Rozměr: px
Začít zobrazení ze stránky:

Download ""

Transkript

1 VLIV PARAMETRŮ TERMOMECHANICKÉHO ZPRACOVÁNÍ NA VÝSLEDNOU MIKROSTRUKTURU TRIP OCELI S VYSOKÝM OBSAHEM HLINÍKU EFFECTS OF THERMOMECHANICAL PROCESSING PARAMETERS ON FINAL MICROSTRUCTURE OF ALUMINIUM BEARING TRIP STEEL Gabriela Pleštilová a Mahesh Somani b Pentti Karjalainen b Jiří Kliber a a VŠB - TU Ostrava, Fakulta metalurgie a materiálovégho inženýrství, Katedra Tváření materiálu, 17. listopadu 15, Ostrava-Poruba, Česká Republika, b University of Oulu, Department of Mechanical Engineering, Materials Technology Laboratory, P.O.Box 4200, University of Oulu, Finland, Abstrakt V článku jsou popsány experimenty týkající se studia vlivů jednotlivých činitelů termomechanického zpracování na výslednou mikrostrukturu TRIP (Transformačně Indukovaná Plasticita) oceli a stanovení optimálních parametrů pro termomechanické zpracování. Materiálem pro tyto experimenty byla TRIP ocel s vysokým obsahem hliníku (1,320 % Al). Vzorky byly odlity, následně překovány na tyč, řezány a soustruženy na konečné rozměry. K provedení simulací termomechanického zpracování bylo použito zařízení Gleeble Vzorky byly ohřáty na austenitizační teplotu 1100 C, po výdrži na této teplotě, byly chlazeny na teplotu tváření 850 C, po jejich deformaci za tepla následovalo zrychlené ochlazování na bainitickou teplotu ( C) s výdrží 150 až 300 s na této teplotě. Následovalo volné chlazení vzduchem. Výsledná mikrostruktura byla vyhodnocena několika různými způsoby, tj. použitím dat získaných dilatometrickými měřeními, optickou mikroskopií a EBSD. Porovnáním takto zpracovaných výsledků byl zjištěn vyšší obsah bainitické fáze ve strukturách ochlazovaných vyšší rychlostí oproti vzorkům ochlazovaným pomaleji. Abstract There are described experiments containing the study of thermomechanical processing parameters effects on the TRIP (Transformation Induced Plasticity) steel microstructure and specifying optimal thermomechanical processing factors in the report. Aluminium bearing TRIP-aided steel was used for the experiments (1,320 % Al). Material for specimens was cast, forced to a rod, cut and turned into needed size. Gleeble 1500 was used for the plastometrical simulation. Specimens were reheated to the austenitization temperature 1100 C and hold after that they were cooled to the temperature of deformation and thereafter accelerated cooled to the bainitic transformation temperature ( C). Specimens were hold at the bainitic transformation temperature and then air cooled. Final microstructures were evaluated on the bases of transformation diagrams and optical microscopy foundations. Experiments resulted 1

2 in detection of higher bainitic contents in the specimens cooled with higher cooling rate compared to slower cooled specimens. 1. ÚVOD V současnosti dochází k neustálému vývoji nových materiálů vzhledem ke stále vzrůstajícím požadavkům. Jedná se hlavně o oceli BH, IF, HSLA, DP a TRIP, přehled jejich tažností a pevností v tahu je uveden na obrázku 1. Všechny z výše uvedených ocelí nacházejí své uplatnění, díky svým vlastnostem řízeným především chemickým složením a různými typy zpevňovacích mechanismů, převážně v automobilovém průmyslu. BH (= Bake Hardening) jsou oceli, které získávají svou tvrdost v průběhu vypalování laků hotových výrobků [1]. Dominantním mechanismem BH efektu je difúze atomů uhlíku Obr. 1. Vztah mezi pevností v tahu a tažností pro různé typy ocelí [7] Fig. 1. Tensile strength and elongation relationship of various steels [7] do napěťových pásem dislokací [2]. IF (= Interstitial Free) oceli vynikají svou vysokou tvařitelností ovlivňovanou množstvím intersticiálních prvků (především uhlíku a dusíku). Je nutné, aby obsah těchto prvků v oceli byl co nejnižší, protože s klesajícím obsahem těchto prvků tvařitelnost roste [3]. Důležité je také umístění těchto prvků, jelikož v podobě precipitátů snižují houževnatost materiálu pouze nevýrazně, proto jsou tyto oceli legovány titanem a niobem. Tyto prvky vytvářejí samostatně nebo v kombinaci ještě s jinými prvky precipitáty, např. Ti 4 C 2 S 2, Nb(CN) [4]. V případě oceli HSLA (= High Strength Low Alloyed) se jedná o běžnou mikrolegovanou ocel, k jejímuž zpevnění dochází vyloučením precipitátů niobu a titanu [5]. DP (= Dual Phase) jsou vysokopevnostní oceli s feritickou matricí, v níž je obsaženo 10 až 20 % martenzitu, často bývá feritická matrice precipitačně zpevněna manganem, křemíkem, popřípadě molybdenem, chromem nebo vanadem [6]. Vícefázové oceli, tedy TRIP (= Transformation Induced Plasticity) oceli, jsou tvořeny feritickou matricí s 20 až 35 % podílem bainitu a s 5 až 20 % podílem zbytkového austenitu. Zbytkový austenit vlivem napěťově indukované transformace přechází na martenzit. Při výrobě této oceli se prolíná několik typů zpevňovacích mechanismů, jedná se o transformačně indukované zpevnění, precipitační zpevnění a zpevnění tuhého roztoku vlivem intersticiálních a substitučních prvků. Nejvýznamnějším je tzv. TRIP efekt [8, 9, 10]. 2. TRIP OCELI NA BÁZI HLINÍKU Do současné doby se výzkum soustředil převážně na TRIP oceli legované především manganem a křemíkem. Je nutné uvést, že tyto oceli mají zhoršené povrchové vlastnosti. Při klasickém pokovování hotových vývalků ponořením do lázně roztaveného kovu. Špatný povrch je zapříčiněn tvorbou velmi stabilního oxidu Mn 2 SiO 4, který vzniká během tepelného zpracování [11]. Pokovování je důležitou operací v průmyslové výrobě, například pozinkování plechů používaných v automobilové výrobě, je nezbytné. Některé součásti automobilů jsou vystavovány nepřetržitě se měnícím vlivům počasí, čímž dochází, bez této povrchové úpravy, k jejich korozi. Z výše uvedeného důvodu se v poslední době vývoj 2

3 a výzkum zaměřil i na TRIP oceli, u nichž je křemík nahrazen jinými legujícími prvky, především hliníkem. Hliník nevytváří na povrchu TRIP oceli oxidy zabraňující galvanizování. Nahrazení podílu křemíku v TRIP oceli může být buď částečné nebo úplné. Dalším možným řešením problému galvanizovatelnosti křemíkové TRIP oceli je přídavek fosforu. Toto řešení však není nejvhodnější, vzhledem k vlivu fosforu na mechanické vlastnosti oceli. 2.1 Vliv hliníku na obsah fází Jednotlivé druhy TRIP ocelí se v průběhu termomechanického zpracování chovají odlišně. Kinetiku fázových transformací ovlivňují v závislosti na svém chemickém složení, Důležitým činitelem je především celkový podíl feritotvorných a austenitotvorných prvků v nich obsažených. Hliník stejně jako křemík je feritotvorným prvkem. Ale hliník je na rozdíl od křemíku silně feritotvorným prvkem. Tato vlastnost hliníku způsobuje značné rozšíření feritické oblasti [12]. U TRIP ocelí s vyšším obsahem hliníku tedy nelze dosáhnout plně austenitické oblasti. Teplota A 3, což je teplota při které začíná plně austenitická oblast, neexistuje. 2.2 Zjišťování mikrostruktury K získání požadovaných mechanických vlastností TRIP ocelí je nutné použít vhodné termomechanické zpracování. K zajištění jeho nejvhodnějšího průběhu je nezbytná znalost finální mikrostruktury, kterou lze zjišťovat několika způsoby. U TRIP ocelí se jako jedna z vhodných metod k detekci mikrostruktury ukazuje určení transformačních teplot z dilatometrických měření, pomocí nichž lze určit zda je daná fáze v oceli obsažena, popř. při jaké teplotě vzniká. Vzorky jsou ohřívány na požadovanou teplotu a následně ochlazovány danou rychlostí, současně se měří jejich velikost, v okamžiku, kdy dojde k fázové přeměně se změní objem materiálu, což se projeví změnou tvaru křivky. Příklad dilatometrické křivky pro TRIP ocel s chemickým složením: 0,262 % C, 1,455 % Mn, 0,0204 % Si, 1,320 % Al, 0,007 % P, 0,003 % S, 0,068 % Ni, 0,018 % Mo, 0,003 % V, 0,011 % W a 0,055 % Cu, je uveden na obrázku 2. V tomto případě byl vzorek ohříván rychlostí 10 C/s na teplotu austenitizace 1000 C, na které následovala výdrž 300 s, následně byl vzorek ochlazován rychlostí 10 C/s. Z bodu 1 do bodu 2 probíhal ohřev, mezi bodem 2 a 3 je znázorněna výdrž na austenitizační teplotě. Křivka mezi bodem 3 a 6 je ochlazovací křivka, kde je mezi body Obr. 2. Dilatometrická křivka Fig. 2. The dilatometric curve 4 a 5 došlo k bainitické transformaci. Rovněž lze použít i optickou mikroskopii. Nejvhodnějším způsobem leptání pro TRIP oceli je metoda Le Pera, která byla navržena pro vysokopevnostní DP oceli [13]. Tímto způsobem lze odlišit ferit, bainit a martenzit. Obr. 3. Mikrostruktura leptaná Le Pera Fig. 3. Le Pera etched microstructure 3

4 Problémem je odlišení martenzitu a zbytkového austenitu, protože obě fáze jsou vidět optickým mikroskopem bíle. Příklad takto získané mikrostruktury je na obrázku 3. Dalším způsobem vyhodnocování struktury je metoda EBSD (= Electron Backscatter Difraction), která je založena na odrazu elektronů. Vzorek se umístí do komory SEM mikroskopu. Úhel mezi dopadajícími paprsky elektronů a povrchem vzorku je 20, čímž se zvyšuje podíl zpětně odražených elektronů, dochází k difrakci [14]. Na základě tohoto odrazu elektronů od povrchu vzorku je vytvořen vyzařovací diagram, jehož data jsou následně vyhodnocována. 3. EXPERIMENTÁLNÍ ČÁST Cílem tohoto experimentu bylo stanovení vlivu jednotlivých činitelů při termomechanickém zpracování na výslednou mikrostrukturu TRIP oceli, u níž byl z větší části nahrazen obsah křemíku hliníkem. Zásadním bodem problému byl především obsah austenitické fáze po termomechanickém zpracování, před deformací za studena. Z tohoto důvodu bylo druhým cílem sestavení CCT diagramu, který umožní určení teplot průběhu jednotlivých fázových přeměn této oceli s možností následného využití těchto dat při dalších laboratorních experimentech. 3.1 Provedení experimentu Vhodnou metodou pro provedení jednotlivých testů se ukázala být fyzikální simulace, která se svými výsledky a podmínkami provedení nachází v místech na rozhraní počítačové simulace a vlastní aplikace ve výrobním procesu. Často lze takto získaná data použít právě jako vstupní data pro počítačovou simulaci. K tomuto účelu byl použit systém Gleeble 1500 na Universitě v Oulu, tento přístroj byl sestaven pro provádění fyzikálních simulací různých procesů termomechanického zpracování. Jeho vhodnost pro tento způsob použití podporuje možnost nastavení tepelných i mechanických veličin, včetně možnosti využití velkého rozsahu rychlostí deformace. Materiál použitý k výrobě vzorků, jehož chemické složení je uvedeno v tabulce 1, byl odlit při licí teplotě 1620 C na ingot K kg. Následně byl překován na tyč o příčném průřezu 45 x 80 mm. Tímto způsobem byla odstraněna licí struktura a tedy i možné vady vzniklé odléváním. Tyto tyče byly řezány a nakonec z nich byly vysoustruženy zkušební vzorky konečného tvaru a rozměru, jednalo se o cylindrické vzorky s průměrem 5 mm a délce 8 mm. Tabulka 1. Chemické složení použité TRIP oceli. prvek C Mn Al Si P S Ni Mo V W Cu Fe [hm%] 0,262 1,455 1,320 0,0204 0,007 0,003 0,068 0,018 0,003 0,011 0,055 96,6 Table 1. Chemical composition of the used steel. TRIP ocel je elektriky vodivý materiál, proto bylo možné použít elektrický odporový ohřev, kterým lze zajistit konstantní velikost teploty po celém průřezu vzorku. Gradient teploty je oproti klasickému ohřevu v peci minimální a jeho velikost je způsobena ochlazováním vzorku směrem od povrchu do jeho středu. Lze ho zanedbat. Nevýhodou v případě ohřevu elektrickým odporem je odvod tepla čelistmi, ve kterých je vzorek upevněn, proto je nutné, aby byly čelisti schopné ohřevu a takto vzniklý teplotní gradient byl co nejnižší, proto byly použity čelisti vyrobené z INCONEL MA 754 (ODS superalloy) 4

5 Obr. 4. Schéma termomechanického zpracování Fig. 4.The thermomechanical processing schedule Pro lepší orientaci v problematice termomechanického zpracování této oceli byl sestaven CCT diagram. Vzorky byly austenitizovány při teplotě 1100 C po dobu 300 s, následovalo ochlazení rychlostí 5 C/s na teplotu tváření 850 C, kde proběhla deformace o velikosti 0,55 a rychlosti 2 s -1, jednotlivé ochlazovací rychlosti z teploty tváření byly 1; 2,5; 5; 10; 20; 30 a 50 C/s (viz. obrázek 5). umožňující rychlý odvod tepla ze zkušebního materiálu, který byl nezbytný vzhledem k požadovaným vysokým rychlostem ochlazování. Bylo provedeno několik testů podle schématu uvedeného na obrázku 4. Jednotlivé parametry zpracování byly různě kombinovány. Materiál byl ohřátý na austenitizační teplotu 1100 C s výdrží na této teplotě 300 s, po následném ochlazení rychlostí 5 C/s na teplotu tváření, tj. 850 C proběhla deformace o velikosti 0,35, resp. 0,55 s deformační rychlostí 2 s -1. Ochlazovací rychlost z tvářecí teploty na teplotu bainitické transformace (400 C, 450 C, 500 C, 550 C) byla zvolena 15 C/s, resp. 30 C/s. Na bainitické teplotě proběhla výdrž 150 s, resp. 300 s. 3.2 Dosažené výsledky a jejich rozbor Dilatometrické křivky sestrojené z dat získaných fyzikální simulací Obr. 5. Sestrojený CCT diagram Fig. 5. The constructed CCT diagram termomechanického zpracování byly sestaveny do několika diagramů podle podobnosti různých parametrů, aby bylo možné snadněji provést jejich vzájemné porovnání a pozorovat vlivy různých parametrů na jejich tvar a tím i na výslednou mikrostrukturu C-Mn-Al TRIP oceli. Na obrázku 6 jsou uvedeny dilatometrické křivky vzorků L03 (deformace 0,55, rychlost ochlazování na teplotu bainitické transformace 500 C byla 15 C/s a doba výdrže na této teplotě 300 s) a L04 Obr. 6. Dilatometrické křivky vzorku (deformace 0,55, rychlost ochlazování L03 a L04 na teplotu bainitické transformace 500 C byla 30 C/s a doba výdrže na této teplotě Fig. 6. Dilatometric curves of the 300 s). specimens L03 and L04 Optickou mikroskopií použitím metody Le Pera byly získány snímky, které byly vyhodnocovány za předpokladu, že ve výsledné 5

6 struktuře je obsaženo pouze velmi malé množství (cca 1-2 %) martenzitu vzniklého během ochlazování. Ze snímků (viz. obrázek 7) je patrné vyšší množství zbytkového austenitu (bílá fáze) ve vzorcích ochlazovaných nižšími rychlostmi. Vzhledem k tomu, že vzorku L03 byla použita nízká rychlost ochlazování, měla austenititcká zrna dostatek času pro svůj růst. Příliš velká austenitická zrna, ale nejsou pro napěťově indukovanou martenzitickou transformaci vhodná, jelikož transformují již při nižších hodnotách napětí. Nejvhodnější velikostí zrn zbytkového austenitu pro tzv. TRIP efekt je 0,1 1 µm [15]. Obr. 7. Mikrostrusktura L03 (vlevo) a L04 (vpravo) Fig. 7. Microstructure L03 (left) and L04 (right) Tyto výsledky byly podpořeny i provedením EBSD. Na obrázku 8 jsou snímky vzorků L03 a L04. U vzorku L03 (resp. L04) byl identifikován 8,6 % (resp. 5,7 %) podíl austenitické fáze (na obr. růžově) a 87,8 % (resp. 91,3 %) podíl feritu (na obr. žlutě), neřešený podíl struktury (na obr. černě) byl 3,6 % (resp. 3 %). Bainit spolu s martenzitem jsou zde zahrnuty mezi množství feritické fáze. Je nutné uvést, že data získaná pomocí EBSD jsou zatížena chybami způsobenými 25 až 30 % podílem neřešené struktury, který byl následně softwarem dopočítán na výše uvedené hodnoty. Obr. 8. EBSD diagramy pro vzorky L03 (vlevo) a L04 (vpravo) Fig. 8. EBSD diagrams L03 (left) and L04 (right) 6

7 5. ZÁVĚR Při řešení mikrostruktur byl předpokládán minimální podíl martenzitu ve struktuře. Pro lepší přesnost byly porovnávány výsledky optické mikroskopie s dilatometrickými transformačními křivkami. Byl sestaven CCT diagram, který umožní lepší orientaci mezi jednotlivými transformačními oblastmi při navrhování dalších podmínek termomechanických testů. Nutné podotknout, že tento diagram je zatížen chybami způsobenými zařízením, skluzem v materiálu a subjektivními chybami při vlastním řešení. U mikrostruktur chlazených vyššími rychlostmi byl zjištěn vyšší obsah bainitické fáze. Vzhledem k tomu, že nelze u TRIP ocelí legovaných hliníkem dosáhnout plně austenitické oblasti, se materiál při ochlazování nachází v oblasti feritického nosu. Pokud je rychlost ochlazování vyšší, tedy i doba strávená v tomto intervalu je kratší, vznikne méně feritu. Menší množství feritické fáze má za následek nižší obohacení zbytkového austenitu o uhlík. Zbytkový austenit je tedy méně stabilní a tím během výdrže na teplotě bainitické transformace transformuje větší množství a vznikne více bainitu v porovnání s nižší rychlostí ochlazování. Tato práce vznikla za finanční podpory GRANTOVÉ AGENTURY ČESKÉ REPUBLIKY projekt č. GAČR 106/04/0601, k dílčím experimentům bylo využito zařízení vyvíjené v rámci řešení výzkumného záměru MSM , dále za podpory programu Socrates Erasmus a University of Oulu LITERATURA [1] DE, A. K., VANDEPUTTE S., DE COOMAN B. Kinetics of Strain Aging in Bake Hardening Ultra Low Carbon Steel-a Comparison with Low Carbon Steel. Journal of Materials Engineering and Performance, October 2001, Vol. 10(5), pp [2] KVAČKAJ, T. Fyzikálno-metalurgické aspekty ovládania vlastností vybraných druhov ocelí. Acta Metallurgica Slovaca, 2002, Vol. 8, no. 2, pp [3] JEONG, W. CH. Strength and Formability of Ultra-Low-Carbon Ti-IF Steels. Metallurgical and Materials Transactions A, April 2000, Vol. 31A, pp [4] RUIZ-APARICIO, L. J., GARCIA, C. I., DE ARDO, A. J. Development of {111} Transformation Texture in Interstitial-Free Steels. Metallurgical and Materials Transactions A, Vol. 32A, September 2001, pp [5] [6] JANOVEC, J., MOHELSKÝ, F. Růst užitných vlastností tenkých automobilových pechů. In Metal 1996, Ostrava: TANGER, 1996, pp [7] [8] ŽÁČEK, O., PLEŠTILOVÁ, G., KLIBER, J. Primary austenite grain size evaluation in TRIP steels. In XX Mezinárodní sympozium Metody oceny struktury oraz własności materiałow i wyrobów.. Ustroń-Jaszowiec, Polsko, Zeszyty Naukowe Politechniki Opolskiej, Mechanika, z. 86, Nr.308/2005, s , ISSN [9] KLIBER, J., MAŠEK, B., ŽÁČEK, O., STAŇKOVÁ, H. (2105) Transformation Induced Plasticity (TRIP) Effect Used in Forming Carbon CmnSi Steel. Materials Science Forum Vols (November 2005) pp , Trans Tech Publication, Switzerland [10] KLIBER, J., ŽÁČEK.,O., MAŠEK, B., STAŇKOVÁ, H., NĚMEČEK, S. (5105) Využití transformačně indukované plasticity (TRIP) v technologiích tváření oceli. 14.mez. metal. konference : Hradec nad Moravicí, Česká republika [CD- ROM]. Ostrava : Tanger : Květen, 2005 č ISBN

8 [11] MAHIEU, J.,MAKI, J, DE COOMAN, B. C. Phase Transformation and Mechanical Properties of Si-Free CMnAl Transformation Induced Plasticity-Aided Steel. Metallurgical and Materials Transactions A, August 2002, Vol. 33A, pp [12] MAHIEU, J., VAN DOOREN, D., BARBÉ, L., DE COOMAN, B. C. Influence of Al, Si and P on the kinetics of intercritical annealing of TRIP-aided steels: thermodynamical prediction and experimental verification. In International Conference on TRIP-aided High Strength Ferrous Alloys, Ghent, June 2002, pp [13] LE PERA, F. S. Improved Etching Technique to Emphasize Martensite and Bainite in High-Strength Dual-Phase Steel. Journal of Metals, March 1980, pp [14] ADAM, J., SCHWARTZ, MUKUL, K., ADAMS, B.D. Electron Backscatter Diffraction in Materials Science. New York: Kluwer Academic Plenum Publishers, [15] KRIZAN, D., DE COOMAN, B. C., ANTONISSEN, J. Retained Austenite Stability in the Cold Rolled CMnAlSiP Micro-Alloyed TRIP Steels. A HSSS Proceedings 2004, 2004, pp

VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013

VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013 VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013 Bc. Vojtěch Průcha, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce se zabývá rozborem mikrostruktur

Více

Tváření,tepelné zpracování

Tváření,tepelné zpracování tváření, tepelné zpracování Optimalizace řízeného válcování nové konstrukční oceli se zvláštními užitnými vlastnostmi Prof. Ing. Ivo Schindler, CSc., Doc. Dr. Ing. Jaroslav Sojka, VŠB-TU Ostrava, 17. listopadu

Více

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI

PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI PLASTIC PROPERTIES OF HIGH STRENGHT STEELS CUTTING BY SPECIAL TECHNOLOGIES Pavel Doubek a Pavel Solfronk a Michaela

Více

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI David Aišman D.Aisman@seznam.cz ABSTRACT Tato práce se zabývá možnostmi tepelného zpracování pro experimentální ocel 42SiCr. Jedná

Více

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, 702 00 Ostrava, ČR

MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, 702 00 Ostrava, ČR MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ Tomáš Schellong Kamil Pětroš Václav Foldyna JINPO PLUS a.s., Křišťanova 2, 702 00 Ostrava, ČR Abstract The proof stress and tensile strength in carbon steel can be

Více

Metodika hodnocení strukturních změn v ocelích při tepelném zpracování

Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných

Více

PEVNOSTNÍ MATERIÁLY V KAROSÉRII

PEVNOSTNÍ MATERIÁLY V KAROSÉRII METODY TVÁŘENÍ KOVŦ A PLASTŦ PEVNOSTNÍ MATERIÁLY V KAROSÉRII Důvody použití pevnostních materiálů: v současné době je snaha výrobců automobilů o zvýšení pasivní bezpečnosti (zvýšení tuhosti karoserie)

Více

TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI

TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI Učeň M., Filípek J. Ústav techniky a automobilové dopravy, Agronomická fakulta,

Více

OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg

OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg OPTIMIZATION OF HEAT TREATMENT CONDITIONS TO IMPROVE OF MECHANICAL PROPETIES OF AlSi9Cu2Mg ALLOY Jan Šerák,

Více

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN

5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN 5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury

Více

MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ

MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ Petr HANUS, Michal KONEČNÝ, Josef TOMANOVIČ Katedra mechaniky, materiálů a částí strojů, Dopravní fakulta Jana Pernera, Univerzita

Více

Metalurgie vysokopevn ch ocelí

Metalurgie vysokopevn ch ocelí Metalurgie vysokopevn ch ocelí Vysokopevné svařitelné oceli jsou podle konvence označovány oceli s hodnotou meze kluzu vyšší než 460 MPa. Vysokopevné svařitelné oceli uváděné v normách pod označením M

Více

tváření, tepelné zpracování

tváření, tepelné zpracování Tváření, tepelné zpracování Hutnické listy č. 2/2008 tváření, tepelné zpracování Vliv doválcovací teploty a chemického složení na vlastnosti ocelí s obsahem uhlíku 0,5 0,8 % Prof. Ing. Ivo Schindler, CSc.,

Více

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON

CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON METAL 9 9... 9, Hradec nad Moravicí CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON Vlasák, T., Hakl, J., Čech, J., Sochor, J. SVUM a.s., Podnikatelská, 9 Praha 9,

Více

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER

MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER Kamil Krybus a Jaromír Drápala b a OSRAM Bruntál, spol. s r.

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice 10.ZÁKLADY TEPELNÉHO ZPRACOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace

Více

SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS

SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS SMĚROVÁ KRYSTALIZACE EUTEKTIK SYSTÉMU Ti-Al-Si DIRECTIONAL CRYSTALLIZATION OF Ti-Al-Si EUTECTICS Dalibor Vojtěch a Pavel Lejček b Jaromír Kopeček b Katrin Bialasová a a Ústav kovových materiálů a korozního

Více

VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE

VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE J. Drnek Z. Nový P. Fišer COMTES FHT s.r.o., Borská

Více

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY

MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY MECHANICAL PROPERTIES AND STRUCTURAL STABILITY OF CAST NICKEL ALLOYS AFTER LONG-TERM INFLUENCE OF TEMPERATURE

Více

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU

STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU MEAN EQUIVALENT STRESS VALUES DURING HOT FORMING OF STEELS - INFLUENCE OF CHEMICAL AND STRUCTURE STATE

Více

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových

Více

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,

Více

3. VÝSLEDKY ZKOUŠEK A JEJICH DISKUSE

3. VÝSLEDKY ZKOUŠEK A JEJICH DISKUSE SLEDOVÁNÍ STRUKTURNÍCH CHARAKTERISTIK A VLASTNOSTÍ VÁLCOVANÝCH VÝROBKU Z UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ V SOUVISLOSTI S VLASTNOSTMI PRIMÁRNÍCH KONTISLITKU MONITORING THE STRUCTURE CHARACTERISTIC AND

Více

VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ

VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Transfer inovácií 2/211 211 VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Ing. Libor Černý, Ph.D. 1 prof. Ing. Ivo Schindler, CSc. 2 Ing. Petr Strzyž 3 Ing. Radim Pachlopník

Více

VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ

VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ APPLICATION OF DYNAMIC MODELS OF STEELS IN SIMULATION SOFTWARE FOR MATAL FORMING Milan Forejt a, Zbyněk Pernica b, Dalibor Krásny c Brno

Více

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace

Tepelné a chemickotepelné zpracování slitin Fe-C. Žíhání, kalení, cementace, nitridace Tepelné a chemickotepelné zpracování slitin Fe-C Žíhání, kalení, cementace, nitridace Tepelné zpracování Tepelné zpracování je pochod, při kterém je součást podrobena jednomu nebo několika tepelným cyklům,

Více

Vysoce pevné mikrolegované oceli. High Strength Low Alloy Steels HSLA. Zpracováno s využitím materiálu ASM International

Vysoce pevné mikrolegované oceli. High Strength Low Alloy Steels HSLA. Zpracováno s využitím materiálu ASM International Vysoce pevné mikrolegované oceli High Strength Low Alloy Steels HSLA Zpracováno s využitím materiálu ASM International HSLA oceli Vysokopevné nízkolegované oceli (nebo mikrolegované) oceli pro: - lepší

Více

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING

POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING P. Novák, D. Vojtech, J. Šerák Ústav kovových materiálu

Více

þÿ V l i v v o d í k u n a p e v n o s t a s v ay i t vysokopevných martenzitických ocelí pro automobilové aplikace

þÿ V l i v v o d í k u n a p e v n o s t a s v ay i t vysokopevných martenzitických ocelí pro automobilové aplikace Digitální knihovna Univerzity Pardubice DSpace Repository Univerzita Pardubice http://dspace.org þÿ B a k a l áy s k é p r á c e / B a c h e l o r ' s w o r k s K D P D F J P 2010 þÿ V l i v v o d í k

Více

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí

Více

SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ

SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1

Více

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY INFLUENCE OF HEAT TREATMENT ON PROPERTIES OF FINE-GRAINED WELDABLE STEELS FOR THIN-WALLED CASTINGS Jiří Cejp

Více

Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace

Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Absrakt Vzorky z Cr-V ledeburitické nástrojové oceli vyráběné

Více

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ

VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ

Více

MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS

MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS Jiří Cejp Karel Macek Ganwarich Pluphrach ČVUT v Praze,Fakulta strojní,ústav

Více

S T R O J N IC K Á P Ř ÍR U Č K A část 10, díl 8, kapitola 6, str. 1 10/8.6 K A L E N Í N A M A R T E N Z IT Kalení na martenzit je ochlazení austenitu nadkritickou rychlostí pod teplotu Ms, kdy se ve

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ KATEDRA MATERIÁLU A STROJÍRENSKÉ METALURGIE. 3911T016 Materiálové inženýrství a strojírenská metalurgie

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ KATEDRA MATERIÁLU A STROJÍRENSKÉ METALURGIE. 3911T016 Materiálové inženýrství a strojírenská metalurgie ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ KATEDRA MATERIÁLU A STROJÍRENSKÉ METALURGIE Studijní program: Studijní obor: N2301 Strojní inženýrství 3911T016 Materiálové inženýrství a strojírenská metalurgie

Více

MOŽNOSTI VÝROBY DVOUFÁZOVÝCH FERITICKO- MARTENZITICKÝCH OCELÍ V NH, a.s. VZÚ, NOVÁ HUŤ, a.s., Vratimovská 689, Ostrava, ČR

MOŽNOSTI VÝROBY DVOUFÁZOVÝCH FERITICKO- MARTENZITICKÝCH OCELÍ V NH, a.s. VZÚ, NOVÁ HUŤ, a.s., Vratimovská 689, Ostrava, ČR MOŽNOSTI VÝROBY DVOUFÁZOVÝCH FERITICKO- MARTENZITICKÝCH OCELÍ V NH, a.s Šárka Pacholková, Jindřich Peša VZÚ, NOVÁ HUŤ, a.s., Vratimovská 689, 707 02 Ostrava, ČR Abstract Modern strip steels for cold forming.

Více

VLIV CHEMICKÉHO SLOŽENÍ A KINETIKY KRYSTALIZACE NA TVORBU SULFIDICKÝCH VMĚSTKŮ V OCELÍCH

VLIV CHEMICKÉHO SLOŽENÍ A KINETIKY KRYSTALIZACE NA TVORBU SULFIDICKÝCH VMĚSTKŮ V OCELÍCH METAL 26 23.5.5.26, Hradec nad Moravicí VLIV CHEMICKÉHO SLOŽENÍ A KINETIKY KRYSTALIZACE NA TVORBU SULFIDICKÝCH VMĚSTKŮ V OCELÍCH INFLUENCE OF CHEMICAL COMPOSITION AND KINETICS OF CRYSTALLIZATION ON ORIGINATION

Více

T E C H N I C K Á U N I V E R Z I T A V L I B E R C I

T E C H N I C K Á U N I V E R Z I T A V L I B E R C I T E C H N I C K Á U N I V E R Z I T A V L I B E R C I Fakulta strojní Katedra strojírenské technologie Jan Vytlačil Vypracování metodiky zjišťování zbytkové deformace výlisku z pevnostních plechů Diplomová

Více

Analýza technologie lisování šroubů z nové feriticko martenzitické oceli

Analýza technologie lisování šroubů z nové feriticko martenzitické oceli Analýza technologie lisování šroubů z nové feriticko martenzitické oceli Autoři: F. Grosman Politechnika Slaska Katowice D. Cwiklak Politechnika Slaska Katowice E. Hadasik Politechnika Slaska Katowice

Více

POCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING

POCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING POCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING Ondrej Žácek a Jirí Kliber a Zdenek Vašek b a VŠB TECHNICKÁ UNIVERZITA

Více

VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM

VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM INFLUENCE OF ALUMINIUM CONTENT ON BEHAVIOUR OF MAGNESIUM CAST ALLOYS IN BENTONITE AND FURAN SAND MOULD

Více

VYUŽITÍ TRANSFORMAČNĚ INDUKOVANÉ PLASTICITY (TRIP) V TECHNOLOGIÍCH TVÁŘENÍ OCELI

VYUŽITÍ TRANSFORMAČNĚ INDUKOVANÉ PLASTICITY (TRIP) V TECHNOLOGIÍCH TVÁŘENÍ OCELI VYUŽITÍ TRANSFORMAČNĚ INDUKOVANÉ PLASTICITY (TRIP) V TECHNOLOGIÍCH TVÁŘENÍ OCELI UTILIZATION TRANSFORMATION INDUCED PLASTICITY (TRIP) NEAR FORMING TECHNOLOGIES OF STEEL Jiří Kliber a Ondřej Žáček a Bohuslav

Více

Testování dynamické pevnosti dvoufázových vysokopevných ocelí

Testování dynamické pevnosti dvoufázových vysokopevných ocelí Digitální knihovna Univerzity Pardubice DSpace Repository Univerzita Pardubice http://dspace.org Diplomové práce / Theses KDP DFJP (Ing.) 2015 Testování dynamické pevnosti dvoufázových vysokopevných ocelí

Více

Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa

Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa doc. Ing. Jiří Janovec, CSc., Ing. Petr Ducháček ČVUT v Praze, Fakulta strojní, Karlovo náměstí 13, Praha 2 Jiri.Janovec@fs.cvut.cz, Petr.Duchacek@fs.cvut.cz

Více

Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_14

Více

ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ

ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ 1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě

Více

Petr Kubeš. Vedoucí práce: Prof. Ing. Petr ZUNA, CSc. D. Eng. h.c. Konzultant: Ing. Jakub HORNÍK, Ph.D.

Petr Kubeš. Vedoucí práce: Prof. Ing. Petr ZUNA, CSc. D. Eng. h.c. Konzultant: Ing. Jakub HORNÍK, Ph.D. Kinetika růstu zrna a rekrystalizace při tvářecích režimech pro zpracování oceli SA 508 Kinetics of Grain Growth and Recrystallization during Forming Modes for Processing of Steel SA 508 Petr Kubeš Vedoucí

Více

PHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS. Petr Unucka a Aleš Bořuta a Josef Bořuta a

PHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS. Petr Unucka a Aleš Bořuta a Josef Bořuta a FYZIKÁLNÍ SIMULACE TVÁŘENÍ VYSOKOLEGOVANÝCH OCELÍ PHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS Petr Unucka a Aleš Bořuta a Josef Bořuta a a MATALURGICKÝ A MATERIÁLOVÝ VÝZKUM s.r.o., Pohraniční

Více

VLIV OHŘEVU Z HLEDISKA PŘÍPRAVY MATERIÁLU K VÁLCOVÁNÍ VYTYPOVANÝCH ZNAČEK Cr-Mo OCELÍ

VLIV OHŘEVU Z HLEDISKA PŘÍPRAVY MATERIÁLU K VÁLCOVÁNÍ VYTYPOVANÝCH ZNAČEK Cr-Mo OCELÍ VLIV OHŘEVU Z HLEDISKA PŘÍPRAVY MATERIÁLU K VÁLCOVÁNÍ VYTYPOVANÝCH ZNAČEK Cr-Mo OCELÍ THE INFLUENCE OF HEATING-UP IN TERM OF MATERIAL PREPARATION FOR ROLLING OF SEARCHED MARKS Cr-Mo STEELS Tomáš Gajdzica

Více

ŽÍHÁNÍ. Tepelné zpracování kovových materiálů

ŽÍHÁNÍ. Tepelné zpracování kovových materiálů Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková

Více

TEPELNÉ ZPRACOVÁNÍ PM-NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch, Jan Šerák, Luboš Procházka, Pavel Novák a Peter Jurči b

TEPELNÉ ZPRACOVÁNÍ PM-NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch, Jan Šerák, Luboš Procházka, Pavel Novák a Peter Jurči b TEPELNÉ ZPRACOVÁNÍ PM-NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch, Jan Šerák, Luboš Procházka, Pavel Novák a Peter Jurči b a Ústav kovových materiálů a korozního inženýrství, VŠCHT

Více

INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS. Ivo Černý Dagmar Mikulová

INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS. Ivo Černý Dagmar Mikulová VLIV TEPELNÉHO PŘEPRACOVÁNÍ NA MECHANICKÉ A ÚNAVOVÉ VLASTNOSTI TENKÝCH PLECHŮ Z AL-SLITIN INFLUENCE OF HEAT RE-TREATMENT ON MECHANICAL AND FATIGUE PROPERTIES OF THIN SHEETS FROM AL-ALLOYS Ivo Černý Dagmar

Více

FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny)

FÁZOVÉ PŘEMĚNY. Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny) FÁZOVÉ PŘEMĚNY Hlediska: termodynamika (velikost energie k přeměně) kinetika (rychlost nukleace a rychlost růstu = celková rychlost přeměny) mechanismus difúzní bezdifúzní Austenitizace Vliv: parametry

Více

PLASTOMETRICKÁ SIMULACE TERMOMECHANICKÉHO VÁLCOVÁNÍ OCELI MIKROLEGOVANÉ VANADEM

PLASTOMETRICKÁ SIMULACE TERMOMECHANICKÉHO VÁLCOVÁNÍ OCELI MIKROLEGOVANÉ VANADEM PLASTOMETRICKÁ SIMULACE TERMOMECHANICKÉHO VÁLCOVÁNÍ OCELI MIKROLEGOVANÉ VANADEM PLASTOMETRIC SIMULATION OF THERMOMECHANICAL ROLLING OF MICROALLOYED VANADIUM STEEL Milan Kotas a, Tomáš Gajdzica b, Sergey

Více

METALOGRAFIE II. Oceli a litiny

METALOGRAFIE II. Oceli a litiny METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.

Více

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM

MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM Miroslav Liška, Ondřej Žáček MMV s.r.o. Patinující ocele a jejich vývoj Oceli se zvýšenou

Více

24.-26.5.2005, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM

24.-26.5.2005, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM EFFECT OF SODIUM MODIFICATION ON THE STRUCTURE AND PROPERTIES OF POLYCOMPONENT Mg ALLOYS Luděk Ptáček, Ladislav Zemčík VUT v Brně, Fakulta strojního

Více

PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš

PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL Radim Pachlopník Pavel Vavroš Nová Huť, a.s., Vratimovská 689, 707 02 Ostrava Kunčice, ČR, rpachlopnik@novahut.cz,

Více

NÁVRHÁŘ. charakteristika materiálu. Numerický experiment Integrovaný model Dynamický materiálový model. kontrolovatelné parametry

NÁVRHÁŘ. charakteristika materiálu. Numerický experiment Integrovaný model Dynamický materiálový model. kontrolovatelné parametry Metody technologického designu Doc. Ing. Jiří Hrubý, CSc. Inaugurační přednáška NÁVRHÁŘ charakteristika materiálu kontrolovatelné parametry nekontrolovatelné parametry Termomechanická analýza (MKP) SOS

Více

TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT TEPELNÉ ZPRACOVÁNÍ RYCHLOŘEZNÝCH OCELÍ SVOČ FST 2010 Lukáš Martinec, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Hlavní skupinu materiálů, pouţívanou pro výrobu

Více

Hodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN

Hodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN Hodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN Bc. Jaroslav Víšek, Bc. Ladislav Nikel Vedoucí práce prof. Ing. Petr Zuna, CSc., D.Eng.h.c. Abstrakt

Více

Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91.

Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Hubáčková Jiřina a), Čížek Lubomír a), Konečná Radomila b) a) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERSITA OSTRAVA, Fakulta

Více

VLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ

VLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ VLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ EFFECT OF HEAT TREATMENT ON TOUGHNESS OF CAST MICROALLOYED LOW-CARBON STEELS Jiří Cejp Karel Macek ČVUT v Praze, Fakulta

Více

Experimentální výzkum tvařitelnosti vysokolegovaných ocelí a niklových slitin

Experimentální výzkum tvařitelnosti vysokolegovaných ocelí a niklových slitin Hutnické listy č.1/8 Experimentální výzkum tvařitelnosti vysokolegovaných ocelí a niklových slitin Ing. Petr Unucka, Ph.D., Ing. Josef Bořuta, CSc., VÍTKOVICE - Výzkum a vývoj, spol. s r. o. Využití tahových

Více

VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a

VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a METAL 23 2.-22.5.23, Hradec nad Moravicí VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a a VŠB Technická

Více

Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012

Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012 Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012 Stanovení teploty předehřevu osnova Teplota předehřevu-definice Trhliny za studena - vliv Tp na teplotní

Více

STRUKTURA A VLASTNOSTI LISOVANÝCH TYČÍ ZE SLITINY CuAl10Ni5Fe4 STRUCTURE AND PROPERTIES OF PRESSED RODS FROM CuAl10Ni5Fe4 ALLOY

STRUKTURA A VLASTNOSTI LISOVANÝCH TYČÍ ZE SLITINY CuAl10Ni5Fe4 STRUCTURE AND PROPERTIES OF PRESSED RODS FROM CuAl10Ni5Fe4 ALLOY STRUKTURA A VLASTNOSTI LISOVANÝCH TYČÍ ZE SLITINY CuAl10Ni5Fe4 STRUCTURE AND PROPERTIES OF PRESSED RODS FROM CuAl10Ni5Fe4 ALLOY Peter SLÁMA a, Pavel PODANÝ a, Kateřina MACHÁČKOVÁ b, Miroslava SVĚTLÁ b,

Více

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.

VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,

Více

MATERIÁLOVÉ PARAMETRY TVAŘITELNOSTI VYSOKOLEGOVANÝCH MATERIÁLŮ MATERIAL PARAMETERS OF FORMABILITY OF HIGH ALLOYED MATERIALS

MATERIÁLOVÉ PARAMETRY TVAŘITELNOSTI VYSOKOLEGOVANÝCH MATERIÁLŮ MATERIAL PARAMETERS OF FORMABILITY OF HIGH ALLOYED MATERIALS MATERIÁLOVÉ PARAMETRY TVAŘITELNOSTI VYSOKOLEGOVANÝCH MATERIÁLŮ MATERIAL PARAMETERS OF FORMABILITY OF HIGH ALLOYED MATERIALS Petr Unucka a Aleš Bořuta a a MATERIÁLOVÝ A METALURGICKÝ VÝZKUM s.r.o., Pohraniční

Více

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce

Více

VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM

VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch a Pavel Stolař, Peter Jurči b a) Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha, Technická

Více

HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY

HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY Vít Janík a,b, Eva Kalabisová b, Petr Zuna a, Jakub Horník

Více

Rozdělení ocelí podle použití. Konstrukční, nástrojové

Rozdělení ocelí podle použití. Konstrukční, nástrojové Rozdělení ocelí podle použití Konstrukční, nástrojové Rozdělení ocelí podle použití Podle použití oceli: Konstrukční (uhlíkové, legované), nástrojové (uhlíkové, legované). Konstrukční oceli uplatnění pro

Více

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING

Požadavky na nástroj při stříhání. Charakteristika. Použití STRUKTURA CHIPPER / VIKING 1 CHIPPER / VIKING 2 Charakteristika VIKING je vysoce legovaná ocel, kalitelná v oleji, na vzduchu a ve vakuu, která vykazuje následující charakteristické znaky: Dobrá rozměrová stálost při tepelném zpracování

Více

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč

Více

SIMULACE ŘÍZENÉHO VÁLCOVÁNÍ VYBRANÝCH KONSTRUKČNÍCH OCELÍ ZA RŮZNÝCH TEPLOTNÍCH PODMÍNEK

SIMULACE ŘÍZENÉHO VÁLCOVÁNÍ VYBRANÝCH KONSTRUKČNÍCH OCELÍ ZA RŮZNÝCH TEPLOTNÍCH PODMÍNEK SIMULACE ŘÍZENÉHO VÁLCOVÁNÍ VYBRANÝCH KONSTRUKČNÍCH OCELÍ ZA RŮZNÝCH TEPLOTNÍCH PODMÍNEK SIMULATION OF CONTROLLED ROLLING OF SELECTED CONSTRUCTION STEELS AT DIFFERENT TEMPERATURE CONDITIONS Karel Milan

Více

SNIŽOVÁNÍ HMOTNOSTI KAROSERIÍ OSOBNÍCH AUTOMOBILŮ NA ZÁKLADĚ VOLBY MATERIÁLU

SNIŽOVÁNÍ HMOTNOSTI KAROSERIÍ OSOBNÍCH AUTOMOBILŮ NA ZÁKLADĚ VOLBY MATERIÁLU SNIŽOVÁNÍ HMOTNOSTI KAROSERIÍ OSOBNÍCH AUTOMOBILŮ NA ZÁKLADĚ VOLBY MATERIÁLU REDUCTION OF THE BODY WEIGHT OF PASSENGER CARS BASED ON MATERIAL CHOICE BAKALÁŘSKÁ PRÁCE BACHELOR THESIS AUTOR PRÁCE AUTHOR

Více

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM

SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM GRAFITEM 86/18 ARCHIWUM ODLEWNICTWA Rok 2006, Rocznik 6, Nr 18 (2/2) ARCHIVES OF FOUNDRY Year 2006, Volume 6, N o 18 (2/2) PAN Katowice PL ISSN 1642-5308 SLEDOVÁNÍ AKTIVITY KYSLÍKU PŘI VÝROBĚ LITINY S KULIČKOVÝM

Více

VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV

VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV VÝZKUM MOŽNOSTÍ ZVÝŠENÍ ŽIVOTNOSTI LOŽISEK CESTOU POVRCHOVÝCH ÚPRAV RESEARCH INTO POSSIBILITY OF INCREASING SERVICE LIFE OF BEARINGS VIA SURFACE TREATMENT Zdeněk Spotz a Jiří Švejcar a Vratislav Hlaváček

Více

OPTIMÁLNÍ POSTUPY TEPELNÉHO ZPRACOVÁNÍ MATERIÁLŮ PRO PRÁCI ZA TEPLA. Jiří Stanislav

OPTIMÁLNÍ POSTUPY TEPELNÉHO ZPRACOVÁNÍ MATERIÁLŮ PRO PRÁCI ZA TEPLA. Jiří Stanislav OPTIMÁLNÍ POSTUPY TEPELNÉHO ZPRACOVÁNÍ MATERIÁLŮ PRO PRÁCI ZA TEPLA Jiří Stanislav Bodycote HT, CZ 1. Úvod Tepelné zpracování nástrojových ocelí pro práci za tepla patří k nejnáročnějším disciplinám oboru.

Více

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení

Více

ISOTHERMAL HEAT TREATMENT IZOTERMICKÉ TEPELNÉ ZPRACOVÁNÍ

ISOTHERMAL HEAT TREATMENT IZOTERMICKÉ TEPELNÉ ZPRACOVÁNÍ Učeň M., Filípek J. ISOTHERMAL HEAT TREATMENT IZOTERMICKÉ TEPELNÉ ZPRACOVÁNÍ Ústav základů techniky a automobilové dopravy, Agronomická fakulta, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská

Více

LABORATORNÍ VÁLCOVÁNÍ FERITICKO-BAINITICKÝCH OCELÍ LABORATORY ROLLING OF FERRITE-BAINITE STEELS

LABORATORNÍ VÁLCOVÁNÍ FERITICKO-BAINITICKÝCH OCELÍ LABORATORY ROLLING OF FERRITE-BAINITE STEELS LABORATORNÍ VÁLCOVÁNÍ FERITICKO-BAINITICKÝCH OCELÍ LABORATORY ROLLING OF FERRITE-BAINITE STEELS Šárka Pacholková *, Tomáš Kubina **, Ivo Schindler **, Anna Moráfková * * VZÚ, NOVÁ HUŤ, a.s., Vratimovská

Více

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry

TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace

Více

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE

MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE MENDELOVA UNIVERZITA V BRNĚ AGRONOMICKÁ FAKULTA BAKALÁŘSKÁ PRÁCE BRNO 2010 PETR DOSKOČIL Mendelova univerzita v Brně Agronomická fakulta Ústav techniky a automobilové dopravy Tepelné zpracování oceli Bakalářská

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta strojní. Studijní program M2301 Strojní inženýrství. Strojírenská technologie zaměření tváření kovů a plastů

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta strojní. Studijní program M2301 Strojní inženýrství. Strojírenská technologie zaměření tváření kovů a plastů TECHNICKÁ UNIVERZITA V LIBERCI Fakulta strojní Studijní program M2301 Strojní inženýrství Strojírenská technologie zaměření tváření kovů a plastů Oddělení tváření kovů a plastů Využití optického systému

Více

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI OCELI PRO ŽELEZNICNÍ KOLA THE INFLUENCE OF HEAT TREATENT ON THE PROPPERTIES OF STEEL FOR RAILWAY WHEELS

VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI OCELI PRO ŽELEZNICNÍ KOLA THE INFLUENCE OF HEAT TREATENT ON THE PROPPERTIES OF STEEL FOR RAILWAY WHEELS VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI OCELI PRO ŽELEZNICNÍ KOLA THE INFLUENCE OF HEAT TREATENT ON THE PROPPERTIES OF STEEL FOR RAILWAY WHEELS Rudolf Foret a Petr Matušek b a FSI-VUT v Brne,Technická

Více

STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL

STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL STRUKTURNÍ A FÁZOVÁ ANALÝZA OCELI T23 STRUCTURE AND PHASE ANALYSIS OF T23 STEEL Marie Svobodová a,b Jindřich Douda b František Hnilica b Josef Čmakal b Jiří Dubský c a KMAT FJFI ČVUT, Trojanova 13, 120

Více

TEPELNÉ ZPRACOVÁNÍ OCELÍ

TEPELNÉ ZPRACOVÁNÍ OCELÍ TEPELNÉ ZPRACOVÁNÍ OCELÍ HEAT TREATMENT OF STEELS BAKALÁŘSKÁ PRÁCE BACHELOR THESIS AUTOR PRÁCE AUTHOR EVA ROSECKÁ VEDOUCÍ PRÁCE SUPERVISOR doc. Ing. JAROSLAV ŠENBERGER CSc. BRNO 2013 Vysoké učení technické

Více

Hodnocení degradace ocelí pro tepelnou energetiku pomocí mikrosrukturních paramertrů

Hodnocení degradace ocelí pro tepelnou energetiku pomocí mikrosrukturních paramertrů Hodnocení degradace ocelí pro tepelnou energetiku pomocí mikrosrukturních paramertrů V. Vodárek Vítkovice-Výzkum a vývoj, spol. s r.o., Pohraniční 693/31, 706 02 Ostrava Vítkovice 1. ÚVOD Návrhová životnost

Více

PODSTATA VYSOKOTEPLOTNÍ STABILITY Ni-Cr-W-C SLITIN. THE NATURE OF HIGH-TEMPERATURE HEAT RESISTANCE OF Ni-Cr-W-C ALLYS

PODSTATA VYSOKOTEPLOTNÍ STABILITY Ni-Cr-W-C SLITIN. THE NATURE OF HIGH-TEMPERATURE HEAT RESISTANCE OF Ni-Cr-W-C ALLYS PODSTATA VYSOKOTEPLOTNÍ STABILITY Ni-Cr-W-C SLITIN THE NATURE OF HIGH-TEMPERATURE HEAT RESISTANCE OF Ni-Cr-W-C ALLYS Božena Podhorná Jiří Kudrman Škoda-ÚJP, Praha, a.s., Nad Kamínkou 1345, 156 10 Praha-Zbraslav,

Více

4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ. 4.1 Technické slitiny železa. 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků

4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ. 4.1 Technické slitiny železa. 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků 4. KOVOVÉ MATERIÁLY A JEJICH ZPRACOVÁNÍ 4.1 Technické slitiny železa 4.1.1 Slitiny železa s uhlíkem a vliv dalších prvků Železo je přechodový kov s atomovým číslem 26, atomovou hmotností 55,85, měrnou

Více

Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_17

Více

TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS. Božena Podhorná a Jiří Kudrman a Karel Hrbáček b

TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS. Božena Podhorná a Jiří Kudrman a Karel Hrbáček b TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS Božena Podhorná a Jiří Kudrman a Karel Hrbáček b a UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha Zbraslav, E-mail:

Více

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení

Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných

Více

SVAŘITELNOST MATERIÁLU

SVAŘITELNOST MATERIÁLU 1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Doc.Ing,Oldřich Ambrož,CSc SVAŘITELNOST MATERIÁLU UČEBNÍ TEXTY KOMBINOVANÉHO BAKALAŘSKÉHO STUDIA 2 U Č E B N Í O S N O V A Předmět: SVAŘITELNOST

Více

VLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ

VLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ VLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ INFLUENCE OF HEAT TREATMENT AND MICROALLOYING ON MICROSTRUCTURE AND PROPERTIES OF CAST MANGANESSE STEELS

Více

SLITINY ŽELEZA NA VÝFUKOVÁ POTRUBÍ SPALOVACÍCH MOTORŮ FERROUS ALLOYS FOR EXHAUST PIPELINE OF COMBUSTION ENGINES

SLITINY ŽELEZA NA VÝFUKOVÁ POTRUBÍ SPALOVACÍCH MOTORŮ FERROUS ALLOYS FOR EXHAUST PIPELINE OF COMBUSTION ENGINES SLITINY ŽELEZA NA VÝFUKOVÁ POTRUBÍ SPALOVACÍCH MOTORŮ FERROUS ALLOYS FOR EXHAUST PIPELINE OF COMBUSTION ENGINES Břetislav Skrbek a,b a TEDOM, s s.r.o, divize MOTORY, Jablonec nad Nisou,ČR, skrbek@motory.tedom.cz.

Více