KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od

Rozměr: px
Začít zobrazení ze stránky:

Download "KŘIVKY A PLOCHY. Obrázky (popř. slajdy) převzaty od"

Transkript

1 KŘIVKY A PLOCHY JANA ŠTANCLOVÁ Obrázky (popř. slajdy) převzaty od RNDr. Josef Pelikán, CSc., KSVI MFF UK

2 Obsah matematický popis křivek a ploch křivky v rovině implicitní tvar křivky, explicitní vyjádření, parametrický tvar, tečný vektor, tečna ke křivce křivky v prostoru plochy modelování křivek a ploch aproximace, interpolace interpolační křivky a plochy Fergusonovy kubiky aproximační křivky a plochy Beziérovy křivky a plochy Coonsovy (B-spline) křivky a plochy β-spline křivky a plochy 2/67 Jana Štanclová,

3 Matematický popis křivek a ploch MATEMATICKÝ POPIS KŘIVEK A PLOCH 3/67 Jana Štanclová,

4 Křivky v rovině 1. implicitní tvar křivky rovnice F(x,y) = 0 př. F spojitá funkce dvou proměnných přímka:?? kružnice:?? 4/67 Jana Štanclová,

5 Křivky v rovině 1. implicitní tvar křivky rovnice F(x,y) = 0 př. F spojitá funkce dvou proměnných přímka: ax + by + c = 0 kružnice: x 2 + y 2 r 2 = 0 5/67 Jana Štanclová,

6 Křivky v rovině 1. implicitní tvar křivky rovnice F(x,y) = 0 př. F spojitá funkce dvou proměnných přímka: ax + by + c = 0 kružnice: x 2 + y 2 r 2 = 0 2. explicitní vyjádření křivky jedna souřadnice funkcí druhé proměnné y = Y(x) dosazování přípustných hodnot za x body na křivce [x,y(x)] př. přímka:?? 6/67 Jana Štanclová,

7 Křivky v rovině 1. implicitní tvar křivky rovnice F(x,y) = 0 př. F spojitá funkce dvou proměnných přímka: ax + by + c = 0 kružnice: x 2 + y 2 r 2 = 0 2. explicitní vyjádření křivky jedna souřadnice funkcí druhé proměnné y = Y(x) dosazování přípustných hodnot za x body na křivce [x,y(x)] př. přímka: y = kx + q lze vyjádřit všechny křivky?? 7/67 Jana Štanclová,

8 Křivky v rovině 1. implicitní tvar křivky rovnice F(x,y) = 0 př. F spojitá funkce dvou proměnných přímka: ax + by + c = 0 kružnice: x 2 + y 2 r 2 = 0 2. explicitní vyjádření křivky jedna souřadnice funkcí druhé proměnné y = Y(x) dosazování přípustných hodnot za x body na křivce [x,y(x)] př. přímka: y = kx + q lze vyjádřit všechny křivky?? nelze: uzavřené křivky 8/67 Jana Štanclová,

9 Křivky v rovině 3. parametrický tvar křivky výhodné pro počítačovou geometrii poloha bodu na křivce vyjádřena parametrem souřadnice bodů závislé na parametru křivka K K = { [x,y]; x = X(t), y = Y(t), t < t min, t max > } X(t) a Y(t) funkce závislosti souřadnic x, y na parametru t počáteční bod: [ X(t min ), Y(t min ) ] koncový bod: [ X(t max ), Y(t max ) ] bod křivky: K(t) = [ X(t), Y(t) ] 9/67 Jana Štanclová,

10 Křivky v rovině 3. parametrický tvar křivky přímka x =?? y =?? kružnice x =?? y =?? 10/67 Jana Štanclová,

11 Křivky v rovině 3. parametrický tvar křivky přímka x = t y = kt + q parametr t R kružnice x = x 0 + r cos(α) y = y 0 + r sin(α) parametr α <0,2π> 11/67 Jana Štanclová,

12 Křivky v rovině tečný vektor K = [ X (t), Y (t) ]... vektor parciálních derivací předpoklady X(t) a Y(t) spojité a mají derivace alespoň jedna z derivací X (t) a Y (t) v bodě t nenulová spojitá změna vektoru K křivky hladký půběh křivky nejsou ostré vrcholy tečna křivky v bodě K(t) přímka: T(u) = K(t) + u K (t) 12/67 Jana Štanclová,

13 Křivky v rovině tečný vektor K = [ X (t), Y (t) ]... vektor parciálních derivací předpoklady X(t) a Y(t) spojité a mají derivace alespoň jedna z derivací X (t) a Y (t) v bodě t nenulová spojitá změna vektoru K křivky hladký půběh křivky nejsou ostré vrcholy tečna křivky v bodě K(t) přímka: T(u) = K(t) + u K (t) bod křivky K(t) parametr tečný vektor K (t) 13/67 Jana Štanclová,

14 Křivky v rovině - příklad příklad spočítat tečnu v bodě [0,2] ke kružnici se středem v počátku a poloměrem 2 14/67 Jana Štanclová,

15 Křivky v rovině - příklad příklad spočítat tečnu v bodě [0,2] ke kružnici se středem v počátku a poloměrem 2 řešení rovnice kružnice?? 15/67 Jana Štanclová,

16 Křivky v rovině - příklad příklad spočítat tečnu v bodě [0,2] ke kružnici se středem v počátku a poloměrem 2 řešení rovnice kružnice x = 2 cos(α) y = 2 sin(α) tečný vektor kružnice?? 16/67 Jana Štanclová,

17 Křivky v rovině - příklad příklad spočítat tečnu v bodě [0,2] ke kružnici se středem v počátku a poloměrem 2 řešení rovnice kružnice x = 2 cos(α) y = 2 sin(α) tečný vektor kružnice x = - 2 sin(α) y = 2 cos(α) tečna ke kružnici v bodě [0,2]... tečna ke kružnici v bodě?? 17/67 Jana Štanclová,

18 Křivky v rovině - příklad příklad spočítat tečnu v bodě [0,2] ke kružnici se středem v počátku a poloměrem 2 řešení rovnice kružnice x = 2 cos(α) y = 2 sin(α) tečný vektor kružnice x = - 2 sin(α) y = 2 cos(α) tečna ke kružnici v bodě [0,2]... tečna ke kružnici v bodě α = π / 2 18/67 Jana Štanclová,

19 Křivky v rovině - příklad pokračování řešení: rovnice tečny v bodě α = π/2 x =?? y =?? 19/67 Jana Štanclová,

20 Křivky v rovině - příklad pokračování řešení: rovnice tečny v bodě α = π/2 x = 2 cos(π/2) 2u sin(π/2) y = 2 sin(π/2) + 2u cos(π/2) po úpravách x =?? y =?? 20/67 Jana Štanclová,

21 Křivky v rovině - příklad pokračování řešení: rovnice tečny v bodě α = π/2 x = 2 cos(π/2) 2u sin(π/2) y = 2 sin(π/2) + 2u cos(π/2) po úpravách x = 0 2u = 2u y = 2 + 0u = 2 [0,2] přímka y = 2 (x libovolné) 21/67 Jana Štanclová,

22 Křivky v prostoru 1. explicitní tvar křivky vyjádření souřadnic y a z v závislosti na souřadnici x y = Y(x), z = Z(x) tento tvar nemusí vždy existovat 2. parametrický tvar křivky nejobvyklejší křivka: K = { [x,y,z] ; x=x(t), y=y(t), z=z(t), t <t min, t max >} tečný vektor v bodě K(t) vektor parciálních derivací K (t) = [X (t),y (t), Z (t)] 22/67 Jana Štanclová,

23 Plochy (v prostoru) 1. implicitní tvar plochy rovnice F(x,y,z) = 0 2. explicitní tvar plochy jen pro některé plochy jedna souřadnice vyjádřena v závislosti na zbylých dvou proměnných z = Z(x,y) 3. parametrický tvar plochy nejobvyklejší souřadnice závislé na hodnotách dvou parametrů u a v P = {[x,y,z]; x=x(u,v), y=y(u,v), z=z(u,v), u <u min, u max >, v <v min, v max >} X(u,v), Y(u,v), Z(u,v)... parametrické funkce plochy P jeden z parametrů plochy fixován?? 23/67 Jana Štanclová,

24 Plochy (v prostoru) 1. implicitní tvar plochy rovnice F(x,y,z) = 0 2. explicitní tvar plochy jen pro některé plochy jedna souřadnice vyjádřena v závislosti na zbylých dvou proměnných z = Z(x,y) 3. parametrický tvar plochy nejobvyklejší souřadnice závislé na hodnotách dvou parametrů u a v P = {[x,y,z]; x=x(u,v), y=y(u,v), z=z(u,v), u <u min, u max >, v <v min, v max >} X(u,v), Y(u,v), Z(u,v)... parametrické funkce plochy P jeden z parametrů plochy fixován parametrická rovnice křivky na ploše 24/67 Jana Štanclová,

25 Modelování křivek a ploch MODELOVÁNÍ KŘIVEK A PLOCH 25/67 Jana Štanclová,

26 Modelování křivek a ploch idea nelze zadat všechny body křivky/plochy je jich nekonečně zadají se nejdůležitější jší uzlové body např. body, kde křivka/plocha mění směr, obrací se,... typicky požadavek na hladkost křivky/plochy bez ostrých vrcholů základní metody interpolace křivka/plocha prochází uzlovými body aproximace křivka/plocha nemusí procházet uzlovými body křivka probíhá okolo uzlových bodů a kopíruje je 26/67 Jana Štanclová,

27 Modelování křivek a ploch Aproximace Interpolace 27/67 Jana Štanclová,

28 Fergusonovy kubiky FERGUSONOVY KUBIKY 28/67 Jana Štanclová,

29 Fergusonovy kubiky interpolační křivka J. C. Ferguson, 1964 Fergusonova kubika dva řídící body P 0 a P 1 krajní body křivky křivka jimi prochází určují polohu křivky dva tečné vektory P 0 a P 1 v řídících bodech P 0 a P 1 směr a velikost tečných vektorů míra vyklenutí křivky větší velikost vektorů křivka se více přimyká k vektoru rovnice křivky P(t) = P 0 F 1 (t) + P 1 F 2 (t) + P 0 F 3 (t) + P 1 F 4 (t) kde F 1,..., F 4 jsou kubické Hermitovské polynomy F 1 (t) = 2t 3 3t F 3 (t) = t 3 2t 2 + t F 2 (t) = -2t 3 + 3t 2 F 4 (t) = t 3 t 2 29/67 Jana Štanclová,

30 Fergusonovy kubiky vektor P 0 konstantní... vektor P 1 se mění 30/67 Jana Štanclová,

31 Fergusonovy kubiky applet: 31/67 Jana Štanclová,

32 Fergusonovy kubiky výhody snadné navazování Fergusonových kubik?? 32/67 Jana Štanclová,

33 Fergusonovy kubiky výhody snadné navazování Fergusonových kubik poslední bod předchozího segmentu = první bod následujícího segmentu hladkost spojených dvou kubik?? 33/67 Jana Štanclová,

34 Fergusonovy kubiky výhody snadné navazování Fergusonových kubik poslední bod předchozího segmentu = první bod následujícího segmentu hladkost spojených dvou kubik ztotožnění tečných vektorů ztotožněných bodů nevýhody poměrně nesnadná editace tečného vektoru ve 3D 34/67 Jana Štanclová,

35 Beziérovy křivky BEZIÉROVY KŘIVKY 35/67 Jana Štanclová,

36 Beziérovy křivky aproximační křivka vlastnosti křivka prochází prvním a posledním uzlem k ostatním bodům se křivka pouze přibližuje úsečky spojující dva krajní uzly se dotýkají křivky v koncových bodech spojnice prvního a druhého bodu, posledního a předposledního bodu jinak průběh křivky zcela hladký n = n rovnice P ( t ) = P B ( t ) i= 0 kde B n i jsou Bernsteinovy polynomy n n i ( ) ( ) n B i i t = t 1 t i i i 36/67 Jana Štanclová,

37 Beziérovy křivky applet: win program Paint: kliknout a táhnout počáteční a koncový bod kliknout a táhnout vytváří se oblouk (a ještě jednou zopakovat) 37/67 Jana Štanclová,

38 Beziérovy křivky nevýhody křivka určena velkým počtem bodů složitý výpočet bodu na křivce vnitřní bod křivky závisí na všech uzlech posun jednoho uzlu změna tvaru celé křivky řešení:?? 38/67 Jana Štanclová,

39 Beziérovy křivky nevýhody křivka určena velkým počtem bodů složitý výpočet bodu na křivce vnitřní bod křivky závisí na všech uzlech posun jednoho uzlu změna tvaru celé křivky řešení: složitější křivky spojení několika kratších křivek lepší výpočet kratších křivek lokální oprava tvaru křivky změna polohy jednoho uzlu změna jednoho úseku křivky ostatní úseky nezměněny 39/67 Jana Štanclová,

40 Beziérovy křivky spojování dvou Beziérových křivek?? 40/67 Jana Štanclová,

41 Beziérovy křivky spojování dvou Beziérových křivek ztotožnění krajních vrcholů spojení křivek nemusí být hladké hladké spojení?? 41/67 Jana Štanclová,

42 Beziérovy křivky spojování dvou Beziérových křivek ztotožnění krajních vrcholů spojení křivek nemusí být hladké hladké spojení 3 krajní body na jedné přímce předposlední uzel křivky Q1 poslední uzel křivky Q1 = první uzel křivky Q2 druhý uzel křivky Q2 42/67 Jana Štanclová,

43 Beziérovy křivky v praxi Beziérovy křivky druhého stupně kvadratické křivky definované 3 uzly Beziérovy křivky třetího stupně kubické křivky definované 4 uzly použití definice znakových fontů hladký průběh obrysů písmen jednoduché zadávání možnost libovolně font zvětšovat bez znehodnocení 43/67 Jana Štanclová,

44 Beziérovy plochy BEZIÉROVY PLOCHY 44/67 Jana Štanclová,

45 Beziérovy plochy aproximační plochy stejné principy jako Beziérovy křivky zadány sítí bodů v prostoru obdélníková tabulka bodů/uzlů libovolné velikosti rohové uzly poloha rohů plochy okrajové řady/sloupce uzlů okrajové Beziérovy křivky vnitřní uzly tvar uvnitř plochy 45/67 Jana Štanclová,

46 Beziérovy plochy editace uzlů 46/67 Jana Štanclová,

47 Beziérovy plochy nevýhody vnitřní bod plochy závisí na všech ostatních uzlech definiční sítě řešení: jako u Beziérových křivek složitější plochy: spojování více plátů dohromady plát = jedna Beziérova plocha typicky bikvadratický Beziérový plát plocha zadaná 3 3 uzly bikubický Beziérový plát výhody plocha zadaná 4 4 uzly lokální oprava komplikované plochy rychlejší výpočet i zobrazení 47/67 Jana Štanclová,

48 Beziérových plochy napojení plátů napojení Beziérových plátů?? 48/67 Jana Štanclová,

49 Beziérových plochy napojení plátů napojení Beziérových plátů ztotožnění krajních řad/sloupců napojení nemusí být hladké hladké napojení?? 49/67 Jana Štanclová,

50 Beziérových plochy napojení plátů napojení Beziérových plátů ztotožnění krajních řad/sloupců napojení nemusí být hladké hladké napojení vliv dalších řad uzlů sousedících se společným okrajem plátů trojice uzlů na úsečkách úsečky rozděleny prostředními uzly ve stejném poměru 50/67 Jana Štanclová,

51 Speciální Beziérovy pláty speciální plát... záplata degenerace jedné/dvou okrajových křivek okrajová křivka plátu = Beziérova křivka zadaná krajní řadou/sloupcem uzlů spojení těchto uzlů do jediného degenerace křivky do jediného bodu výsledná plocha má méně rohů a okrajových křivek příklad: trojúhelníkový plát jeden dvojitý roh 51/67 Jana Štanclová,

52 B-spline křivky COONSOVY (B-SPLINE) KŘIVKY 52/67 Jana Štanclová,

53 B-spline křivky aproximační křivky princip zadání: podobný Beziérovým křivkám bez omezující podmínky pro hladké napojení dvou křivek zadány posloupností bodů začátek křivky antitěžištěišt trojúhelníka ABC směr křivky v krajním bodě rovnoběžný se stranou trojúhelníka AC 53/67 Jana Štanclová,

54 B-spline křivky aproximační křivky princip zadání: podobný Beziérovým křivkám bez omezující podmínky pro hladké napojení dvou křivek zadány posloupností bodů začátek křivky antitěžištěišt trojúhelníka ABC směr křivky v krajním bodě rovnoběžný se stranou trojúhelníka AC 54/67 Jana Štanclová,

55 Prodlužování B-spline křivek první úsek... P 0 P 1 P 2 P 3 druhý úsek... P 1 P 2 P 3 P 4 společný bod... antitěžistě trojúhelníka P 1 P 2 P 3 směr ve společném bodě... rovnoběžný s úsečkou P 1 P 3 společný pro obě křivky hladké spojení 55/67 Jana Štanclová,

56 Prodlužování B-spline křivek snadné napojování/prodlužování ování křivek dvě spojené křivky společné 3 definiční uzly prodloužení křivky o jeden úsek přidání jednoho nového uzlu napojování B-spline křivek zopakovány poslední tři uzly na kraj přidán jeden nový uzel 56/67 Jana Štanclová,

57 B-spline křivky vliv definičního ního uzlu na maximálně?? úseky křivek 57/67 Jana Štanclová,

58 B-spline křivky vliv definičního ního uzlu na maximálně 4 úseky křivek oprava křivky posun jednotlivých uzlů posun jednoho uzlu lokální oprava křivky změna max. 4 sousedních částí křivek zbytek křivky nezměněn 58/67 Jana Štanclová,

59 B-spline plochy COONSOVY (B-SPLINE) PLOCHY 59/67 Jana Štanclová,

60 B-spline plochy aproximační plochy zadány sítí bodů v prostoru obdélníková tabulka bodů/uzlů libovolné velikosti B-spline plocha prochází volně zadanou soustavou uzlů variabilita B-spline plochy konstrukce složitějších tvarů plochy složené z hodně plátů dva sousední pláty společné 3 řady uzlů sestavená plocha vždy hladká lokální opravy plochy posuny definičních uzlů změna jednoho uzlu změna?? sousedních plátů 60/67 Jana Štanclová,

61 B-spline plochy aproximační plochy zadány sítí bodů v prostoru obdélníková tabulka bodů/uzlů libovolné velikosti B-spline plocha prochází volně zadanou soustavou uzlů variabilita B-spline plochy konstrukce složitějších tvarů plochy složené z hodně plátů dva sousední pláty společné 3 řady uzlů sestavená plocha vždy hladká lokální opravy plochy posuny definičních uzlů změna jednoho uzlu změna 4-16 sousedních plátů speciální pláty pomocí vícenásobných uzlů 61/67 Jana Štanclová,

62 B-spline plochy změna tvaru plochy každý obrázek vznikl změnou polohy jediného uzlu 62/67 Jana Štanclová,

63 β-spline křivky β-spline KŘIVKY 63/67 Jana Štanclová,

64 β-spline křivky aproximační křivky zobecnění kubických B-spline křivek variabilnější úsek křivky 4 řídící uzly dva sousední úseky společné 3 uzly sklon β 1 posunutí křivky vzhledem k řídícím uzlům standardně β 1 = 1 β 1 < 1... posun k prvnímu uzlu β 1 > 1... posun k poslednímu uzlu napětí β 2 stupeň přesnosti aproximace jak moc křivka přitahována/odpuzována od uzlů β 2 = 0 klasická B-spline křivka 64/67 Jana Štanclová,

65 β-spline křivky změna tvaru křivky při posunutí jednoho řídícího uzlu 65/67 Jana Štanclová,

66 β-spline plochy β-spline PLOCHY 66/67 Jana Štanclová,

67 β-spline plochy aproximační plochy zobecnění bikubických B-spline ploch β-spline plát zadán 16 řídících uzlů sklony β 1u a β 1v sklon plochy v obou směrech napětí plochy β 2 stupeň přesnosti aproximace jak moc plocha přitahována/odpuzována od uzlů 67/67 Jana Štanclová,

Jana Dannhoferová Ústav informatiky, PEF MZLU

Jana Dannhoferová Ústav informatiky, PEF MZLU Počítačová grafika Křivky Jana Dannhoferová (jana.dannhoferova@mendelu.cz) Ústav informatiky, PEF MZLU Základní vlastnosti křivek křivka soustava parametrů nějaké rovnice, která je posléze generativně

Více

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming

Aproximační křivky. Trocha historie. geometrické modelování veliký pokrok v oblasti letectví 1944 Roy Liming Trocha historie geometrické modelování veliký pokrok v oblasti letectví 944 Roy Liming analytik, North American Aviation (výrobce letadel) společně s konstruktérem a designérem Edgardem Schmuedem matematizace

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Plochy zadané okrajovými křivkami

Plochy zadané okrajovými křivkami Plochy zadané okrajovými křivkami Lineární plát plocha je určena dvěma okrajovými křivkami, pokud by pro tyto křivky byly intervaly, v nichž leží hodnoty parametru, různé, provedeme lineární transformaci

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

Základní vlastnosti ploch

Základní vlastnosti ploch plocha zpravidla se definuje jako výsledek spojitého pohybu jisté tvořící křivky podél zadané trajektorie lze obohatit o možnost spojitých změn tvaru tvořící křivky x v průběhu pohybu podél trajektorie

Více

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura:

8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: 8 Plochy - vytvoření, rozdělení, tečná rovina a normála. Šroubové plochy - přímkové, cyklické. Literatura: (1)Poláček, J., Doležal, M.: Základy deskriptivní a konstruktivní geometrie, díl 5, Křivky a plochy

Více

POČÍTAČOVÁ GRAFIKA - PGR 2012037 2014 2015 PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214

POČÍTAČOVÁ GRAFIKA - PGR 2012037 2014 2015 PROGRAM PŘEDNÁŠEK. Po 9:00-10:30, KN:A-214 PROGRAM PŘEDNÁŠEK Po 9:00-10:30, KN:A-214 1P 16. 2. Křivky definice, analytické vyjádření. Bézierova křivka definice, vlastnosti, odvození Bernsteinových polynomů, de Castejlau algoritmus. 2P 23. 2. Spojitost

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Diplomová práce Prostředí pro programování pohybu manipulátorů

Diplomová práce Prostředí pro programování pohybu manipulátorů Diplomová práce Prostředí pro programování pohybu manipulátorů Štěpán Ulman 1 Úvod Motivace: Potřeba plánovače prostorové trajektorie pro výukové účely - TeachRobot Vstup: Zadávání geometrických a kinematických

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4

Fergusnova kubika, která je definována pomocí bodu P1, vektoru P1P2, bodu P3 a vektoru P3P4 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Zelená c. Modrá d. Červená Úloha 2 Jakým minimálním počtem bodů je jednoznačně určena interpolační křivka 5. řádu? a. 6 b. 3 c. 5 d. 7

Více

Matematický ústav UK Matematicko-fyzikální fakulta

Matematický ústav UK Matematicko-fyzikální fakulta Geometrické modelování Zbyněk Šír Matematický ústav UK Matematicko-fyzikální fakulta 5. října 2016 Zbyněk Šír (MÚ UK) - Geometrické modelování 5. října 2016 1 / 14 Obsah dnešní přednášky Co je to geometrické

Více

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem Analytická geometrie - kružnice Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A = ; 5 [ ] Napište středový i obecný tvar rovnice kružnice, která má střed

Více

KMA/GPM Barycentrické souřadnice a

KMA/GPM Barycentrické souřadnice a KMA/GPM Barycentrické souřadnice a trojúhelníkové pláty František Ježek jezek@kma.zcu.cz Katedra matematiky Západočeské univerzity v Plzni, 2008 19. dubna 2009 1 Trojúhelníkové pláty obecně 2 Barycentrické

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

Rhino - základní příkazy

Rhino - základní příkazy Rhino - základní příkazy Příkazy - volíme z hlavní nabídky levým tlačítkem myši - ikonou z nástrojové lišty levým (LTM)/pravým(PTM) tlačítkem myši Příkaz ukončíme pravým tlačítkem myši (Enter) nebo klávesou

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při . VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Funkce dvou a více proměnných

Funkce dvou a více proměnných Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:

Více

Kružnice, úhly příslušné k oblouku kružnice

Kružnice, úhly příslušné k oblouku kružnice KRUŽNICE, KRUH Kružnice, úhly příslušné k oblouku kružnice Je dán bod S a kladné číslo r. Kružnice k(s;r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Můžeme také říci. Kružnicí k

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2].

obecná rovnice kružnice a x 2 b y 2 c x d y e=0 1. Napište rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem A[-3;2]. Kružnice množina bodů, které mají od středu stejnou vzdálenost pojmy: bod na kružnici X [x, y]; poloměr kružnice r pro střed S[0; 0]: SX =r x 0 2 y 0 2 =r x 2 y 2 =r 2 pro střed S[m; n]: SX =r x m 2 y

Více

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3]

Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] 1 Parametricke vyjadreni primky Priklad 16 Priklad 17 Priklad 18 jestlize Urci parametricke vyjadreni primky zadane body A[2;1] B[3;3] Urci, zda bod P [-3;5] lezi na primce AB, kde A[1;1] B[5;-3] Urci,

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

MATEMATIKA II - vybrané úlohy ze zkoušek (2015)

MATEMATIKA II - vybrané úlohy ze zkoušek (2015) MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z

Napište rovnici tečné roviny ke grafu funkce f(x, y) = xy, která je kolmá na přímku. x = y + 2 = 1 z Diferenciální počet příklad Napište rovnici tečné roviny ke grafu funkce fx, y) = xy, která je kolmá na přímku x + = y + = 1 z Řešení: Směrový vektor dané přímky je n p =, 1, 1). Na ploše dané rovnicí

Více

na magisterský studijní obor Učitelství matematiky pro střední školy

na magisterský studijní obor Učitelství matematiky pro střední školy Datum:... Jméno:... Přijímací řízení pro akademický rok 203/4 na magisterský studijní obor Učitelství matematiky pro střední školy Písemná část přijímací zkoušky z matematiky Za každou správnou odpověd

Více

HVrchlík DVrchlík. Anuloid Hrana 3D síť

HVrchlík DVrchlík. Anuloid Hrana 3D síť TVORBA PLOCH Plochy mají oproti 3D drátovým modelům velkou výhodu, pro snadnější vizualizaci modelů můžeme skrýt zadní plochy a vytvořit stínované obrázky. Plochy dále umožňují vytvoření neobvyklých tvarů.

Více

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1 9 přednáška 6 listopadu 007 Věta 11 Nechť f C U, kde U R m je otevřená množina, a a U je bod Pokud fa 0, nemá f v a ani neostrý lokální extrém Pokud fa = 0 a H f a je pozitivně negativně definitní, potom

Více

Těleso racionálních funkcí

Těleso racionálních funkcí Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso

Více

MATEMATIKA I REÁLNÁ FUNKCE DVOU A VÍCE PROMĚNNÝCH II FAKULTA STAVEBNÍ MODUL BA01 M10, GA04 M04

MATEMATIKA I REÁLNÁ FUNKCE DVOU A VÍCE PROMĚNNÝCH II FAKULTA STAVEBNÍ MODUL BA01 M10, GA04 M04 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA I MODUL BA01 M10, GA04 M04 REÁLNÁ FUNKCE DVOU A VÍCE PROMĚNNÝCH II STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 1 0 Typeset

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování

SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování KATEDRA ANALYTICKÉ CHEMIE FAKULTY CHEMICKO TECHNOLOGICKÉ UNIVERSITA PARDUBICE - Licenční studium chemometrie LS96/1 SEMESTRÁLNÍ PRÁCE X. Aproximace křivek Numerické vyhlazování Praha, leden 1999 0 Úloha

Více

PROGRAMU 2. Obvod D je dán součtem velikostí všech tří stran D=a+b+c= =23.07

PROGRAMU 2. Obvod D je dán součtem velikostí všech tří stran D=a+b+c= =23.07 VZOROVÉ ŘEŠENÍ A VYSVĚTLENÍ PROGRAMU. Ing. Marek Nikodým Ph.D. Katedra matematiky a deskriptívní geometrie VŠB-TU Ostrava 1 Výpočty v trojúhelníku Je dán trojúhelník ABC v prostoru A[, 3, 3], B[4, 5, ],

Více

Analytická geometrie (AG)

Analytická geometrie (AG) Analytická geometrie (AG) - zkoumá geometrické útvary pomocí algebraických a analytických metod Je založena na vektorech a soustavě souřadnic, rozděluje se na AG v rovině a v prostoru. Analytická geometrie

Více

Interpolace, aproximace

Interpolace, aproximace 11 Interpolace, aproximace Metoda nejmenších čtverců 11.1 Interpolace Mějme body [x i,y i ], i =0, 1,...,n 1. Cílem interpolace je najít funkci f(x), jejíž graf prochází všemi těmito body, tj. f(x i )=y

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ 11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

PŘÍKLADY K MATEMATICE 2

PŘÍKLADY K MATEMATICE 2 PŘÍKLADY K MATEMATICE ZDENĚK ŠIBRAVA. Funkce více proměnných.. Základní pojmy funkce více proměnných. Příklad.. Určeme definiční obor funkce tří proměnných f(x, y, z) = x y + x z. Řešení: Definičním oborem

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Přehled. Motivace Úvod. Křivky a plochy počítačové grafiky. Závěr. Rozvoj počítačové grafiky Výpočetní geometrie

Přehled. Motivace Úvod. Křivky a plochy počítačové grafiky. Závěr. Rozvoj počítačové grafiky Výpočetní geometrie Vývoj výpočetní geometrie Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz Přehled Motivace Úvod Rozvoj počítačové grafiky Výpočetní geometrie Křivky a plochy počítačové

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch

Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Rekonstrukce ploch: Polygonální a analytická reprezentace Vybrané metody aproximace ploch Petra Surynková Matematicko-fyzikální fakulta Univerzita Karlova v Praze petra.surynkova@mff.cuni.cz Přehled (1)

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Funkce více proměnných. April 29, 2016

Funkce více proměnných. April 29, 2016 Funkce více proměnných April 29, 2016 Příklad (Derivace vyšších řádů) Daná je funkce f (x, y) = x 2 y + y 3 x 4, určte její parc. derivace podle x a podle y prvního i druhého řádu, i smíšené. f x = 2xy

Více

PŘÍKLADY K MATEMATICE 3

PŘÍKLADY K MATEMATICE 3 PŘÍKLADY K ATEATIE 3 ZDENĚK ŠIBRAVA. Křivkové integrály.. Křivkový integrál prvního druhu. Příklad.. Vypočítejme křivkový integrál A =, ), B = 4, ). Řešení: Úsečka AB je hladká křivka. Funkce ψt) = 4t,

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d.

Text úlohy. Která barva nepatří do základních barev prostoru RGB? Vyberte jednu z nabízených možností: a. Černá b. Červená c. Modrá d. Úloha 1 Která barva nepatří do základních barev prostoru RGB? a. Černá b. Červená c. Modrá d. Zelená Úloha 2 V rovině je dán NEKONVEXNÍ n-úhelník a bod A. Pokud paprsek (polopřímka) vedený z tohoto bodu

Více

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté

Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté Úloha 1. Napište matici pro případ lineárního regresního spline vyjádřeného přes useknuté polynomy pro případ dvou uzlových bodů ξ 1 = 1 a ξ 2 = 4. Experimentální body jsou x = [0.2 0.4 0.6 1.5 2.0 3.0

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,

Řešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1, Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,

Více

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f

Definice globální minimum (absolutní minimum) v bodě A D f, jestliže X D f Výklad Globální extrémy mají stejný význam jako u funkcí jedné proměnné. Hledáme je bud na celém definičním oboru dané funkce, nebo na předem zadané podmnožině definičního oboru. Definice 6..1. Řekneme,

Více

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: Grafická data jsou u 2D vektorové grafiky uložena ve voxelech. Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Různé metody řešení Téma: Analytická geometrie v prostoru, vektory, přímky Autor:

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R.

8.1. Určete všechny lokální extrémy funkce f(x, y) = x 2 + arctg 2 x + y 3 + y, x, y R. Řešené příklady k extrémům funkcí více proměnných 8 Určete všechny lokální extrémy funkce fx y x + arctg x + y + y x y R Řešení Funkci f si vyjádříme jako součet f + f kde f x x + arctg x x R f y y + y

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky 1. Lineární rovnice a nerovnice a) Rovnice a nerovnice s absolutní hodnotou absolutní hodnota reálného čísla definice, geometrický význam, srovnání řešení rovnic s abs. hodnotou

Více

Petr Hasil

Petr Hasil Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny

Více

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:

2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl: KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku

Více

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36

Diferenciální rovnice a jejich aplikace. (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Diferenciální rovnice a jejich aplikace Zdeněk Kadeřábek (Brkos 2011) Diferenciální rovnice a jejich aplikace 1 / 36 Obsah 1 Co to je derivace? 2 Diferenciální rovnice 3 Systémy diferenciálních rovnic

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Cvičení z matematiky Náplň: Systematizace a prohloubení učiva matematiky Třída: 4. ročník Počet hodin: 2 Pomůcky: Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné obory

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

Počítačová grafika RHINOCEROS

Počítačová grafika RHINOCEROS Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá

Více

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky Systematizace a prohloubení učiva matematiky 4. ročník 2 hodiny Učebna s dataprojektorem, PC, grafický program, tabulkový procesor Číselné

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) = Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce

VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce VY_32_INOVACE_M-Ar 8.,9.20 Lineární funkce graf, definiční obor a obor hodnot funkce Anotace: Prezentace zavádí pojmy lin. funkce, její definiční obor a obor hodnot funkce. Dále vysvětluje typy funkcí

Více

Obecný princip 3D numerického modelování výrubu

Obecný princip 3D numerického modelování výrubu Obecný princip 3D numerického modelování výrubu Modelovaná situace Svislé zatížení nadloží se přenáší horninovým masivem na bok tunelu Soustava lineárních rovnic Soustavou lineárních rovnic popíšeme určované

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

Transformace obrazu. Pavel Strachota. 16. listopadu FJFI ČVUT v Praze

Transformace obrazu. Pavel Strachota. 16. listopadu FJFI ČVUT v Praze Transformace obrazu Pavel Strachota FJFI ČVUT v Praze 16. listopadu 2012 Obsah 1 Interpolace 2 Geometrické transformace obrazu 3 Alpha-blending, warping, morphing Obsah 1 Interpolace 2 Geometrické transformace

Více

Lingebraické kapitolky - Analytická geometrie

Lingebraické kapitolky - Analytická geometrie Lingebraické kapitolky - Analytická geometrie Jaroslav Horáček KAM MFF UK 2013 Co je to vektor? Šipička na tabuli? Ehm? Množina orientovaných úseček majících stejný směr. Prvek vektorového prostoru. V

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.

Více

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky

Rovnice přímky vypsané příklady. Parametrické vyjádření přímky Rovnice přímky vypsané příklady Zdroj: Vše kromě příkladu 3.4: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=parametrickevyjadre ni Příklady 3.5 a 3.7-1 a 3: http://kdm.karlin.mff.cuni.cz/diplomky/jan_koncel/rovina.php?kapitola=obecnarovnice

Více