odhad LRM klasickou MNČ nejsou zpravidla splněny. Použití metody nejmenších čtverců nemusí poskytovat kvalitní odhady

Více

VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ.

VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ. VEKTOROVÉ AUTOREGRESE. APLIKACE V PROGNÓZOVÁNÍ. Vektorové autoregrese (VAR se používají tehdy, když chceme zkoumat časové řady dvou či více proměnných. Je sice možné za tím účelem použít dynamické modely

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik

Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Aplikace teoretických postupů pro ocenění rizika při upisování pojistných smluv v oblasti velkých rizik Ondřej Pavlačka Praha, 18. ledna 2011 Cíle projektu Vytvořit matematický model pro oceňování přijímaného

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

Statistika (KMI/PSTAT)

Statistika (KMI/PSTAT) Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 6 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. vorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 6: Dummy proměnné, úvod do časových řad LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Multikolinearita

Více

STATISTIKA I Metodický list č. 1 Název tématického celku:

STATISTIKA I Metodický list č. 1 Název tématického celku: STATISTIKA I Metodický list č. 1 Analýza závislostí Základním cílem tohoto tématického celku je seznámit se s pokročilejšími metodami zpracování statistických údajů.. 1. kontingenční tabulky 2. regresní

Více

Odhady Parametrů Lineární Regrese

Odhady Parametrů Lineární Regrese Odhady Parametrů Lineární Regrese Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

Aplikovaná statistika v R - cvičení 2

Aplikovaná statistika v R - cvičení 2 Aplikovaná statistika v R - cvičení 2 Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 5.6.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 5.6.2014 1 / 18 Přehled Rkových

Více

dat Robust ledna 2018

dat Robust ledna 2018 Analýza prostorově závislých funkcionálních dat V. Římalová, A. Menafoglio, A. Pini, E. Fišerová Robust 2018 25. ledna 2018 Motivace Data a náhled lokace Měsíční měření (březen-říjen 2015 a 2016) 5 chemických

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Aplikovaná ekonometrie a teorie časových řad Zápočtový test 2 Varianta P2017

Aplikovaná ekonometrie a teorie časových řad Zápočtový test 2 Varianta P2017 Aplikovaná ekonometrie a teorie časových řad Zápočtový test 2 Varianta P2017 Zadání: Predikujte na základě modelování časových řad nejlepší možný odhad počtu prodaných nových aut v průběhu roku 1990. Datový

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Definice lineárního normálního regresního modelu Lineární normální regresní model Y β ε Matice n,k je matice realizací. Předpoklad: n > k, h() k - tj. matice je plné hodnosti

Více

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady PRAVDĚPODOBNOST A STATISTIKA Bayesovské odhady Bayesovské odhady - úvod Klasický bayesovský přístup: Klasický přístup je založen na opakování pokusech sledujeme rekvenci nastoupení zvolených jevů Bayesovský

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

1 Odvození poptávkové křivky

1 Odvození poptávkové křivky Odvození poptávkové křivky Optimalizační chování domácností (maximalizace užitku) vzhledem k rozpočtovému omezení. Nejprve odvodíme deterministický model, který potom rozšíříme o stochastické prvky. Odvozené

Více

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A

AKM CVIČENÍ. Opakování maticové algebry. Mějme matice A, B regulární, potom : ( AB) = B A AKM - 1-2 CVIČENÍ Opakování maticové algebry Mějme matice A, B regulární, potom : ( AB) = B A 1 1 ( A ) = ( A ) ( A ) = A ( A + B) = A + B 1 1 1 ( AB) = B A, kde A je řádu mxn a B nxk Čtvercová matice

Více