Working Papers Pracovní texty

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Working Papers Pracovní texty"

Transkript

1 Working Papers Pracovní exy Working Paper o. 1/24 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ISIU PRO EKOOMICKOU A EKOLOGICKOU POLIIKU VYSOKÁ ŠKOLA EKOOMICKÁ V PRAZE AKULA ÁROOHOSPOÁŘSKÁ

2 Working paper o. 1 ondový penzijní sysém v konvergující ekonomice Jan Kubíček ao sudie byla vypracována v rámci granu GA ČR č. 42/2/129. Vysoká škola ekonomická, akula národoospodářská,

3 Absrak Sať se zabývá dopady jak reálné, ak i nominální konvergence pro fondový penzijní sysém. Proces konvergence má za následek, že k omu, aby bylo dosaženo sejnýc náradovýc poměrů (RR) jako v ekonomice ve sálém savu, je nuné, aby příspěvkové míry byly vyšší než v ekonomice ve sálém savu. eno důsledek je čásečně způsoben vyššími mírami růsu běem procesu reálné konvergence a čásečně nižšími mírami výnosu. ižší míry výnosu jsou samy důsledkem konvergence nominální, keré je svázána Balassovým-Samuelsonovým efekem s konvergencí reálnou. Simulace ukazují, že za přijaelnýc předpokladů by příspěvkové míry v ČR musely bý kvůli konvergenčním procesům zruba o 6 % vyšší, aby bylo dosaženy sejné náradové poměry. JEL Classificaion: H55, G23 Klíčová slova: penzijní sysémy, reálná konvergence, apreciace, míra výnosu

4 I. 1. Úvod Obíže, do kerýc se dosává průběžně financovaný penzijní sysém (PAYG sysém) v ČR, vyvolávají diskusi o alernaivníc způsobec financování penzijnío sysému. Jednou z alernaiv je čisý fondový sysém ( sysém), ve kerém si každý pracovník na svoji penzi naspoří v průběu pracovní kariéry. Cílem ooo článku je upozorni na někerá specifika sysému, kerá nasávají v konvergující ekonomice a provés kvanifikaci příspěvkové míry a zv. náradovéo poměru. 1 Pro naši analýzu budou mí důležios následující kvaliaivní carakerisiky konvergující ekonomiky. Jednak průměrné empo růsu je v konvergující ekonomice vyšší než v ekonomice, ke keré se konvergující ekonomika přibližuje. o způsobuje, že příspěvková míra do sysému musí bý v ěco ekonomikác odlišná, má-li bý poměr mezi důcodem a mzdou před odcodem do důcodu (zv. replacemen raio, dále éž RR) v obou ekonomikác sejný. ruým rysem konvergující ekonomiky je, že empo reálnéo růsu posupně klesá s ím, jak se snižuje mezera mezi konvergující ekonomikou a jejím sálým savem. ao skuečnos má na objem naspořenýc prosředků ve fondovém sysému samosaný vliv. Poslední kvaliaivní carakerisikou konvergující ekonomiky, kerou zařadíme do našic úva, bude o, že ekonomika zažívá nejen konvergenci reálnou, ale i nominální. Konvergence v produkiviác je zdrojem konvergence nižší srovnaelné cenové ladiny (CPL) v konvergující ekonomice k nové CPL ve sálém savu. ůležios konvergence CPL pro fondový sysém vyvsává nejvíce v souvislosi s předpokladem, že země je součásí měnové unie, k jejíž průměrné cenové ladině eprve konverguje. Pokud nominální míra výnosu je v konvergující ekonomice sodná s mírou převládající ve zbyku měnové unie, znamená posupné přibližování CPL, že reálná míra výnosu je v konvergující ekonomice nuně nižší než ve zbylé čási měnové unie. empo přibližování cenové ladiny je navíc ím vyšší, čím vyšší je empo přibližování produkiviy. osáváme ak oledně reálné míry výnosu vlasně opačný závěr než v případě emp reálnéo růsu: reálná výnosová míra v konvergující ekonomice je v průměru nižší než ve sálém savu a zároveň plaí, že se posupně zvyšuje s ím jak se vyčerpává reálná (a edy i nominální) konvergence. Je zřejmé, že odlišná průměrná reálná míra výnosu i její nerovnoměrné rozložení v čase má vliv na výši naspořenýc prosředků. Ačkoliv předpoklad, že zkoumaná konvergující ekonomika je malou ekonomikou inegrovanou v měnové unii, přináší uvedené komplikace oledně měnící se reálné míry výnosu, zároveň aké implikuje v určiém oledu zjednodušení modelovýc úva. V případě malé oevřené ekonomiky, kerá je součásí měnové unie, oiž nejspíše neplaí silná vazba domácíc invesic na domácí úspory (kerou dokumenují např. eldsein Horioka, 198). 2 Exisence éo vazby vede k omu, že nasavení financování penzijnío sysému skrze svůj vliv na domácí úspory a poažmo invesice ovlivňuje i empo reálnéo růsu (a v našem případě by o ovlivnilo i empo nominální konvergence). omácí invesice se však v malé oevřené ekonomice, kerá je součásí měnové unie, vyvíjejí nezávisle na domácíc úsporác (viz Scimmelpfennig, 2). Změna financování penzijnío sysému však může mí dopady na růs skrze svůj dopad na r práce. 3 1 Ježek (23) provedl kvaniaivní odady zv. náradovéo poměru (replacemen raio, viz dále) pro českou ekonomiku za předpokladu jejío konsannío růsu. V éo sai budou kvaniaivní odady modifikovány o nominální a reálnou konvergenci. 2 Osaně ani vazba mezi způsobem financování a úsporami není úplně jednoznačná, jak ukazuje např. Kolikoff (1995) a Hemming (1998). 3 Vliv změny financování na r práce je inkorporován např. v modelu Scneidera (1998). Kolikoff (1995) zdůrazňuje, že ke zvýšení nabídky práce po zavedení fondovéo sysému dojde aké v závislosi na om, jak je

5 Srukura příspěvku je následující. ejprve srovnáme jaké příspěvkové míry do sysému jsou zapořebí v ekonomikác s různými empy růsu, aby vyplácený důcod dosaoval sejnéo podílu na posledním pracovním důcodu. V další čási se budeme věnova vlivu posupně klesajícío empa reálnéo růsu pomocí srovnání s ekonomikou, kerá má sejné průměrné empo růsu, ale empa jsou v jednolivýc obdobíc sále sejná. ále zvážíme vliv oo, že individuální reálné mzdy rosou v průměru rycleji než mzdy národní. V páém oddíle zvážíme velikos míry výnosu a v šesé čási zavedeme model reálné apreciace, kerý pořebujeme pro odad reálnýc výnosovýc měr. V následující čási provedeme simulace RR poměrů a příspěvkovýc měr ve fondovém sysému. Poslední čás sať uzavírá. 2. Srovnání fondovéo sysému v ekonomikác s různým empem růsu Jak jsme výše uvedli, konvergující ekonomika má vyšší průměrné empo růsu než ekonomika ve sálém savu. V omo oddíle se budeme věnova právě vlivu odlišnýc emp růsu na sysém. Abycom odsínili vliv oo, že v konvergující ekonomice jsou navíc empa nerovnoměrně rozložena v čase, budeme zde nejprve srovnáva ekonomiky, keré rosou obě konsanními (ale navzájem různými) empy růsu. Obě ekonomiky se v osaníc carakerisikác jako je reálná míra výnosu, délka pracovní kariéry a očekávaný věk dožií při násupu do důcodu sodují. Při srovnání ekonomik můžeme brá v poaz různé ukazaele. Můžeme například srovnáva poměr mezi objemem naspořenýc prosředků v okamžiku odcodu do důcodu a posledním rubým pracovním důcodem. Určiou výodou ooo poměru, kerý označíme Z, je jeo nezávislos na způsobu, jakým jsou indexovány vyplácené důcody, nezávislos na očekávané době dožií při odcodu do důcodu apod. alším ukazaelem je podíl vyplácenéo důcodu a poslednío pracovnío důcodu indexovanéo navíc podle růsu průměrnýc mezd v následujícíc obdobíc. 4 eno poměr (replacemen raio) budeme znači ρ a budeme edy předpokláda, že reálná důcodová plaba b se v každém období zvyšuje empem růsu, jakým rose průměrná reálná mzda. Při označení průměrné individuální reálné mzdy v okamžiku odcodu do důcodu jako w R a empa reálnéo růsu průměrné mzdy jako g ak g ( R můžeme psá, že b ) = ρwr e, kde R je okamžik odcodu jednolivce do důcodu. alší možný ukazael, kerý carakerizuje sysém, je příspěvková míra τ, kerá je nuná k omu, aby bylo dosaženo buď konkréní odnoy Z nebo aby bylo dosaženo nějaké dopředu specifikované úrovně ρ. Srovnáme nyní 2 ekonomiky rosoucí odlišnými empy g a g, kde g < g, právě z lediska příspěvkové míry nuné k omu, aby v obou ekonomikác bylo dosaženo sejnéo poměru ρ. Jesliže má bý dosaženo sejnéo ρ, musí v rycleji rosoucí ekonomice předsavova úspory v okamžiku odcodu do důcodu věší násobek poslednío pracovnío důcodu než v ekonomice s pomalejším empem, j. musí bý Z > Z. V rycleji rosoucí ekonomice bude díky indexaci reálnýc důcodů na vývoj reálnýc mezd oiž současná reálná odnoa všec budoucíc důcodovýc plaeb relaivně k poslednímu pracovnímu důcodu vyšší jednoduše proo, že reálné důcody jsou relaivně vyšší ve vzau k poslednímu uskuečněnému (j. neindexovanému) individuálnímu pracovnímu důcodu. Parné je o z grafu 1, kde ploca pod vnímáno spojení mezi příspěvky a výnosy do PAYG sysému. Sinn (2) považuje změny v disorzíc na ru práce za kvaniaivně nevýznamné. 4 adále budeme předpokláda, že důcodové plaby jsou indexovány ke mzdám. V někerýc zemíc (např. Iálie, Lucembursko, Španělsko a Velká Briánie) jsou však indexovány pouze k cenám (Luz, 22).

6 křivkami důcodovýc plaeb b resp. b v oblasi R až E odpovídá celkové odnoě vyplacenýc důcodovýc plaeb (nejsou však diskonovány k jednomu okamžiku). GRA 1 Srovnání ekonomik s různým empem reálnéo růsu w' w b' b R E Jesliže je nuné, aby v rycleji rosoucí ekonomice byla odnoa úspor (relaivně k poslednímu pracovnímu důcodu) vyšší, je nuné, aby i příspěvková míra do sysému v éo ekonomice byla vyšší, je edy nuné aby τ > τ. eno závěr je ješě výrazně posílen ím, že v rycleji rosoucí ekonomice je celkový objem mezd pracovníka běem jeo pracovní kariéry relaivně k poslednímu pracovnímu důcodu podsaně menší. o je opě vidě na grafu 1, kde nediskonovanému reálnému objemu mezd odpovídají plocy pod křivkami resp. w v oblasi až R. avíc ím, že příspěvky do v rycle rosoucí ekonomice jsou relaivně nízké především na počáku kariéry ve srovnání s pomalou ekonomikou, je pracovník připraven o značnou čás úrokovýc příjmů (za obvykléo předpokladu, že reálná výnosová míra je kladná). Rozdíl mezi příspěvkovými mírami τ a τ nunými pro dosažení danéo ρ v obou ekonomikác je nejlépe parný na kvaniaivním příkladu. ejprve vyjádříme obecně velikos příspěvkové míry. Objem důcodovýc úspor pracovníka v okamžiku odcodu do důcodu je dán jako souče příspěvků v jednolivýc obdobíc ovšem zvýšenýc o kapiálový výnos za příslušný poče le, keré uplynuly mezi rokem příspěvku a odcodem do důcodu. Pracovníkovy důcodové úspory se rovnají souču důcodovýc plaeb běem očekávané doby dožií pracovníka diskonovanýc k okamžiku odcodu do důcodu. Vzledem k omu, g ( R) že je podle předpokladu w R e g R b = ρ a zároveň je wr = w e, kde w je úroveň mezd na počáku kariéry pracovníka, plaí, že R = ρ ( R ) r g R g ( R) ( R ) E g r τ w e e d w e e e d (1) Po úpravác a za předpokladu, že ( g r ) E ( g r ) R g r, dosáváme pro τ R e e τ = ρ ( g r ) R (2) e 1 w

7 Ve speciálním případě, kdy je r τ = ρ E R 1. Pro kvaniaivní příklad uvažujeme následující odnoy paramerů: poměr RR na úrovni 5 %, délka pracovní kariéry R 42 le, očekávaná doba dožií při dosažení důcodovéo věku E R 19 le a míru reálnéo výnosu budeme uvažova konsanní po celou dobu spoření, ale 5 zvážíme 3 scénáře roční míru reálnéo výnosu 3 %, 5 % a 7 %. g =, plaí pro příspěvkovou míru ( ) GRA 2 Závislos příspěvkové míry τ na reálném růsu mezd τ,6,5,4,3,2 r = 3% r = 5%,1 r = 7% % 1% 2% 3% 4% 5% 6% g Jak je parné z grafu 2, kerý zacycuje velikos příspěvkové míry τ za ěco předpokladů jakožo funkci reálnéo růsu mezd g, mezi ěmio scénáři jsou z lediska velikosi τ podsané rozdíly. Především je ale zřejmé, že čím rycleji ekonomika rose, ím vyšší musí bý, ceeris paribus, příspěvková míra do sysému, aby bylo dosaženo danéo RR. Při simulacíc sysému edy z ooo lediska nejsou konzervaivní y variany, keré počíají s nízkým empem růsu reálnýc mezd (resp. produkiviy), ale naopak y variany, keré počíají s jejic vysokým růsem, proože en klade na sysém věší nároky. Hisorie ukazuje, že v někerýc ekonomikác skuečně může nasa dlouodobý ryclý růs reálnýc mezd jako např. v ěmecku a Japonsku v leec , kde průměrný růs dosaoval 4,8 resp. 5 % při reálné úrokové míře z deseileýc vládníc obligací na úrovni 3,8 % (podrobněji viz ompson, 1997). 6 aková empa nejsou ve čyřiceileém orizonu realisická pro ČR ani neorožují jiné sředoevropské ranziivní ekonomiky. Přibližným kvaniaivním odadům pro ČR se budeme podrobněji věnova později, ale celkově lze očekáva ve čyřiceileém orizonu průměrné roční empo pod úrovní 3,5%. 5 Absraujeme zde od dodaečnýc nákladů spojenýc s sysémem jako jsou náklady na správu porfolia penzijnío fondu, náklady na vybírání příspěvků apod. oba dožií a délka pracovní kariéry byla zvolena na sejné úrovni, jako konzervaivní scénář pro pracovníky (muže) v Ježek (23). Bezděk (2) používá očekávaný věk dožií při dosažení důcodovéo věku ve výši 18 le pro muže a 21 le pro ženy. 6 Reálná míra výnosu se samozřejmě nesoduje s průměrnou mírou výnosu z dlouodobýc sáníc bondů, výnos penzijnío fondu závisí na srukuře porfolia, keré bude jisě obsaova i soukromé dluové a majekové cenné papíry.

8 3. Srovnání ekonomiky s konsanním růsem s ekonomikou s posupně klesajícím růsem Zde srovnáme ekonomiky, keré rosou v průběu celé pracovní kariéry pracovníka sice sejným průměrným empem, ale zaímco v jedné z nic je empo růsu konsanní, v drué nepřeržiě klesá. Jednoducou úvaou zjisíme, že v ekonomice s posupně klesající mírou reálnéo růsu sačí na dosažení sejnéo RR nižší příspěvková míra. íky předpokladu sejnéo průměrnéo empa růsu budou obě ekonomiky na konci uvažovanéo časovéo orizonu na sejné úrovni. Proože však empo růsu ve drué ekonomice monoónně klesá, znamená o, že úroveň reálnýc mezd musí bý v éo ekonomice po celé uvažované období nad úrovní v ekonomice s konsanním empem růsu (s výjimkou bodů a R). Objem reálnýc mezd běem pracovníkovy kariéry je proo v ekonomice s klesajícím empem růsu vyšší, akže příspěvková míra v ní může bý naopak nižší. Příomnos kladné výnosové míry eno závěr ješě posiluje. avíc díky omu, že podle předpokladu empo růsu klesá, ak naopak reálné důcody budou v ekonomice s klesajícím empem růsu mezd nižší než v ekonomice s konsanním empem, akže i z ooo důvodu sačí ke sejnému RR nižší příspěvková míra. Posledně zmíněný argumen však neplaí, pokud by důcody byly pouze cenově indexovány. Skuečnos, že empo růsu mezd je posupně klesající, což je právě pro konvergující ekonomiku carakerisické, ak ovoří spíše ve prospěc sysému. Při daném průměrném empu růsu mezd běem celé jedné pracovní kariéry je proo konzervaivnější akový odad, kerý předpokládá, že empa růsu budou spíše vyrovnaná. 7 Cílem je však nejen posoudi dopad reálné konvergence na příspěvkovou míru nunou k dosažení danéo RR (resp. na objem naspořenýc fondů) pracovníka, kerý právě začíná pracovní kariéru, ale i pracovníků, keří se v okamžiku zavedení sysému již několik le pracují. io pracovníci mají okamžik odcodu do důcodu bližší současnosi a růs průměrnýc mezd běem jejic zbývající pracovní kariéry je vyšší než růs průměrnýc mezd běem kariéry pracovníka, kerý ji právě započal. o je důsledek oo, že empa růsu mezd posupně klesají. Vyšší průměrné empo však, jak bylo ukázáno v předcozí čási, zvyšuje příspěvkovou míru nunou pro dané RR. eno efek má za následek, že exisuje určiý věk pracovníka, ve kerém je vliv nevyrovnanosi emp růsu (kerý příspěvkovou míru snižuje) více než eliminován ím, že průměrná míra růsu mezd je pro yo pracovníky vyšší. Zjednodušeně lze edy říci, že posupně klesající empa růsu průměrnýc mezd při sejném průměrném empu běem celé pracovní kariéry vedou pro relaivně mladé pracovníky k nižším nuným příspěvkovým mírám ve srovnání s ekonomikou s vyrovnanými empy, ale pro pracovníky ve vyšším věku je o naopak. 4. Vývoj průměrnýc a individuálníc mezd Zde se blíže zasavíme u vývoje mezd v konvergující ekonomice. Obvyklý je předpoklad, že průměrná reálná mzda se vyvíjí sejným empem jako průměrná produkivia práce. Vlasně ak implicině předpokládáme, že mezní produk práce rose sejným empem jako průměrný produk na pracovníka a problém růsu reálnýc mezd ak převádíme na problém konvergence produkiviy. Označíme poměr produkiviy konvergující ekonomiky a produkiviy ve sálém savu odpovídajícím éo ekonomice jako κ. empo růsu produkiviy v konvergující ekonomice opřeme o aproximaci vyplývající z neoklasické růsové eorie, podle keré se mezera mezi produkiviou ve sálém savu a produkiviou v konvergující ekonomice snižuje sále sejným 7 eno závěr však může bý poněkud relaivizován po zarnuí vlivu reálné apreciace.

9 empem. Mezeru v produkiviě v čase označíme ( 1 κ ), mezeru ve výcozím období ( κ 1 ) a empo poklesu mezery budeme znači λ. Je edy ( 1 κ ) ( κ ) e λ = 1 (3) Lze odvodi (viz např. Barro - Sala-i-Marin, 1995), že pro realisické odnoy emp ecnologickéo pokroku, empa růsu populace a odpisové míry by se odnoa parameru λ měla poybova zruba na úrovni 5 %, čemuž odpovídá poločas konvergence zruba 14 le. 8 Prakicky pozorovaná konvergence je však obvykle podsaně pomalejší a skuečné poločasy konvergence se poybují kolem 25 i více le (viz např. Barro, 1991) a empo snižování mezery se poybuje kolem 2,5 %. Odadněme průměrné empo růsu produkiviy v ČR za předpokladu, že by se mezera v produkiviě snižovala o 2,5 % ročně. Pokud vezmeme za výcozí poměr produkiviy ČR k produkiviě v jejím sálém savu zruba 55 % a předpokládaná délka pracovní kariéry bude 42 le, sníží se mezera produkiviy běem éo doby z 45 procenníc bodů na o znamená, že díky konvergenci se produkivia bude zvyšova v průměru o 1 % ročně. Připočeme-li ješě isorické empo růsu produkiviy ve sálém savu na úrovni 1,7 %, dosáváme odad průměrnéo empa růsu produkiviy v ČR běem 42 le ve výši 2,7 %. o je zruba sejné empo, jaké použili pro simulace Bězděk e al. (23), Ježek (23) používá průměrné empo 3 %. Exisují však důvody, proč by empo průměrné mzdy molo bý po relaivně dlouou dobu odlišné od empa růsu produkiviy (příkladem může bý skuečný vývoj reálnýc mezd v ČR v leec : průměrná reálná mzda rosla empem 4,2 %, zaímco produkivia práce pouze průměrně 2,7 % ročně). Jedním z ěco důvodů je dlouodobá posupná změna podílu mezd na produku. Pokud mezní produkivia práce rose rycleji než průměrná, docází k posupnému zvyšování podílu práce na přidané odnoě. Může o bý aké způsobeno změnami na nedokonale konkurenčníc rzíc práce i saků. Podíl nákladů práce na přidané odnoě v ČR činil v roce 2 zruba 5 %, zaímco v ěmecku 6 % (viz OEC 23). Jesliže se bude reálná konvergence vzaova i na eno ukazael, znamená o, že průměrná reálná mzda porose rycleji než produkivia práce. 1 Průměrný převis empa růsu reálné mzdy nad empem produkiviy však bude zřejmě do,5 procennío bodu ročně (jinak by se podíl práce zvýšil běem 1 pracovní kariéry nad zmíněnýc 6 %). alším možným důvodem, proč reálné mzdy moou dlouodobě růs rycleji než produkivia práce, je poziivní vývoj směnnýc relací. Jesliže dlouodobě docází k ryclejšímu růsu cen exporů než cen imporů předsavuje o pro ekonomiku dodaečné zdroje, keré jsou zčási nasměrovány do růsu reálnýc mezd. Předvída směr vývoje směnnýc relací je v dlouodobém orizonu nemožné a ím spíše i jejic kvaniaivní změnu. Celkově se domnívám, že odnoa 3,5 % pro průměrné empo růsu průměrné mzdy v orizonu 42 le je spíše orní ranicí, kerá bere v úvau jak růs podílu práce na přidané odnoě, ak i určié zlepšování směnnýc relací. Pro objem naspořenýc prosředků ve fondovém sysému však není relevanní ani ak vývoj průměrné reálné mzdy, jako spíše vývoj individuální mzdy jednolivéo pracovníka. Proo, 8 K carakerisice ryclosi konvergence se kromě parameru λ, používá míso celkové délky konvergence (kerá je vždy nekonečená) zv. poločasu konvergence, j. doby, za kerou se mezera mezi produkiviami sníží právě na polovinu. 9 Hodnoa 55 % odpovídá poměru české produkiviy k produkiviě německé a rakouské v roce Viz Spěváček (23), s Laursen (2) počíá akéž s posupným dorovnáním podílu práce na celkové přidané odnoě v ČR na úroveň běžnou v EU.

10 podobně jako Ježek (23), do modelu vělíme předpoklad o závislosi individuální reálné mzdy na době zaměsnanosi. Pracovník začíná pracovní kariéru s nízkou úrovní reálné mzdy relaivně k národnímu průměru. Poměr individuální mzdy k národní se posupně zvyšuje, proože jeo mzda odráží akumulaci lidskéo kapiálu pracovníka či jiné fakory způsobující zvyšování mezd na základě senioriy. Zavedeme funkci η ( ), kerá vyjadřuje poměr mezi individuální mzdou, kerou pracovník dosává po leec v pracovním procesu, a národní průměrnou mzdou. Použijeme obvyklý předpoklad, že průbě funkce η () je nezávislý na všeobecné úrovni mezd (např. Kolikoff, 1995). Realisickým požadavkem na uo funkci je, aby její funkční odnoa pro = byla menší než 1 a zároveň, aby její odnoa v závěru pracovní kariéry byla věší než na jejím počáku. ení však zřejmé, zdali ao funkce má bý rosoucí v celém svém definičním oboru, zdali je konkávní či v někerýc úsecíc konvexní ad. Pokud je skuečně reálná mzda nasupujícíc pracovníků menší než mzda pracovníků v koorě ěsně před násupem do důcodu, je průměrné empo růsu individuální reálné mzdy běem celé pracovní kariéry vyšší než je průměrné empo růsu průměrné mzdy běem sejnéo období. Průměrné empo individuální mzdy zarnuje nejen poyb průměrné národní mzdy, ale i poyb mzdy pracovníka vůči národnímu průměru. Průměrné empo růsu mzdy dané koory běem celé pracovní kariéry dloué R období ak je 1 R [ ln η ( R) ln η( ) + g]. Ryclejší růs individuální mzdy si vyžaduje vyšší příspěvkovou míru do sysému, akže velký rozdíl mezi mzdou koory ěsně před odcodem do důcodu a mzdou nasupujícíc pracovníků mluví spíše v neprospěc fondovéo sysému. Samozřejmě, že objem naspořenýc prosředků závisí na rozložení emp růsu v jednolivýc leec a nikoliv pouze na průměrném empu růsu běem celé pracovní kariéry, akže edy závisí na celém průběu funkce η (). Všimněme si, že nejenže průměrné empo růsu individuální mzdy běem kariéry je odlišné od průměrnéo růsu průměrné národní mzdy, ale aké že vážený průměr individuálníc emp růsu může bý odlišný od empa růsu národní průměrné mzdy v daném roce. Obvykle bude plai, že vážený průměr emp růsu individuálníc mezd bude vyšší než empo růsu národní mzdy. okonce i kdyby se reálná mzda všec pracovníků zvýšila v daném roce o sejné proceno, porose národní průměrná mzda odlišným empem. o je nejlépe parné z následující zjednodušené úvay. Předpokládejme, že mzdy všec pracovníků rosou sejným empem, výjimkou jsou však koora pracovníků, keří právě započali kariéru a koora, kerá v předcozím období byla ěsně před odcodem do důcodu. V případě ěco koor oiž nemá smyslu ovoři o empu růsu mzdy. Předpokládejme pro jednoducos navíc, že yo dvě koory jsou počeně sodné, akže nasupující koora z lediska poču přesně naradí kooru, kerá právě nasupuje do důcodu. Koory se však liší v úrovni mezd. Pokud je skuečně η ( ) < η ( R), srážejí pracovníci z nasupující koory národní průměrnou mzdu, proože nedosaečně naradí úbyek z celkovéo objemu mezd způsobený odcodem poslední koory do důcodu. Pokud by například mzdy nasupující koory byly na úrovni 8 % národnío průměru a mzdy poslední koory na úrovni 12 % národnío průměru a pokud by uvažovanýc 42 koor bylo počeně sodnýc, způsoboval by eno rozdíl, že empo růsu průměrné mzdy by bylo o 1 procenní bod nižší než vážený průměr emp růsu individuálníc mezd. Vza mezi empem růsu průměrné mzdy a váženým průměrem emp růsu individuálníc mezd je dále komplikován ím, že koory jsou ve skuečnosi počeně rozdílné. Jesliže však nejsou počení rozdíly ve velikosi koor příliš velké, lze říci, že vážený průměr emp růsu individuálníc mezd je nejspíše vyšší než empo průměrné mzdy. yní se však vráíme k průběu funkce η ( ), proože en je pro objem naspořenýc prosředků relevanní. Z výpočenío lediska nejjednodušším případem by bylo uvažova

11 θ funkci () η = e η. Předpokláda, že každý rok zaměsnání zvyšuje mzdu relaivně k průměru vždy o sejné proceno však není realisické. Jesliže růs individuálníc mezd je důsledkem akumulace lidskéo kapiálu, poom je realisičější předpokláda, že η () bude mí spíše konkávní var. I kdyby pracovník za každý rok práce získal sejný dodaečný absoluní přírůsek lidskéo kapiálu, znamenalo by o, že empo růsu jeo lidskéo kapiálu se posupně snižuje. Pokud mezní výnosy z lidskéo kapiálu jsou konsanní nebo klesající vede o k omu, že η ( ) bude konkávní. Komplikovanější je však oázka, zdali bude η ( ) rosoucí v celém svém oboru. Ježek (23) využívá funkce, kerá předvídá pokles podílu individuální mzdy relaivně k národní mzdě pro vysoký pracovní věk. o se na základě empirickýc da (viz Ježek, 23) jeví jako přijaelné a pro další simulace použijeme funkci s paramery σ 1, σ 2, σ 3 a η ( ) v podobě 11 η η v exponenciální formě ( ) ( ) 1 = + σ (4) 2 σ 3 () η ( ) 1 e σ Musíme však upozorni, že předpoklad sabiliy funkce ( ) η je velmi silný. Podíl individuální a průměrné mzdy oiž obecně není nezávislý na demografické srukuře pracovníků. Pokud se například zvýší podíl relaivně mladýc pracovníků s dosud malým lidským kapiálem, slačuje o celkovou průměrnou mzdu a funkce η ( ) se zřejmě posune směrem naoru a naopak při sárnuí populace. Pro přesnější analýzu by proo bylo řeba ješě specifikova závislos η ( ) na demografickýc změnác. i, keré jsou carakerisické pro různé profese nebo odvěví. Pravděpodobně plaí, že v profesíc s relaivně nízkými η v akovýc odvěvíc bude Při deailnější analýze by bylo možné pracova s různými η ( ) mzdami je využíváno méně lidskéo kapiálu a průbě ( ) zřejmě plošší než v profesíc, kde je dosaováno vysokýc příjmů. eno aspek paradoxně mluví ve prospěc sysému pro pracovníky s nízkými příjmy, proože individuální mzda v akovém odvěví rose pomaleji. i 5. Míra výnosu Výše penzijníc úspor je vysoce cilivá na reálnou míru výnosu, kerá je v průběu spoření dosaována a právě míry výnosu se bude ýka řeí kvaliaivní rys konvergující ekonomiky, kerý zde zvážíme. Reálný výnos by v konvergující ekonomice měl bý při planosi radiční růsové eorie vyšší než v ekonomice ve sálém savu. Kvaniaivní rozsa rozdílů v mírác výnosů však empiricky nemá akový rozsa, jaký radiční eorie indikují. o může bý způsobeno řadou důvodů. Jedním z nic je například odlišnos produkční funkce v konvergující ekonomice, kerá implikuje nižší mezní výnos z kapiálu. V akovém případě by však bylo obížné odvodi samoná empa konvergence a dokonce by ani k žádné konvergenci produkiviy docáze nemuselo. Přijaelnějším vysvělením je, že míra výnosu z fyzickéo kapiálu závisí negaivně na množsví kapiálu lidskéo. Pokud je v konvergující ekonomice zásoba lidskéo kapiálu nízká relaivně k ekonomice ve sálém savu, vysvělí se ím, proč reálný výnos z fyzickéo kapiálu není ak vysoký, jak předpovídají radiční růsové eorie. Z ooo lediska by ak reálná výnosová míra z fyzickéo kapiálu v konvergující ) 11 Ježek (23) používá funkci s(, kerá vyjadřuje procenuální přírůsek individuální mzdy z důvodu zvýšení ( ) je skuečně ( ) η( ) η( ). Snadno se lze přesvědči, že při námi zvolené funkci η s použijeme aké sodné odnoy paramerů: 1 3 σ 3 1 =, σ 1 =, 55 = &. Pro simulaci

12 ekonomice nemusela bý odlišná od výnosové míry v ekonomice ve sálém savu a pro simulace může bý adekvání pracova s mírami výnosu obvyklými ve vyspělýc ekonomikác. Míry výnosu, se kerými pracují různí auoři se však od sebe časo podsaně liší. Kolikoff (1995) pracuje s mírou výnosu 9,1 % ročně, což odpovídá meznímu produku kapiálu před zdaněním a je o i v souladu s reálným výnosem americkýc akcií (viz Geanakoplos e al., 1998). Sinn (2) a Geanakoplos e al. (1998) však zdůrazňují, že zejména pro srovnání a PAYG sysémů by se mělo využíva reálné míry výnosů z dlouodobýc vládníc obligací (aby se zolednilo riziko spojené s invesováním do majekovýc cennýc papírů). 12 o by ale znamenalo používa reálnou míru výnosu kolem 2-3 % ročně. ízkou odnou výnosu používá Laursen (2), kerý klade při simulaci rovníko mezi mírou výnosu a empem růsu produkiviy, proože o odpovídá zv. zlaému pravidlu růsu při nulovém růsu populace. Empiricky byly navíc skuečně pozorovány dlouodobě nízké míry výnosu (1,5 %) ve Švýcarsku běem 7. a 8. le (viz Bezděk, 2). Míra výnosu nejčasěji využívaná pro simulace (a edy míra, kerou zde budeme považova za obvyklou) se však poybuje v rozmezí 4-6% ročně. S výnosem v omo rozmezí pracují v základníc scénáříc Bezděk (2), Kreidl (1998), Ježek (23), eldsein (1997), jako realisický o zmiňují např. Hemming (1998), Börsc-Supan Reil-Held (1997). 13 Jak bylo naznačeno v úvodu, v konvergující ekonomice, kerá je součásí měnové unie, souvisí s mírou výnosu i problemaika reálné apreciace. Míra reálnéo výnosu v konvergující ekonomice z dluovýc cennýc papírů bude snížena právě o míru apreciace, proože lze očekáva, že nominální úročení bude v celé měnové unii sejné. Podobně i reálný výnos z majekovýc cennýc papírů bude snížen o míru reálné apreciace v případě, že se jedná o zaraniční akcie (j. akcie firem z ekonomik ve sálém savu). Méně osrý je závěr pro výnos z domácíc akcií (případně akcií v zaraničníc konvergujícíc ekonomikác). íky omu, že v rámci měnové unie neexisuje kurzové riziko, byl by v konvergující ekonomice myslielný dlouodobě vyšší nominální výnos z akcií než ve zbyku unie pouze jako důsledek vyšší (vnímané) volailiy domácío akciovéo ru (jinak by exisovala možnos arbiráže). I když uo možnos lze připusi, je pro konzervaivní odad vodné počía spíše s ím, že míra nominálnío výnosu z domácíc akcií bude dlouodobě sodná s nominálním výnosem ve zbyku unie. V průběu simulace proo budeme uvažova, že reálná míra výnosu v jednolivýc leec bude odpovída reálné míře výnosu obvyklé v ekonomice ve sálém savu avšak navíc snížené o empo reálné apreciace. Pro účely simulace penzijníc úspor proo ješě rozvineme sručný model reálné apreciace. II. 6. Model apreciace Výcozím bodem pro modelování apreciace bude Balassův-Samuelsonův efek (BS model). BS model použijeme v akové podobě, kerá umožní nejen rozdílné produkiviy v oblasi neobcodovaelnýc saků, ale kerá aké připusí rozdílné ceny obcodovaelnýc saků. Obvyklý předpoklad sice je, že ceny saků obcodovaelnýc jsou vyrovnány nebo se alespoň 12 Hemming (1998) ukazuje, že rizikovos výnosů může mí na velikos důcodovýc úspor značný vliv. Podle jeo simulací např. 1% příspěvková míra invesovaná do indexu ow Jones běem 4 le by vedla k poměru úspory/poslední důcod v rozmezí od 4 do 1. ompson (1997) zkusmo časově obráil skuečný průbě flukuací v empec růsu mezd a v reálnýc výnosec pro 4 průmyslové země od 5. do 9. le. Původní RR, keré bylo sanoveno na 5%, se v důsledku oo změnilo na 37,5% až 75%, což ukazuje, že výsledek je závislý nejen na variabiliě, ale aké na jejím konkréním časovém průběu. 13 Börsc-Supan Reil-Held (1997) a Bulíř (1998) aké zmiňují, že v souvislosi s demografickými změnami může docáze k posupnému snižování reálné míry výnosu.

13 drží v určiém sálém poměru (díky příomnosi ransakčníc nákladů), nicméně empirická pozorování o do určié míry zpocybňují. Apreciace zv. vnějšío reálnéo kurzu, j. poměru P P, kde P resp. P značí domácí resp. zaraniční cenovou ladinu obcodovaelnýc saků (po zolednění nominálnío kurzu), zejména v ČR nebyla zanedbaelná. Měřeno podle defláorů přidané odnoy oiž podle národníc účů dosála apreciace vnějšío kurzu v ČR při srovnání s ěmeckem v leec průměrné odnoy 4,4 % ročně. 14 I když akové empo apreciace vniřnío kurzu není zjevně udržielné je vodné do modelu explicině zabudova posupné sbližování P a P. V modelu zavedeme proo ideniu P = ω P, kde budeme předpokláda, že ω < 1 a pouze posupně konverguje k jedné (časový index u cenovýc ladin pro přelednos vynecáme). Analogicky k cenám obcodovaelnýc saků označíme ceny neobcodovaelnýc saků v domácí resp. zaraniční ekonomice jako resp.. P Vzájemný vza P a P v rámci logiky BS modelu odvodíme následující úvaou. 15 Kdyby byly produkiviy v neobcodovaelném sekoru sejné doma i v zaraničí a kdyby ceny obcodovaelnýc saků byly vyrovnány (j. kdyby ω = 1), byla by právě olikrá nižší než P, kolikrá je nižší produkivia v domácím obcodovaelném sekoru než v zaraničím obcodovaelném sekoru. ím, že ceny obcodovaelnýc saků však vyrovnány nejsou ( ω < 1), nedosávají domácí pracovníci ve srovnání se zaraničními právě olikrá menší mzdu, kolikrá je nižší jejic produkivia v obcodovaelném sekoru, ale jejic mzda je ješě nižší. Jejic mzda je ω -násobek jejic relaivní produkiviy v obcodovaelném sekoru. ižší mzdy způsobují, že P je ješě nižší než relaivní produkivia v obcodovaelném sekoru. Proisměrně k omu však působí nižší domácí produkivia v neobcodovaelném sekoru, akže na výrobu jedné jednoky neobcodovaelné produkce je zapořebí více pracovníků, což P naopak zvyšuje. Označíme poměr domácí produkiviy v obcodovaelném sekoru k zaraniční produkiviě v obcodovaelném sekoru v okamžiku, j. relaivní produkiviu v obcodovaelném sekoru, jako a analogicky relaivní produkiviu v neobcodovaelném sekoru jako γ. a základě předcozí úvay ak můžeme pro ceny neobcodovaelnýc saků doma a v zaraničí psá γ P P P γ = ω P (5) γ yní můžeme přisoupi k vyjádření srovnaelné cenové ladiny v okamžiku. 16 Označíme produk na pracovníka v domácím neobcodovaelném sekoru Y a produk na pracovníka v domácím obcodovaelné sekoru Y. Pro srovnaelnou cenovou ladinu CPL plaí: 14 Vlasní kalkulace na základě OEC (23) 15 o jaké míry lze apreciaci pozorovanou v ranziivníc ekonomikác (a speciálně v ČR) skuečně vysvěli poledem BS modelu je předměem rozsáléo výzkumu. Halpern Wyplosz (21) argumenují, že BS efek je kvaniaivně významný, ale např. lek e al. (23), Eger (22) o však zpocybňují. 16 Budeme uvažova srovnaelnou cenovou ladinu za celý HP, alernaivně bycom se moli sousředi pouze na srovnaelnou cenovou ladinu pro spořební koš. Opě cenové ladiny jsou již po zolednění nominálnío kurzu.

14 CPL P Y + P Y = (6) P Y + P Y V případě ako definované srovnaelné cenové ladiny může bý váa neobcodovaelnýc saků na celkové produkci proměnlivá, my však budeme pro jednoducos předpokláda, že je konsanní na úrovni α. yní ale ješě je nuné specifikova, jesli zmíněná váa α je konsanní v domácíc nebo zaraničníc cenác a navíc zdali je míněna v cenác běžnýc nebo v cenác nějakéo zvolenéo bazickéo období. Implikovaná empa reálné apreciace na éo specifikaci oiž moou kvaniaivně podsaně závise. Za nejblíže k realiě považuji předpoklad, že podíl neobcodovaelnýc saků na celkové produkci je konsanní v běžnýc P Y cenác domácí ekonomiky, j. že α = v každém období, kde α je P Y + P Y konsana. 17 Při omo upřesnění významu parameru α a s využiím ideniy edy plaí, že P = ω P P Y α = P 1 α Y α = ω P 1 α Y (7) Po dosazení do (6) a s využiím (5) dosáváme po úpravác CPL = αγ γ + ω ( 1 α ) γ (8) Výsledek (8) dáme do souvislosi s celkovou relaivní výkonnosí domácí ekonomiky ve srovnání s ekonomikou zaraniční. efinujme κ jako poměr domácío produku na pracovníka vyjádřenéo v zaraničníc cenác ku zaraničnímu produku na pracovníka aké v zaraničníc cenác. Je edy 18 P Y + P Y κ = (9) P Y + P Y S využiím (5) a (7) po úpravác dosáváme ( α ) γ κ = αγ + 1 (1) Podíl celkové domácí produkiviy ku produkiviě zaraniční ekonomiky je ak váženým průměrem relaivníc produkivi v neobcodovaelném a obcodovaelném sekoru. Po dosazení (1) do (8) vidíme, že CPL γ = ω (11) κ 17 Kdybycom předpokládali, že konsanní váa neobcodovaelnýc saků α vyjadřuje jejic podíl na celkové produkci v zaraničníc cenác, implikoval by růs relaivní ceny neobcodovaelnýc saků ekviproporcionální růs jejic podílu na produku v cenác běžnýc, což se jeví jako nerealisické. 18 Opě vynecáváme časový index u cenovýc ladin a u sekorovýc produkivi.

15 Vývoj relaivní produkiviy, κ, je deerminován vývojem sekorovýc relaivníc produkivi. I ao empa růsu závisí na vzdálenosi sekorové produkiviy v domácí ekonomice od příslušné sekorové produkiviy v ekonomice zaraniční a můžeme pro ně psá λ λ ( 1 γ ) = ( 1 γ ) resp. ( 1 γ ) = ( 1 γ ) e 1 (12) e 2 Vzniká zde však oázka, jaký je vza mezi empy λ 1 a λ 2, jakými se snižuje mezera mezi sekorovými produkiviami, na sraně jedné a empem λ, jakým se snižuje mezera celkové produkiviy, na sraně drué. Zjevně ao empa nemoou bý libovolná, proože mezera v celkové produkiviě je lineární kombinací mezer v sekorovýc produkiviác: λ λ1 λ2 ( 1 κ ) e = α ( 1 γ ) e + ( 1 α )( γ ) e (13) 1 Pokud předpokládáme, že empa λ 1, λ 2 a λ jsou v čase konsanní, poom jediným reálným řešením je, že všecna ři empa jsou sodná, edy že λ 1 = λ 2 = λ a mezery se snižují sejným empem. Zaímco vývoj γ a κ v (11) jsme moli založi na eorii reálné konvergence, vývoj ω již ako založi nemůžeme. empo vyrovnávání cen obcodovaelnýc saků bude souvise s důvody, proč ceny domácíc a zaraničníc obcodovaelnýc saků si nejsou rovny. Čiák, Holub (21) předkládají ypoézu, že ceny domácíc obcodovaelnýc saků moou bý zvlášě v ČR sníženy relaivně k zaraničním paradoxně v důsledku relaivně sofisikované produkce v porovnání s osaními ranziivními ekonomikami. V případě ecnologicky pokročilýc eerogenníc výrobků oiž velkou roli rají necenové fakory konkurence (značka, země původu apod.) a české obcodovaelné produky jsou ak ve znevýodněné výcozí pozici. alším možným fakorem, pomáajícím vysvěli reálnou apreciaci vnějšío kurzu, je například cenová diskriminace výrobců obcodovaelnýc saků mezi domácími a zaraničními ry. Vzledem k ěmo důvodům je obížné učini odad vývoje ω. Pravděpodobné však je, že mezera mezi cenami obcodovaelnýc saků se bude uzavíra rycleji než mezera mezi produkiviami, jejíž uzavírání je podmíněno akumulací kapiálu. V abulce 1 jsou uvedeny různé variany reálné apreciace pro různé odnoy paramerů. ABULKA 1 Variany reálné apreciace Variana α γ (%) γ (%) ω (%) λ (%) λ ω (%) κ (%) CPL (%) Průměrná roční apreciace za 42 le (%) Průměrný roční růs produkiviy za 42 le (%) A, ,7 X + 1,3 B, , ,5 X + 1, C, , ,6 X + 1,, , ,8 X +,95 E, ,5 3, ,5 X +,7, ,5 3, ,4 X +,7 H, , ,3 X +,8

16 Poznámka: Hodnoy κ a CPL jsou implikovány předpokládanými odnoami α, γ, γ a ω. X označuje empo růsu ekonomiky ve sálém savu. Pro kvaniaivní simulace bude použia variana apreciace B. Pro mladé koory (j. pro pracovníky, keří mají při zavedení sysému nízký pracovní věk) jsou výsledky simulací éměř sejné, ať již použijeme jakoukoliv z uvedenýc varian apreciace Simulace příspěvkové míry a náradovéo poměru yní si vyjádříme reálnou odnou úspor naspořenýc ve fondovém sysému, přičemž nejen připusíme posupně klesající empo reálnéo růsu ekonomiky, ale zařadíme aké vliv reálné apreciace. íky omu, že individuální mzda závisí na výši celkové průměrné mzdy a zároveň i na pracovním věku jedince, je nuné rozlišova kalendářní čas, se kerým se zvyšuje průměrná národní mzda (jejíž empo růsu navíc není konsanní), a individuální pracovní věk. Kalendářní čas budeme měři od počáku zvedení fondovéo sysému a budeme o vyznačova v dolním indexu příslušné veličiny. aproi omu individuální pracovní věk budeme uvádě v závorce za příslušnou veličinou (pokud má v případě dané veličiny smysl o individuálním pracovním věku ovoři). Individuální reálnou mzdu pracovníka, kerý již w a období pracuje v okamžiku zavedení sysému označíme podle ooo principu jako ( ) průměrnou mzdu v okamžiku zavedení reformy w. Podle definice funkce w () w η () pracoval období a nyní již pracuje období, označíme ( ) η ak plaí, že =. Individuální reálnou mzdu pracovníka, kerý v okamžiku zavedení již w, proože v akovém případě uplynulo právě ( ) období od zavedení fondovéo sysému. 2 Opě podle definice funkce η ak plaí, že w () = w η (). yní vyjádříme průměrnou mzdu w jako funkci času, kerý uběl od okamžiku zavedení sysému. Kdyby domácí průměrná mzda rosla akovým empem, jakým rose ekonomika ve sálém savu (označíme g ), byla by za ( ) období od ( )g zavedení reformy na úrovni w e. Proože však docází k reálné konvergenci, bude průměrná mzda ješě vyšší o olik procen, o kolik se zvýšila relaivní produkivia domácí ekonomiky vůči zaraniční ekonomice, κ, za sledované období, j. o kolik procen je κ vyšší než můžeme psá κ. Celkově ak pro průměrnou mzdu po ( ) ( ) κ obdobíc od zavedení sysému g w = w e (14) κ Prosředky uspořené pracovníkem v období, kdy pracovní věk již dosaoval, j. τ ( ) w, se do jeo odcodu do důcodu ješě budou R období úroči. Kdyby běem celé éo doby byla reálná úroková míra na nějaké konsanní úrovni r, dosály by v okamžiku odcodu do důcodu prosředky uspořené v pracovním věku a v kalendářním čase ( ) reálné odnoy r R τ w e ). Reálná úroková míra v konvergující ekonomice však bude díky nominální () ( 19 apříklad příspěvkové míry pro nasupujícío pracovníka nuné k dosažení RR = 5 % se pro různé variany apreciace liší pouze v řádu desein procennío bodu. 2 ormálně může bý i záporné: pokud pracovník započal pracovní kariéru např. až 5 le po zavedení sysému, bude = - 5. V akovém případě však s oledem na další vzay ješě formálně definujeme η () = pro všecna <.

17 apreciaci na nižší úrovni než r a navíc bude rosoucí s ím jak se nominální konvergence posupně vyčerpává. Reálná odnoa prosředků naspořenýc v kalendářním čase ( ) bude v okamžiku odcodu do důcodu o olik procen nižší, o kolik bude vyšší srovnaelná cenová ladina v okamžiku odcodu pracovníka do důcodu než byla v jeo pracovním věku. Reálná odnoa prosředků naspořenýc v pracovním věku dosáne v okamžiku odcodu (j. r ( R ) CPL v kalendářním čase R ) do důcodu proo úrovně τ w () e. CPL Celková reálná odnoa prosředků naspořenýc od vsupu pracovníka do sysému v jeo pracovním věku ak je τ w e r R g κ CPL R R CPL Reálná odnoa důcodovýc úspor (po snížení o náklady spojené s nedokonalosmi na ru anui) v okamžiku odcodu do důcodu se musí rovna očekávané současné odnoě důcodovýc plaeb. Označíme b ( ) reálnou odnou důcodové plaby, kerou pracovník obdrží ve svém pracovním věku (i nadále budeme používa ermín pracovní věk, i když sledovaný jednolivec je již v důcodu, pracovní věk ak označuje dobu, kerá uplynula od jeo násupu na pracovní r). ůcodová plaba v okamžiku násupu do důcodu je dána jako součin reálné mzdy pracovníka na konci jeo pracovní kariéry a náradovéo poměru (replacemen raio) ρ, v dalšíc obdobíc se reálná odnoa důcodovýc plaeb zvyšuje sejným empem jako národní reálná mzda. Jak je vidě z (14), průměrná reálná mzda dosaující v kalendářním čase R odnoy w se do období (j. do období, ve ( ) ( R )) ( g r () e ) η κ d Reálná odnoa důcodovýc úspor v (15) však musí bý ješě snížena o náklady pojišění proi dlouověkosi respekive o rozdíl mezi očekávanou současnou odnoou ročníc anuiníc plaeb a cenou za nakoupení anuiy. yo a další adminisraivní náklady budeme doromady předpokláda na úrovni c z celkové reálné odnoy úspor. kerém je vyplacena důcodová plaba ( ) w R e b g ( κ κ () = w ( R) R ( R) b R R (15) ) zvýší díky reálné konvergenci ekonomiky na. Pro reálnou odnou důcodové plaby ( ) κ b ak můžeme psá g ρ R e (16) κ R Reálná odnoa všec důcodovýc plaeb vzažená k okamžiku odcodu do důcodu je dána jako souče reálnýc odno důcodovýc plaeb diskonovanýc k omuo okamžiku (v kalendářním čase R ). íky vývoji reálné apreciace však diskonní fakor, kerý musíme použí pro diskonaci jednolivýc důcodovýc plaeb, nerose konsanním empem. iskonní fakor pro plabu b (), vyplacenou v kalendářním čase, ak je menší než r ( R e ), proože reálná úroková míra díky apreciaci nedosauje úrovně r. iskonní fakor ( ) CPL r R R pro b () ak bude pouze e. Při označení očekávanéo (pracovnío) věku CPL dožií v okamžiku odcodu do důcodu E ak pro očekávanou současnou odnou důcodovýc plaeb v okamžiku odcodu do důcodu dosáváme

18 E ( ) CPL r R b () e d (17) CPL R R Po dosazení (16) do (17) a po úpravác dosáváme rr g E ( R) w e ( g r ) η ρ κ CPL R R e κ CPL d Hodnoa důcodovýc plaeb k okamžiku odcodu do důcodu a objem penzijníc úspor (snížený o náklady spojené s nákupem anuiy a další adminisraivní náklady) jsou si rovny. Je edy: R ( g r ) ( g r ) ( c) τ η ( ) κ CPL e d ρη( R) e E 1 = κ CPL d (19) R a základě éo rovnosi můžeme sanovi příspěvkovou míru τ pro dané ρ nebo naopak můžeme sanovi ρ pro danou příspěvkovou míru. Pro přelednos ješě položíme A R () ( g r e ) κ CPL d ( g r ) η a B η ( R) e ak z (19) dosáváme ( c) A E R κ CPL (18) d. Pro příspěvkovou míru τ ρ B τ = (2) 1 Z (2) je vidě, že i v ekonomice s reálnou a nominální konvergencí plaí, že příspěvková míra je lineární funkcí požadovanéo ρ. Simulací odadneme velikos pořebné příspěvkové míry, k omu aby bylo dosaženo ρ ve výši 5 %. íky lineariě vzau mezi τ a ρ lze výsledky simulací snadno upravi pro jinou odnou požadovanéo ρ. Hodnoy dalšíc paramerů budou při simulaci uvažovány na následujícíc úrovníc: náklady na pořízení anui a další podobné náklady c na úrovni 1 %, růs produkiviy ve sálém savu g = 1, 7% ročně. ominální a reálnou apreciaci budeme simulova pomocí scénáře B, ve kerém je empo snižování mezery mezi konvergující ekonomikou a sálým savem rovno 2,5 % ročně, výcozí cenová ladina na 47 % a výcozí produkivia na 56 % sáléo savu. Reálný výnos ve sálém savu r budeme varianně zvažova na úrovníc 3, 5 a 7 % ročně. Příspěvková míra aké závisí na odnoě pracovnío věku, při kerém pracovník vsupuje do sysému. Předpokládejme, že prosředky, keré pracovník vložil do PAYG sysému mu nebudou uznány a jediným zdrojem pro důcodový příjem ak budou důcodové úspory (opě analogicky k Ježek 23). o je velmi přísný a nerealisický předpoklad, výsledky simulace však alespoň ukazují, jak je příspěvková míra cilivá na zkrácení celkové doby spoření. ABULKA 2 Příspěvkové míry (v %) pro různé míry výnosu ve sálém savu a různé pracovní věky r = 3 r = 5 r = 7 25,1 2,2 16,6 14, 1,9 8,8 7,5 5,7 4,4

19 5 29, 22,4 18,8 1 34,4 26,9 21, ,2 32,5 26,6 2 54, 41,1 33,8 16,9 13, 1,4 21, 16, 12,9 27, 2,4 16,5 36,2 27,2 22,2 9,6 7,1 5,6 12,6 9,3 7,4 17,1 12,7 1,1 24,2 18, 14,6 abulka 2 ukazuje výsledky simulace pro různé pracovní věky. K danému pracovnímu věku a dané míře výnosu jsou v abulce 2 uvedeny ři odnoy příspěvkové míry. První (nejvyšší) je příspěvková míra odvozená za výše uvedenýc předpokladů o reálné a nominální konvergenci. Prosřední příspěvková míra je kalkulována za předpokladu sejné reálné konvergence, ale při absrakci od konvergence nominální. Rozdíl mezi ěmio příspěvkovými mírami edy v sobě kondenzuje právě vliv apreciace, kerá se projevuje ím, že reálný výnos v konvergující ekonomice je nižší než výnos v ekonomice ve sálém savu. íky nominální konvergenci by ak např. pro nově nasupující pracovníky při r na úrovni 5 % musela bý příspěvková míra o 3,1 procennío bodu vyšší než při její absenci (viz abulka 2). Poslední příspěvková míra je kalkulována za předpokladu, že nedocází ani k nominální ani k reálné konvergenci. Je o příspěvková míra, kerá je vlasně sodná s příspěvkovou mírou v ekonomice ve sálém savu nunou pro dosažení danéo ρ. Ze srovnání příspěvkové míry v ekonomice s nominální i reálnou konvergencí s příspěvkovou mírou v ekonomice ve sálém savu je parné, že rozdíl mezi nimi může bý poměrně značný. Poměr mezi ěmio příspěvkovými mírami je sám závislý na míře výnosu a pracovním věku. apříklad pro nasupujícío pracovníka při reálné míře výnosu ve sálém savu 5 % je v konvergující ekonomice příspěvková míra vyšší o bezmála 6 %. abulka 3 ukazuje naproi omu výsledné ρ pro příspěvkovou míru 2 %. Výsledky lze snadno upravi pro odlišnou příspěvkovou míru podle lineárnío vzau (2). Analogicky k předcozí abulce jsou ke každému pracovnímu věku uvedeny ři odnoy RR: první za předpokladu nominální i reálné konvergence, druá pouze za předpokladu reálné konvergence bez konvergence nominální a řeí odpovídá ekonomice ve sálém savu. ABULKA 3 Míry RR při příspěvkové míře 2 % r = 3 r = 5 r = 7 39,8 49,5 71,3 91,7 132,7 177,

20 6,2 114,3 225,6 5 34,5 43,6 53,2 59,1 77, 95,6 14,4 14,1 178, 1 29, 37,2 45,6 47,6 62,5 77,7 79,5 17,1 135, ,7 3,1 37,6 37, 49, 6,5 58,5 78,9 98,5 2 18,5 24,3 29,6 27,6 36,7 45, 41,3 55,6 68,6 abízí se oázka, jaký poměr ρ by byl dosažielný pro pracovníky s různým pracovním věkem, pokud by příspěvková míra byla sanovena na akové úrovni, aby pracovníci, keří nově vsupují do sysému dosáli na RR právě ve výši 5 %. Odpověď podává abulka 4. Různým mírám výnosu nuně odpovídají různé příspěvkové míry, ak aby pro pracovní věk bylo dosaženo RR = 5 %. Z výsledků je parné, že pro danou příspěvkovou míru se RR snižuje s rosoucím pracovním věkem při vsupu do sysému více než proporcionálně. apříklad při příspěvkové míře 14 % a míře výnosu ve sálém savu 5 % je pro pracovníka, kerý vsoupil do sysému v pracovním věku 3 le, dosažielné RR na úrovni pouze 8,7 %, ačkoliv od zavedení sysému do odcodu do důcodu mu zbývá ješě 12 le (při uvažované délce kariéry 42 le), j. bezmála 3 % pracovní kariéry. Zásadní důvody, proč pracovníci s vysokým pracovním věkem naspoří při daném τ relaivně málo prosředků, souvisí právě s konvergencí: běem zbývající čási jejic pracovní kariéry bude průměrný reálný růs ekonomiky vyšší než běem kariéry pracovníka, kerý bude pracova celýc 42 le a zároveň průměrný reálný výnos bude nižší (díky nominální konvergenci). Prakickým řešením ooo problému může bý například sanovení odlišné (vyšší) příspěvkové míry pro sarší koory (viz závěr). Řešení by však bylo mimo jiné závislé i na om, jakým způsobem by bylo naloženo s příspěvky pracovníka běem jeo předcázející kariéry do průběžnéo sysému. ABULKA 4 Poměry RR (v %) dosažielné při různýc mírác výnosu a různýc příspěvkovýc sazbác r = 3 τ = 25,1 r = 5 τ = 14, r = 7 τ = 7, ,3 41,4 39,1 1 36,5 33,3 29, ,7 25,9 21,9

21 2 23,3 19,3 15,5 3 11,5 8,7 6,3 8. Závěr Příspěvková míra ve fondovém penzijním sysému v konvergující ekonomice, kerá je součásí měnové unie, musí bý vyšší než v ekonomice ve sálém savu, aby bylo dosaženo sejnéo náradovéo poměru (replacemen raio). Je o důsledek jednak oo, že konvergující ekonomika rose rycleji a jednak oo, že ryclejší reálný růs je doprovázen reálnou apreciací. Podle výsledků simulace by příspěvková míra musela bý v ČR asi o 5 až 7% vyšší než v ekonomice ve sálém savu pro pracovníka, kerý právě nasoupil do fondovéo sysému. Zruba polovina ooo zvýšení je důsledkem reálné konvergence a polovina je důsledkem konvergence nominální. Vliv obou fakorů je edy poměrně výrazný a bude ak zřejmě nuné je zoledni při sanovování příspěvkovýc měr ať již při zavedení čásečnéo fondovéo sysému nebo evenuálně plně fondovéo sysému. ominální i reálná konvergence se bude posupně zpomalova s ím, jak se bude snižova mezera v cenové ladině a v produkiviě. Vyasínání konvergence však bude znamena, že pracovníci, keří započnou pracovní kariéru v obdobíc, kdy se již konvergence projevuje slaběji, by při příspěvkové míře nasavené pro předcozí koory skončily penzijní spoření s prosředky, keré by vedly k vyššímu RR. Příspěvková míra by ak byla pro mladé koory zbyečně vysoká. ení možné ji však jednoduše sníži, pokud je příspěvková míra aplikována sejně na všecny koory. Snížení by oiž posilo i sarší koory, u kerýc byla příspěvková míra nasavena ak, aby naspořily právě na dané RR. ormálně čisé řešení by bylo sanovova různé příspěvkové míry pro různé koory, ale sysém by se ím sal pro účasníky zřejmě dosi nepřeledný. Určié, i když nedokonalé, řešení by bylo sanovení několika odlišnýc povinnýc příspěvkovýc měr, keré by se aplikovaly na pracovníky podle jejic biologickéo nebo pracovnío věku. První příspěvková míra by se aplikovala na pracovníky např. do 35 le věku, druá např. do 5 le a poslední míra po zbyek pracovní kariéry. S ím, jak pracovník sárne, aplikují se na jeo příjem posupně všecny příspěvkové míry. Příspěvkové míry by však opimálně musely bý sanoveny ak, že by již v nic byl obsažen předpoklad o budoucíc posunec v jednolivýc příspěvkovýc mírác. Rozrůznění příspěvkovýc měr podle věku účasníka sysému má edy výodu v om, že úpravy příspěvkovýc měr moou bý směřovány pouze k určiým koorám. alší výoda různýc příspěvkovýc měr podle biologickéo věku je v přiblížení časovéo průběu spoření živonímu cyklu jednice pokud by příspěvková míra pro nízký věk byla nízká a pro sřední a vyšší věk pracovníka naopak zvýšená, zřejmě by se ím zvýšila jeo užiečnos (užiečnosní dopad uniformní příspěvkové míře vyýkají např. Jenssen Lassila, 22). Sanovení povinnýc příspěvkovýc měr a zejména prakické provedení jejic změn jsou specifickým problémem pro fondový sysém v konvergující ekonomice a jsou ak náměem pro další výzkum.

Fondový penzijní systém v konvergující ekonomice

Fondový penzijní systém v konvergující ekonomice klíčová slova: penzijní sysémy reálná konvergence apreciace - míra výnosu ondový penzijní sysém v konvergující ekonomice Jan KUBÍČEK Úvod Obíže, do kerýc se dosává průběžně financovaný penzijní sysém (PAYG

Více

EKONOMETRIE 6. přednáška Modely národního důchodu

EKONOMETRIE 6. přednáška Modely národního důchodu EKONOMETRIE 6. přednáška Modely národního důchodu Makroekonomické modely se zabývají modelováním a analýzou vzahů mezi agregáními ekonomickými veličinami jako je důchod, spořeba, invesice, vládní výdaje,

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 2/23 Inflace po vsupu do měnové unie vybrané problémy Jan Kubíček INSIU PRO EKONOMICKOU A EKOLOGICKOU POLIIKU A KAERA HOSPOÁŘSKÉ POLIIKY VYSOKÁ ŠKOLA EKONOMICKÁ

Více

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA

MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA Přednáška 7 MĚNOVÁ POLITIKA, OČEKÁVÁNÍ NA FINANČNÍCH TRZÍCH, VÝNOSOVÁ KŘIVKA A INTERAKCE S MĚNOVÝM KURZEM (navazující přednáška na přednášku na éma inflace, měnová eorie a měnová poliika) Měnová poliika

Více

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic?

Podzim 2004. Výzkumná práce 2 Sektorové produktivity a relativní cena neobchodovatelných statků: Opravdu příliš mnoho povyku pro nic? Podzim 24 Výzkumná práce 2 Sekorové produkiviy a relaivní cena neobchodovaelných saků: Opravdu příliš mnoho povyku pro nic? Makroekonomický vývoj 15 Akuální makroekonomický vývoj České republiky 32 Prognóza

Více

FAKULTA APLIKOVANÝCH VĚD

FAKULTA APLIKOVANÝCH VĚD FAKULTA APLIKOVANÝCH VĚD ZÁPADOČESKÁ UNIVERZITA V PLZNI Semesrální práce z předměu KMA/MAB Téma: Schopnos úrokového rhu předvída sazby v době krize Daum: 7..009 Bc. Jan Hegeď, A08N095P Úvod Jako éma pro

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 10/2003 Konvergence nominální a reálné výnosnosi finančního rhu implikace pro poby koruny v mechanismu ERM II Vikor Kolán INSTITUT PRO EKONOMICKOU A EKOLOGICKOU

Více

FINANČNÍ MATEMATIKA- ÚVĚRY

FINANČNÍ MATEMATIKA- ÚVĚRY Projek ŠABLONY NA GVM Gymnázium Velké Meziříčí regisrační číslo projeku: CZ.1.07/1.5.00/4.0948 IV- Inovace a zkvalinění výuky směřující k rozvoji maemaické gramonosi žáků sředních škol FINANČNÍ MATEMATIKA-

Více

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě

Working Paper Solidarita mezi generacemi v systémech veřejného zdravotnictví v Evropě econsor www.econsor.eu Der Open-Access-Publikaionsserver der ZBW Leibniz-Informaionszenrum Wirschaf The Open Access Publicaion Server of he ZBW Leibniz Informaion Cenre for Economics Pavloková, Kaeřina

Více

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p

Analýza časových řad. Informační a komunikační technologie ve zdravotnictví. Biomedical Data Processing G r o u p Analýza časových řad Informační a komunikační echnologie ve zdravonicví Definice Řada je posloupnos hodno Časová řada chronologicky uspořádaná posloupnos hodno určiého saisického ukazaele formálně je realizací

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1

Srovnání výnosnosti základních obchodních strategií technické analýzy při obchodování měn CZK/USD a CZK/EUR 1 Výnosnos obchodních sraegií echnické analýzy Michal Dvořák Srovnání výnosnosi základních obchodních sraegií echnické analýzy při obchodování měn CZK/USD a CZK/EUR Verze 3 03 Michal Dvořák Záměr Na přednáškách

Více

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s.

PENZIJNÍ PLÁN Allianz transformovaný fond, Allianz penzijní společnost, a. s. PEZIJÍ PLÁ Allianz ransformovaný fond, Allianz penzijní společnos, a. s. Preambule Penzijní plán Allianz ransformovaného fondu, Allianz penzijní společnos, a. s. (dále jen Allianz ransformovaný fond ),

Více

Zásady hodnocení ekonomické efektivnosti energetických projektů

Zásady hodnocení ekonomické efektivnosti energetických projektů Absrak Zásady hodnocení ekonomické efekivnosi energeických projeků Jaroslav Knápek, Oldřich Sarý, Jiří Vašíček ČVUT FEL, kaedra ekonomiky Každý energeický projek má své ekonomické souvislosi. Invesor,

Více

V EKONOMETRICKÉM MODELU

V EKONOMETRICKÉM MODELU J. Arl, Š. Radkovský ANALÝZA ZPOŽDĚNÍ V EKONOMETRICKÉM MODELU VP č. Praha Auoři: doc. Ing. Josef Arl, CSc. Ing. Šěpán Radkovský Názor a sanoviska v éo sudii jsou názor auorů a nemusí nuně odpovída názorům

Více

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné

Manuál k vyrovnávacímu nástroji pro tvorbu cen pro vodné a stočné OPERAČNÍ PROGRAM ŽIVOTNÍ PROSTŘEDÍ EVROPSKÁ UNIE Fond soudržnosi Evropský fond pro regionální rozvoj Pro vodu, vzduch a přírodu Manuál k vyrovnávacímu násroji pro vorbu cen pro vodné a sočné MINISTERSTVO

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE

MODELOVÁNÍ A KLASIFIKACE REGIONÁLNÍCH TRHŮ PRÁCE VYSOKÁ ŠKOL BÁNSKÁ - TECHNICKÁ UNIVERZIT OSTRV EKONOMICKÁ FKULT MODELOVÁNÍ KLSIFIKCE REGIONÁLNÍCH TRHŮ PRÁCE Jana Hančlová Ivan Křivý Jaromír Govald Miroslav Liška Milan Šimek Josef Tvrdík Lubor Tvrdý

Více

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI

VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Masarykova univerzia Přírodovědecká fakula VÝNOSOVÉ KŘIVKY A JEJICH VYUŽITÍ VE FINANČNÍ PRAXI Bakalářská práce Lucie Pečinková Vedoucí bakalářské práce: Mgr. Per ČERVINEK Brno 202 Bibliografický záznam

Více

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU

PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU PŘÍKLAD INDEXY ZÁKLADNÍ, ŘETĚZOVÉ A TEMPO PŘÍRŮSTKU Ze serveru www.czso.cz jsme sledovali sklizeň obilovin v ČR. Sklizeň z několika posledních le jsme vložili do abulky 7.1. a) Jaké plodiny paří mezi obiloviny?

Více

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR

Simulace důchodových dávek z navrhovaného příspěvkově definovaného penzijního systému v ČR 3. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 6.-7. září 006 Simulace důchodových dávek z navrhovaného příspěvkově definovaného

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala

Výpočty populačních projekcí na katedře demografie Fakulty informatiky a statistiky VŠE. TomášFiala Výpočy populačních projekcí na kaedře demografie Fakuly informaiky a saisiky VŠE TomášFiala 1 Komponenní meoda s migrací Zpravidla zjednodušený model migrace předpokládá se pouze imigrace na úrovni migračního

Více

1/77 Navrhování tepelných čerpadel

1/77 Navrhování tepelných čerpadel 1/77 Navrhování epelných čerpadel paramery epelného čerpadla provozní režimy, navrhování akumulace epla bilancování inervalová meoda sezónní opný fakor 2/77 Paramery epelného čerpadla opný výkon Q k [kw]

Více

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001,

213/2001 ve znění 425/2004 VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. června 2001, 213/2001 ve znění 425/2004 VYHLÁŠKA Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávají podrobnosi náležiosí energeického audiu Minisersvo průmyslu a obchodu sanoví podle 14 ods. 5

Více

Stochastické modelování úrokových sazeb

Stochastické modelování úrokových sazeb Sochasické modelování úrokových sazeb Michal Papež odbor řízení rizik 1 Sochasické modelování úrokových sazeb OBSAH PŘEDNÁŠKY Úvod do problemaiky sochasických procesů Brownův pohyb, Wienerův proces Ioovo

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. 7/2003 Český akciový rh jeho efekivnos a makroekonomické souvislosi Helena Horská INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ POLITIKY

Více

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic

Investiční činnost. Existují různá pojetí investiční činnosti: Z pohledu ekonomické teorie. Podnikové pojetí investic Ivesičí čios Exisují růzá pojeí ivesičí čiosi: Z pohledu ekoomické eorie Podikové pojeí ivesic Klasifikace ivesic v podiku 1) Hmoé (věcé, fyzické, kapiálové) ivesice 2) Nehmoé (emaeriálí) ivesice 3) Fiačí

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

Ekonomické aspekty spolehlivosti systémů

Ekonomické aspekty spolehlivosti systémů ČESKÁ SPOLEČNOST PRO JAKOST Novoného lávka 5, 116 68 Praha 1 43. SETKÁNÍ ODBORNÉ SKUPINY PRO SPOLEHLIVOST pořádané výborem Odborné skupiny pro spolehlivos k problemaice Ekonomické aspeky spolehlivosi sysémů

Více

Univerzita Pardubice. Dopravní fakulta Jana Pernera

Univerzita Pardubice. Dopravní fakulta Jana Pernera Univerzia Pardubice Dopravní fakula Jana Pernera Fakory ovlivňující popávku po osobních auomobilech v ČR Bc. Tomáš Mikas Diplomová práce 2011 Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré lierární

Více

VLIV MAKROEKONOMICKÝCH ŠOKŮ NA DYNAMIKU VLÁDNÍHO DLUHU: JAK ROBUSTNÍ JE FISKÁLNÍ POZICE ČESKÉ REPUBLIKY?

VLIV MAKROEKONOMICKÝCH ŠOKŮ NA DYNAMIKU VLÁDNÍHO DLUHU: JAK ROBUSTNÍ JE FISKÁLNÍ POZICE ČESKÉ REPUBLIKY? VLIV MAKROEKONOMICKÝCH ŠOKŮ NA DYNAMIKU VLÁDNÍHO DLUHU: JAK ROBUSTNÍ JE FISKÁLNÍ POZICE ČESKÉ REPUBLIKY? Aleš Melecký, Marin Melecký, VŠB Technická univerzia Osrava* 1. Úvod Globální finanční a ekonomická

Více

ROTORŮ TURBOSOUSTROJÍ

ROTORŮ TURBOSOUSTROJÍ ZJIŠŤOVÁNÍ PŘÍČIN ZVÝŠENÝCH VIBRACÍ ROTORŮ TURBOSOUSTROJÍ Prof Ing Miroslav Balda, DrSc Úsav ermomechaniky AVČR + Západočeská univerzia Veleslavínova 11, 301 14 Plzeň, el: 019-7236584, fax: 019-7220787,

Více

Working Papers Pracovní texty

Working Papers Pracovní texty Working Papers Pracovní exy Working Paper No. /003 Hyperbolické diskonování a jeho význam v ekonomickém modelování Michal Andrle Jan Brůha INSTITUT PRO EKONOMICKOU A EKOLOGICKOU POLITIKU A KATEDRA HOSPODÁŘSKÉ

Více

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice)

2.1.4 Výpočet tepla a zákon zachování energie (kalorimetrická rovnice) ..4 Výpoče epla a zákon zachování energie (kalorimerická rovnice) Teplo je fyzikální veličina, předsavuje aké energii a je udíž možné (i nuné) jej měři. Proč je aké nuné jej měři? Např. je předměem obchodu

Více

Prognózování vzdělanostních potřeb na období 2006 až 2010

Prognózování vzdělanostních potřeb na období 2006 až 2010 Prognózování vzdělanosních pořeb na období 2006 až 2010 Zpráva o savu a rozvoji modelu pro předvídání vzdělanosních pořeb ROA - CERGE v roce 2005 Vypracováno pro čás granového projeku Společnos vědění

Více

CENTRUM EKONOMICKÝCH STUDIÍ VŠEM

CENTRUM EKONOMICKÝCH STUDIÍ VŠEM V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U CENTRUM EKONOMICKÝCH STUDIÍ VŠEM ISSN 1801-1578 03 vydání 03/ ročník 2010 /31.3.2010 Bullein CES VŠEM V TOMTO VYDÁNÍ Příspěvek k insiucionální

Více

Protipožární obklad ocelových konstrukcí

Protipožární obklad ocelových konstrukcí Technický průvoce Proipožární obkla ocelových konsrukcí Úvo Ocel je anorganický maeriál a lze jí ey bez zvlášních zkoušek zařai mezi nehořlavé maeriály. Při přímém působení ohně vlivem vysokých eplo (nárůs

Více

Kvízové otázky Obecná ekonomie I. Teorie firmy

Kvízové otázky Obecná ekonomie I. Teorie firmy 1. Firmy působí: a) na trhu výrobních faktorů b) na trhu statků a služeb c) na žádném z těchto trhů d) na obou těchto trzích Kvízové otázky Obecná ekonomie I. Teorie firmy 2. Firma na trhu statků a služeb

Více

2.1 POHYB 2.2 POLOHA A POSUNUTÍ

2.1 POHYB 2.2 POLOHA A POSUNUTÍ 2 P ÌmoËar pohyb V roce 1977 vyvo ila Kiy OíNeilov rekord v z vodech dragser. Dos hla ehdy rychlosi 628,85 km/h za pouh ch 3,72 s. Jin rekord ohoo ypu zaznamenal v roce 1958 Eli Beeding ml. p i jìzdï na

Více

NA POMOC FO KATEGORIE E,F

NA POMOC FO KATEGORIE E,F NA POMOC FO KATEGOIE EF Výledky řešení úlo 45. ročníku FO ka. E F Ivo Volf * ÚV FO Univerzia Hradec Králové Mirolav anda ** ÚV FO Pedagogická fakula ZČU Plzeň Jak je již v naší ouěži obvyklé uvádíme pouze

Více

Manuál pro textilní průmysl

Manuál pro textilní průmysl Manuál pro exilní průmysl 2 Manuál je jedním z výsupů granového projeku VaV/720/7/01, Oborový manuál pro prevenci a minimalizaci odpadů, vypsaného a zasřešeného Minisersvem živoního prosředí. Auorský ým:

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Investiční výdaje (I)

Investiční výdaje (I) Investiční výdaje Investiční výdaje (I) Zkoumáme, co ovlivňuje kolísání I. I = výdaje (firem) na kapitálové statky (stroje, budovy) a změna stavu zásob. Firmy si kupují (pronajímají) kapitálové statky.

Více

Koncepce penzijní reformy hledání základních parametrů

Koncepce penzijní reformy hledání základních parametrů Analýza říjen 2004 Koncepce penzijní efomy hledání základních paameů Téma penzí neusále nabývá na významu. Takzvaný důchodový úče nespasily ani změny paameů povedené v ámci efomy veřejných ozpočů a hlavní

Více

Úhrada za ústřední vytápění bytů II

Úhrada za ústřední vytápění bytů II Úhrada za úsřdní vyápění byů II Anoac Článk j druhým z séri příspěvků, krými jsou prsnovány dlouholé výsldky prác na Tchnické univrziě v Librci v oblasi rozpočíávání nákladů na vyápění pomocí poměrových

Více

Vysoká škola ekonomická v Praze Recenzované studie. Working Papers Fakulty mezinárodních vztahů

Vysoká škola ekonomická v Praze Recenzované studie. Working Papers Fakulty mezinárodních vztahů Vysoká škola ekonomická v Praze Recenzované sudie Working Papers Fakuly mezinárodních vzahů 12/2010 Míra nezaměsnanosi neakcelerující inflaci a hospodářský cyklus v prosředí České republiky hisorie a možný

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 11. 11. 2012 Číslo DUM: VY_32_INOVACE_10_FY_B Zákon síly. Hmonos jako míra servačnosi. Vyvození hybnosi a impulsu síly. Závislos zrychlení a hmonosi Cvičení k zavedeným pojmům Jméno auora: Mgr. Zdeněk Chalupský Daum vyvoření: 11. 11. 2012 Číslo DUM:

Více

0 z 25 b. Ekonomia: 0 z 25 b.

0 z 25 b. Ekonomia: 0 z 25 b. Ekonomia: 1. Roste-li mzdová sazba,: nabízené množství práce se nemění nabízené množství práce může růst i klesat nabízené množství práce roste nabízené množství práce klesá Zvýšení peněžní zásoby vede

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

VOLNOST NA VODÍTKU. Milý obchodníku,

VOLNOST NA VODÍTKU. Milý obchodníku, VOLNOST NA VODÍTKU Milý obchodníku, VOLNOST NA VODÍTKU V základním vybavení majiele psa nesmí v žádném případě chybě: vhodné vodíko. Majielé si pro svého psa přejí konrolu a jisou. Zároveň by rádi svým

Více

Pojistné rozpravy 5 POJISTNĚ TEORETICKÝ BULLETIN

Pojistné rozpravy 5 POJISTNĚ TEORETICKÝ BULLETIN Pojisné rozpravy 5 POJISTNĚ TEORETICKÝ BULLETIN 999 ISSN 0862 662 OBSAH Siuace ve veřejném zdravoním pojišění v ČR... 5 (Ing. Jarmila Fuchsová Soukromé zdravoní pojišění v Německu... (Klaus Michel Zdravoní

Více

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií

Hodina 50 Strana 1/14. Gymnázium Budějovická. Hodnocení akcií Hodina 50 Strana /4 Gymnázium Budějovická Volitelný předmět Ekonomie - jednoletý BLOK ČÍSLO 8 Hodnocení akcií Předpokládaný počet : 9 hodin Použitá literatura : František Egermayer, Jan Kožíšek Statistická

Více

Specific Combined Approach to Valuation of Life Insurance Companies. Specifické kombinované metody oceňování komerčních životních pojišťoven 1

Specific Combined Approach to Valuation of Life Insurance Companies. Specifické kombinované metody oceňování komerčních životních pojišťoven 1 8 h Inernaional scienific conference Financial managemen of firms and financial insiuions Osrava VŠB-TU Osrava, faculy of economics,finance deparmen 6 h 7 h Sepember 2011 Specific Combined Approach o Valuaion

Více

FUTURITY. INSTITUT EKONOMICKÝCH STUDIÍ Fakulta sociálních věd University Karlovy

FUTURITY. INSTITUT EKONOMICKÝCH STUDIÍ Fakulta sociálních věd University Karlovy INTITUT EKONOMICKÝCH TUDIÍ akula sociálních věd Universiy Karlovy UTURITY udijní ex č. k předměu Násroje finančních rhů Doc. Ing. Oldřich Dědek Cc. 2 A. MECHANIKA KONTRAKTŮ TYPU ORWARD A UTURE. Základní

Více

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení

(2) Řešení. 4. Platí: ω = 2π (3) (3) Řešení (). Načrněe slepý graf závislosi dráhy sojícího člověka na b 2. Na abuli je graf A závislosi rychlosi pohybu rabanu kombi na Vypočěe dráhu, kerou raban urazil v čase od 2,9 s do 6,5 s. 3. Jakou rychlosí

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

5 Kvalita veřejných financí příjmy a výdaje

5 Kvalita veřejných financí příjmy a výdaje 5.1 Příjmy vládního sektoru Celkové daňové příjmy vládního sektoru se v roce 2008 vyvíjejí zhruba v souladu s očekáváním. O něco hůře, a to zejména z důvodu většího zpomalení výdajů na konečnou spotřebu,

Více

Důchodová reforma ve Spolkové republice roku 2001

Důchodová reforma ve Spolkové republice roku 2001 Důchodová reforma ve Spolkové repulice roku 2001 Ing. Rudolf F. Heidu, Deparmen of Law and Social Sciences, Mendel Universiy in Brno, rudi.heidu@seznam.cz Asrak Ve Spolkové repulice převažuje názor, že

Více

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie

Makroekonomie I. Co je podstatné z Mikroekonomie - co již známe obecně. Nabídka a poptávka mikroekonomické kategorie Model AS - AD Makroekonomie I Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky Osnova: Agregátní poptávka a agregátní nabídka : Agregátní poptávka a její změny Agregátní nabídka krátkodobá a dlouhodobá Rovnováha

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly

Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ústav stavební ekonomiky a řízení Fakulta stavební VUT Makroekonomická rovnováha, ekonomický růst a hospodářské cykly Ing. Dagmar Palatová dagmar@mail.muni.cz Agregátní nabídka a agregátní poptávka cena

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

ENERGETICKÝ AUDIT. Realizace úspor energie Střední škola zemědělství a služeb, Město Albrechtice. Nemocniční 11, Město Albrechtice

ENERGETICKÝ AUDIT. Realizace úspor energie Střední škola zemědělství a služeb, Město Albrechtice. Nemocniční 11, Město Albrechtice Miroslav Baručák ENERGOS Sídlišě Beskydské 1199 744 01 FRENŠTÁT POD RADHOŠTĚM ENERGETICKÝ AUDIT Realizace úspor energie, Nemocniční 11, název předměu EA daum vypracování 24. srpna 2013 energeický specialisa

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

15 Poptávka na nedokonale konkurenčním trhu práce

15 Poptávka na nedokonale konkurenčním trhu práce 15 Poptávka na nedokonale konkurenčním trhu práce Existuje-li na trhu výstupu omezený počet firem nabízejících svou produkci, hovoříme o nedokonalé konkurenci, jejíž jednotlivé formy (monopol, oligopol

Více

13 Specifika formování poptávky firem po práci a kapitálu

13 Specifika formování poptávky firem po práci a kapitálu 13 Specifika formování poptávky firem po práci a kapitálu Na rozdíl od trhu finálních statků, kde stranu poptávky tvořili jednotlivci (domácnosti) a stranu nabídky firmy, na trhu vstupů vytvářejí jednotlivci

Více

Investiční velkotrendy

Investiční velkotrendy Investiční velkotrendy Valuace Jiří Soustružník Duben 2012 Investiční velkotrendy: Valuace Základní investorova otázka (asi) zní: Jsou akcie levné, nebo drahé? Pokus o odpověď může být učiněn: Pohledem

Více

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110

Seznam parametrů Vydání 04/03. sinamics SINAMICS G110 Seznam paramerů Vydání 04/0 sinamics SINAMICS G110 Dokumenace k výrobku SINAMICS G110 Příručka pro začínající uživaele Příručka pro začínající uživaele si klade za cíl umožni uživaelům rychlý přísup k

Více

MANDATORNÍ VÝDAJE STÁTNÍHO ROZPOČTU. Ing. Daša Smetanková, Ph.D. červenec 2014 Překlad č. 2.097

MANDATORNÍ VÝDAJE STÁTNÍHO ROZPOČTU. Ing. Daša Smetanková, Ph.D. červenec 2014 Překlad č. 2.097 MANDATORNÍ VÝDAJE STÁTNÍHO ROZPOČTU Ing. Daša Smetanková, Ph.D. červenec 2014 Překlad č. 2.097 2 Obsah: Vývoj mandatorních výdajů...3 Tabulka č. 1: Mandatorní výdaje v ČR v letech 1995-2014 v mld. Kč 1:

Více

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci

Jan Jersák Technická univerzita v Liberci. Technologie III - OBRÁBĚNÍ. TU v Liberci EduCom Teno maeriál vznikl jako součás projeku EduCom, kerý je spolufinancován Evropským sociálním fondem a sáním rozpočem ČR. ŘEZÉ PODMÍKY Jan Jersák Technická univerzia v Liberci Technologie III - OBRÁBĚÍ

Více

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3

Studijní text pro řešitele FO a ostatní zájemce o fyziku Ivo Volf Miroslava Jarešová. Slovo úvodem 3 Fyzikajekolemnás(Polohaajejízměny) Sudijní ex pro řešiele FO a osaní zájemce o fyziku Ivo Volf Miroslava Jarešová Obsah Slovo úvodem 3 1 Popis polohy ělesa 4 1.1 Jednorozměrnýprosor.......................

Více

Kapitálový trh (finanční trh)

Kapitálový trh (finanční trh) Mikroekonomie bakalářský kurz - VŠFS Jiří Mihola, jiri.mihola@quick.cz, www.median-os.cz, 2010 Téma 9 Kapitálový trh (finanční trh) Obsah 1. Podstata kapitálového trhu 2. Volba mezi současnou a budoucí

Více

ú Ú ú ú Í ú ž ú š ú ú ú Í ú Í ú ú ů š š ú ž ů ž ž ž ú ů ů ú ú ů ú ú ů ú ů ú ú ú ž ž ú ú ů ú ž ď š š ú ů ů ú Ť ú ú ž ž ó ž ž Ý ů Ó Ó Š Ě Ó ž ž ů ů ů š Ó ů ú ž ů ů Ť Ě Í ů ů ť ů ů ů ů ú ú ů ů Ý ž ž ů Ý Í

Více

SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ. INVESTIČNÍ FUNKCE A FAKTORY URČUJÍCÍ INVESTICE

SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ. INVESTIČNÍ FUNKCE A FAKTORY URČUJÍCÍ INVESTICE SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ. INVESTIČNÍ FUNKCE A FAKTORY URČUJÍCÍ INVESTICE SPECIFIKACE, KLASIFIKACE A IDENTIFIKACE SIMULTÁNNÍCH EKONOMETRICKÝCH MODELŮ viz

Více

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky

Mikroekonomie. Minulá přednáška - podstatné. Náklady firmy v krátkém a dlouhém období. Důležité vzorce. Náklady v krátkém období - graficky Minulá přednáška - podstatné Mikroekonomie Ing. Jaroslav ŠETEK, Ph.D. Katedra ekonomiky, JČU Typologie nákladů firmy Náklady v krátkém období Náklady v dlouhém období Důležité vzorce TC = FC + VC AC =

Více

Průzkumová analýza dat (Exploratory Data Analysis, EDA)

Průzkumová analýza dat (Exploratory Data Analysis, EDA) 19. února 2007 Přednáška 1 maeriály: přednášky zápoče: v průběhu semesr určiý projek na zápoče a na známku, kerá bude ke zkoušce zkouška: zadaný určiý problém, na něj zadaný určiý čas, zpracováván s využiím

Více

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI

ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZTAHŮ MEZI ČASOVÝMI ŘADAMI Polcká ekonome 49:, sr. 58-73, VŠE Praha,. ISSN 3-333 Rukops ANALÝZA ZPOŽDĚNÍ PŘI MODELOVÁNÍ VZAHŮ MEZI ČASOVÝMI ŘADAMI Josef ARL, Šěpán RADKOVSKÝ, Vsoká škola ekonomcká, Praha, Česká národní banka, Praha.

Více

www.thunova.cz Kapitola 8 INFLACE p w CPI CPI

www.thunova.cz Kapitola 8 INFLACE p w CPI CPI Kapitola 8 INFLACE Inflace = růst všeobecné cenové hladiny všeobecná cenová hladina průměrná cenová hladina v ekonomice vyjadřujeme jako míru inflace (procentní růst) při inflaci kupní síla peněz a když

Více

Nezaměstnaný je ten, kdo nemá práci a aktivně

Nezaměstnaný je ten, kdo nemá práci a aktivně Nezaměstnanost Definice nezaměstnanosti Nezaměstnaný je ten, kdo nemá práci a aktivně ji hledá Co je to aktivní hledání? Stačí registrace na Úřadu práce? Jakákoliv definice aktivního hledání je arbitrární

Více

Sazba daně je algoritmus, prostřednictvím kterého se ze základu daně (sníženého o odpočty) stanoví velikost daně.

Sazba daně je algoritmus, prostřednictvím kterého se ze základu daně (sníženého o odpočty) stanoví velikost daně. 1.1 Sazba daně Sazba daně je algoritmus, prostřednictvím kterého se ze základu daně (sníženého o odpočty) stanoví velikost daně. I když obecně může mít podobu v podstatě jakéhokoliv výpočtového algoritmu,

Více

Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA

Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA Kapitola 5 AGREGÁTNÍ POPTÁVKA A AGREGÁTNÍ NABÍDKA Agregátní poptávka (AD): agregátní poptávka vyjadřuje různá množství statků a služeb (reálného produktu), která chtějí spotřebitelé, firmy, vláda a zahraniční

Více

Ocelové nosné konstrukce

Ocelové nosné konstrukce Proma Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky 6 Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky Ocel je anorganická savební hmoa a lze ji ey bez zvlášních

Více

VÝKAZ CASH FLOW. Řízení finančních toků. Manažerská ekonomika obor Marketingová komunikace. 3. přednáška Ing. Jarmila Ircingová, Ph.D.

VÝKAZ CASH FLOW. Řízení finančních toků. Manažerská ekonomika obor Marketingová komunikace. 3. přednáška Ing. Jarmila Ircingová, Ph.D. VÝKAZ CASH FLOW Řízení finančních toků Manažerská ekonomika obor Marketingová komunikace 3. přednáška Ing. Jarmila Ircingová, Ph.D. Peněžní a materiálové toky v podniku Hotové výrobky Nedokončená výroba

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

Ocelové nosné konstrukce

Ocelové nosné konstrukce Proma Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky 56 Ocelové nosné konsrukce Požární bezpečnos pro ocelové sloupy a nosníky Ocel je anorganická savební hmoa a lze ji ey bez zvlášních

Více

5. kapitola Agregátní poptávka a agregátní nabídka

5. kapitola Agregátní poptávka a agregátní nabídka 5. kapitola Agregátní poptávka a agregátní nabídka V této kapitole se seznámíte - s tím, co je to agregátní poptávka a jaké faktory ji ovlivňují - podrobně s tím, jak délka časového období ovlivňuje agregátní

Více

Inflace. Jak lze měřit míru inflace Příčiny inflace Nepříznivé dopady inflace Míra inflace a míra nezaměstnanosti Vývoj inflace v ČR

Inflace. Jak lze měřit míru inflace Příčiny inflace Nepříznivé dopady inflace Míra inflace a míra nezaměstnanosti Vývoj inflace v ČR Inflace Jak lze měřit míru inflace Příčiny inflace Nepříznivé dopady inflace Míra inflace a míra nezaměstnanosti Vývoj inflace v ČR Co je to inflace? Inflace není v původním význam růst cen. Inflace je

Více

Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let?

Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let? Jak se budou vyvíjet výplaty dávek z penzijního připojištění v časovém horizontu za 30 a 40 let? Vědecký seminář doktorandů VŠFS, 30. ledna 2013, VŠFS, Estonská 500, Praha 10 Jana Kotěšovcová Vysoká škola

Více

Pololetní zpráva společnosti ZONER software, a.s.

Pololetní zpráva společnosti ZONER software, a.s. Pololetní zpráva společnosti ZONER software, a.s. Za hospodářský rok 2009 (období od 1. 9. 2009 do 28. 2. 2010) Zpracoval: Ing. Milan Behro, předseda představenstva V Brně dne 30. 4. 2010 1 OBSAH 1. Základní

Více

Seminární práce ze Základů firemních financí

Seminární práce ze Základů firemních financí Seminární práce ze Základů firemních financí Téma: Analýza vývoje zisku Zpracovaly: Veronika Kmoníčková Jana Petrčková Dominika Sedláčková Datum prezentace: 24.3. 2004...... V Brně dne...... P o d p i

Více

4.1 Zptnovazební oscilátory sinusového prbhu naptí

4.1 Zptnovazební oscilátory sinusového prbhu naptí 4 Osciláory Nezpracovávají žádný vsupní signál, ale jsou sami zdrojem sídavých signál. Ze sejnosmrného napájecího napí vyváejí napí sídavá. Druh osciláor je mnoho. Podle principu innosi se rozdlují na

Více

Výnosy & Náklady Hospodářský výsledek. cv. 6

Výnosy & Náklady Hospodářský výsledek. cv. 6 Výnosy & Náklady Hospodářský výsledek cv. 6 Základní pojmy Náklad peněžní částka, kterou podnik účelně vynaložil na získání výnosů, tj. použil je k provedení určitého výkonu.(spotřeba výrobních faktorů

Více

Makroekonomická rovnováha, Hospodářský cyklus, Inflace

Makroekonomická rovnováha, Hospodářský cyklus, Inflace Makroekonomická rovnováha, Hospodářský cyklus, Inflace Doc. Ing. Jana Korytárová, Ph. D. Makroekonomická rovnováha Krátkodobá křivka nabídky (AS S ) je stoupající, znázorňuje, že krátkodobě nabídka citlivě

Více

Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - makroekonomie. Správná odpověď je označena tučně.

Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - makroekonomie. Správná odpověď je označena tučně. Přijímací řízení ak. r. 2010/11 Kompletní znění testových otázek - makroekonomie právná odpověď je označena tučně. 1. Jestliže centrální banka nakoupí na otevřeném trhu státní cenné papíry, způsobí tím:

Více

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu.

Vyjadřují se v procentech z hodnoty vloženého kapitálu. Někdy se pro jejich označení používá termín cena kapitálu. 1. Cena kapitálu Náklady kapitálu představují pro podnik výdaj, který musí zaplatit za získání různých forem kapitálu (tj. za získání např. různých forem dluhů, akciového kapitálu, nerozděleného zisku

Více

Požární uzávěry Textilní požární uzávěry. Fibershield-P Fibershield-E Fibershield-H Fibershield-S Fibershield-F Fibershield-W Fibershield-I

Požární uzávěry Textilní požární uzávěry. Fibershield-P Fibershield-E Fibershield-H Fibershield-S Fibershield-F Fibershield-W Fibershield-I Požární uzávěry Texilní požární uzávěry Fibersield-P Fibersield-E Fibersield-H Fibersield-S Fibersield-F Fibersield-W Fibersield-I Koncepy ocrany: 1. Auomaické exilní požární uzávěry pro ovory ve sěnác

Více