Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13)

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematické metody v kartografii. Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(13)"

Transkript

1 Matematické metody v kartografii Volba a identifikace zobrazení. Zobrazení použitá v ČR. Kritéria pro hodnocení kartografických zobrazení(3)

2 Volba kartografického zobrazení Parametry ovlivňující volbu kartografického zobrazení: Účel mapy Uživatel mapy Kartografické vlastnosti mapy (co nezkresluje) Měřítko mapy Tvar geografické sítě Velikost a tvar území Mapy pro geodety Požadavek malého zkreslení, nejčastěji konformní (kuželová, válcová) Mapy pro geografy Nebývají konformní, ale ekvivalentní či vyrovnávací Požadavek souvislého zobrazení velké části zemského povrchu

3 Volba zobrazení pro geodetické účely Kritéria: Zobrazení menších územních celků (státy, nikoliv kontinenty) Požadavek velmi malých zkreslení: vliv zkreslení se neprojeví vzhledem ke grafické přesnosti mapy (<0.mm) Počet souřadnicových systémů pro zobrazení území ( nebo více), malá území= zobrazovací plocha, velká území=více zobrazovacích ploch. Poloha kartografického zobrazení (normální či obecná) Tvar území Poloha území

4 Vliv tvaru území Varianty: Sevření území do nejužšího pásu: šířka š Opsání kružnice s co nejmenším poloměrem kolem zvoleného území Poměr: f<.4 konformní, f<.7 ekvidistantní, f>.7 ekvivalentní f š Protáhlá území: Válcová- protáhlé ve směru ortodromy Kuželová - protáhlá ve směru vedlejší kruž. Čtvercová území: azimutální

5 Volba zobrazení pro přehledné mapy Kritéria: Velikost území Tvar území Poloha území Požadavky na zkreslení nehrají tak velkou roli. Nejpřirozenější obraz celého území. Požadavek na specifický tvar poledníků/rovnoběžek Požadavek na specifický tvar obrazu loxodromy/ortodromy Účel mapy Více faktorů, nutno je vzájemně zkombinovat

6 Volba kartografického zobrazení pro přehledné mapy Svět Konformní Bez pólů: válcové konformní (Mercator). S póly: polykónické (Lagrangeovo). Ekvivalentní Ekvidistantní Vyrovnávací Souvislé: Mollweid, Eckert, Hammer Nesouvislé: kompozitní zobrazení (Good) Azimutální Nepravá válcová či modifikovaná polykónická Hemisféry Konformní Azimutální (stereografická projekce) Ekvivalentní Ekvidistantní Vyrovnávací Azimutální: Lambert Azimutální: Postelovo Van der Grinten Kontinenty Převládající směr Z-V: normální poloha S-J: transverzální poloha Jinak: obecná poloha Poloha Tvar Loxodroma přímka U rovníku: konformní (Mercator), ekvivalentní (kužel, Albersovo) Dál od rovníku: konformní (Lambertovo) Čtverec, kruh: azimutální Protáhlé: kuželové/válcové Mercatorovo Ortodroma přímka Gnómonická projekce

7 Kritéria pro hodnocení kartografických zobrazení Řada různých kritérií: ) Tvar a průběh ekvideformát Průběh ekvideformát v posuzovaném území, zejména zkreslení na okraji území. ) Minimax kritéria Podíl extrémních hodnot m max /m min zkreslení popř. rozdíl logaritmů těchto hodnot log(m max )-log(m min ) Neposuzují zobrazení jako celek, vyberou se dvě extrémní hodnoty. ) Extrémní kritéria Maximální hodnoty kartografických zkreslení. Neposuzují zobrazení jako celek, pouze vyberou jednu max hodnotu. 3) Variační kritéria Posuzují globálně vlastnosti celého zobrazení (ale i lokálně). Integrace přes celou zobrazovací plochu. Nejlépe charakterizují vlastnosti kartografického zobrazení.

8 Lokální variační kritéria Exaktní (popř. numerický) výpočet z hodnot extrémních zkreslení v bodě P=[u,v]. 3 lokální variační kritéria: Airyho kritérium Střední kvadratická hodnota zkreslení a, b. Uvažuje pouze vliv délkového zkreslení. h ( u, v) [( a ) ( b ) ] Kavrajského kritérium Upravené Airyho kritérium. Uvažuje pouze vliv délkového zkreslení. h ( u, v) [ln a ln b] Komplexní kritérium (Bucharovo) Uvažuje vliv délkového i úhlového zkreslení. Nejvyšší vypovídací hodnota. h ( u, v) [ a a b ] ( b )

9 Globální variační kritéria Posuzují vlastnosti kartografického zobrazení globálně či na intervalu. Existují ve vážené i nevážené variantě. Nevážená varianta: Ovlivněna hodnotami bodů v blízkosti pólů. Vážená varianta Vahou kosinus zeměpisné šířky. Eliminace extrémních hodnot v pólových oblastech. Exaktní výpočet obtížný, nahrazovány přibližnými vztahy. Aritmetický průměr, vážený průměr. Výpočty prováděny v uzlových bodech geografické sítě ležících uvnitř území. H n hi ( u, v) n i H n i p h n i i i ( u, v) p i H H u u u v v u v v h p h dudv cos ududv cos i u i

10 Identifikace kartografického zobrazení Zpětné určení kartografického zobrazení na základě tvaru geografické sítě Složitý problém, není uspokojivě vyřešen, pokud je zobrazení v obecné poloze ) Je =90? A: konformní, jednoduché v normální poloze, polykónické ) Obrazy rovnoběžek Úsečky: jenoduché/nepravé válcové, projekce v norm. poloze Kružnice soustředné: kuželová/válcová nepravá kuželová/válcová Kružnice nesoustředné: polykónické 3) Obrazy poledníků Úsečky: // válcové, Svazek úseček: kuželové/azimutální 4) Obraz rovníku Úsečka: válcová/nepravá válcová 5) Obraz pólu Bod: kuželové/azimutální Kruhový oblouk: kuželové Úsečka: válcové Nezobrazí se: konformní

11 Zobrazení použitá na území ČR Vojenské mapy v období Rakouska-Uherska II. vojenské mapování ( ) Podkladem mapa stabilního katastru, Cassini-Soldnerovo zobrazení, 3 souřadnicové systémy. Zachův elipsoid III. Vojenské mapování ( ) Mercator-Sansonovo zobrazení, Besselův elipsoid Polyedrické zobrazení. Katastrální mapy v období Rakouska-Uherska Stabilní katastr Cassini-Soldnerovo zobrazení Zachův elipsoid 3 souřadnicové systémy pro bývalé ČSR

12 Zobrazení použitá na území ČR Vojenské mapy v období Československa Prozatimní vojenské mapování (93-933) Použito Benešovo zobrazení. Kuželové konformní zobrazení se nezkreslenými rovnoběžkami. Normální poloha Střed: cm/km, okraj 3cm/km Zmapovány 3% území. Definitivní vojenské mapování ( ) Sjednocení kartografického zobrazení s civilními mapami Používá Křovákovo zobrazení. Zmapováno 7% území.

13 Zobrazení použitá na území ČR Civilní mapové dílo v období Československa Systém jednotné trigonometrické a katastrální mapy Používá Křovákovo zobrazení. Civilní mapové dílo. Ve své době nejlepší souřadnicový systém. Používáno i v současnosti. Chyba v orientaci sítě + nepřesné určení délky základny: nová geodetická měření deformována na špatný základ (paradox současného katastru). Vojenské mapové dílo po roce 945 Vojenské topografické mapy Používají Gaussovo zobrazení. 6 pásy, na okraji zkreslení 60 cm/km. ČR v 33 pásu. Krasovského elipsoid. Souřadnicový systém S-5, později S-4.

14 Zobrazení použitá na území ČR Civilní mapové dílo po roce 945 Státní odvozené mapy Použito Gaussovo zobrazení, Krasovského elipsoid Souřadnicový sytém S-5, později S-4 SM-5 +TM-0. Základní mapa středního měřítka (698) Souřadnicový systém S-JTSK. Vojenské mapové dílo po roce 989 Jednotné mapové dílo pro státy NATO Zobrazení UTM, 6 pásy.

15 Nové zobrazení po roce 98 Po vzniku ČSR: snaha o nové kartografické zobrazení, které by zobrazilo republiku jako celek + bylo konformní. Účastníci konkurzu: )Ing. J. Křovák Kuželové konformní zobrazení v normální poloze tečné nezkreslené rovnoběžky rovnoběžkové pásy, osa x 33 východně od Ferra Nevýhoda: souřadnicové systémy ) Ing. Josef Křovák Kuželové konformní zobrazení v obecné poloze nezkreslená rovnoběžka Zobrazení vyhrálo, Křovák vytvořil převodní tabulky

16 Nové zobrazení po roce 98 3) Prof F. Fiala Dvojité válcové konformní zobrazení Obecná poloha Velká meridiánová konvergence, až 6 Konstanta 0.999, délkové zkreslení -0 cm/km a 7 cm/km 4) dr. L. Beneš Kuželové konformní zobrazení se dvěma nezkreslenými rovnoběžkami. Normální poloha. Délkové zkreslení - cm/km a 3 cm/km 5) Prof. A. Semrád 3 stereografické projekce. Obecná poloha Poloměr okrajových kružnic 80 km. Délkové zkreslení 0 cm/km Nevýhoda: 3 souřadnicové systémy

17 Nové zobrazení po roce 98 6) Prof A. Tichý Válcové konformní zobrazení. Dva pásy, dva souřadnicové systémy. Pro Československo by bylo pravděpodobně nejlepší použít Gaussovo konformní zobrazení v poledníkových pásech. Šířka pásů 3 nebo 6.

Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12)

Matematické metody v kartografii. Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Matematické metody v kartografii Kruhová zobrazení. Polyedrická a neklasifikovaná zobrazení (12) Kruhová zobrazení Společné vlastnosti: Síť poledníků/rovnoběžek tvořena pouze kruhovými oblouky Středy rovnoběžkových

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 8 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Nepravá zobrazení zachovávají některé charakteristiky jednoduchých zobrazení (tvar rovnoběžek) některé

Více

Pro mapování na našem území bylo použito následujících souřadnicových systémů:

Pro mapování na našem území bylo použito následujících souřadnicových systémů: SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno

Více

Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.)

Matematické metody v kartografii. Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) Matematické metody v kartografii Členění kartografických zobrazení. Zobrazení z elipsoidu na kouli (5.) 1. Členění kartografických zobrazení: Existuje velkémnožstvíkarografických zobrazení. Lze je členit

Více

Topografické mapování KMA/TOMA

Topografické mapování KMA/TOMA Topografické mapování KMA/TOMA ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd - KMA oddělení geomatiky Ing. Martina Vichrová, Ph.D. vichrova@kma.zcu.cz Vytvoření materiálů bylo podpořeno prostředky

Více

Geodézie pro architekty. Úvod do geodézie

Geodézie pro architekty. Úvod do geodézie Geodézie pro architekty Úvod do geodézie Geodézie pro architekty Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek, P. a kol.: Stavební

Více

Základy kartografie. RNDr. Petra Surynková, Ph.D.

Základy kartografie. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta RNDr., Ph.D. petra.surynkova@mff.cuni.cz www.surynkova.info Kartografie Vědní obor zabývající se znázorněním zemského povrchu a nebeských těles

Více

Celkem existuje asi 300 zobrazení, používá se jen několik desítek.

Celkem existuje asi 300 zobrazení, používá se jen několik desítek. ÁKLADY KARTOGRAFIE RO SŠ KARTOGRAFICKÉ OBRAENÍ Kartografické zobrazení je způsob, který každému bodu na referenčním elipsoidu resp. referenční kouli přiřazuje body v rovině. Určení věrných obrazů bodů

Více

APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY

APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY APROXIMACE KŘOVÁKOVA ZOBRAZENÍ PRO GEOGRAFICKÉ ÚČELY Radek Dušek, Jan Mach Katedra fyzické geografie a geoekologie, Přírodovědecká fakulta, Ostravská univerzita, Ostrava Gymnázium Omská, Praha Abstrakt

Více

Zobrazení. Geografická kartografie Přednáška 4

Zobrazení. Geografická kartografie Přednáška 4 Zobrazení Geografická kartografie Přednáška 4 kartografické zobrazení způsob, který každému bodu na referenční ploše přiřazuje právě jeden bod na zobrazovací ploše (výjimkou jsou ovšem singulární body)

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.2 - Kartografická zobrazení, souřadnicové soustavy Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské

Více

GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI

GIS Geografické informační systémy. Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI GIS Geografické informační systémy Daniela Ďuráková, Jan Gaura Katedra informatiky, FEI jan.gaura@vsb.cz http://mrl.cs.vsb.cz/people/gaura Kartografie Stojí na pomezí geografie a geodezie. Poskytuje vizualizaci

Více

Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy

Souřadnicov. Cassini Soldnerovo zobrazení. Cassini-Soldnerovo. b) Evropský terestrický referenční systém m (ETRS), adnicové systémy Závazné referenční systémy dle 430/2006 Sb. Souřadnicov adnicové systémy na území Nařízen zení vlády o stanovení geodetických referenčních systémů a státn tních mapových děl d l závazných z na území státu

Více

MATEMATICKÁ KARTOGRAFIE

MATEMATICKÁ KARTOGRAFIE VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL 5 NEPRAVÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie Modul

Více

GIS a pozemkové úpravy. Data pro využití území (DPZ)

GIS a pozemkové úpravy. Data pro využití území (DPZ) GIS a pozemkové úpravy Data pro využití území (DPZ) Josef Krása Katedra hydromeliorací a krajinného inženýrství, Fakulta stavební ČVUT v Praze 1 Papírová mapa Nevymizela v době GIS systémů (Stále základní

Více

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů

Více

Základy kartografie, topografické plochy

Základy kartografie, topografické plochy Základy kartografie, topografické plochy morava@karlin.mff.cuni.cz Katedra didaktiky matematiky MFF UK, Praha Aplikace matematiky pro učitele, 3. ledna 2012 Základní pojmy Kartografie věda zabývající se

Více

Nová topografická mapování období 1952 až 1968

Nová topografická mapování období 1952 až 1968 Nová topografická mapování období 1952 až 1968 Miroslav Mikšovský 1. Topografické mapování v měřítku 1:25 000 V souladu s usnesením vlády ČSR č.35/1953 Sb. bylo v roce 1952 zahájeno nové topografické mapování

Více

4. Matematická kartografie

4. Matematická kartografie 4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od

Více

Ing. Jiří Fejfar, Ph.D. Souřadné systémy

Ing. Jiří Fejfar, Ph.D. Souřadné systémy Ing. Jiří Fejfar, Ph.D. Souřadné systémy SRS (Spatial reference system) CRS (Coordinate Reference system) Kapitola 1: Základní pojmy Základní prostorové pojmy Geografický prostor Prostorové vztahy (geometrie,

Více

System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004

System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004 System Projection Aplikace pro souřadnicové přepočty a základní geodetické úlohy (Uživatelský manuál) Jan Ježek, Radek Sklenička červen 2004 1 Obsah Úvod 3 1 Základní ovládání 4 1.1 Výběr zobrazení a jeho

Více

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné

Více

Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení

Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení Kartografie - úvod, historie a rozdělení Matematická kartografie Kartografická zobrazení Kartografie přednáška 1 Kartografie obor zabývající se zobrazováním zakřivené části Zemského povrchu do rovinné

Více

Mapová provizoria po roce 1945

Mapová provizoria po roce 1945 Mapová provizoria po roce 1945 Miroslav Mikšovský 1. Úvod Po ukončení 2.světové války v r.1945 bylo území Československa pokryto ve středních měřítkách pouze reambulovanými mapami ze III.vojenského mapování

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 1 Mapové podklady

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE PRAHA 2014 Sandra PÁNKOVÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ STUDIJNÍ PROGRAM GEODÉZIE A KARTOGRAFIE STUDIJNÍ OBOR

Více

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY VOJENSKÝ GEOGRAFICKÝ A HYDROMETEOROLOGICKÝ ÚŘAD Popis a zásady používání světového geodetického referenčního systému 1984 v AČR POPIS A ZÁSADY POUŽÍVÁNÍ V AČR

Více

Digitalizace mapových sbírek a archivů (4.11.2011)

Digitalizace mapových sbírek a archivů (4.11.2011) Digitalizace mapových sbírek a archivů (4.11.2011) Struktura a obsah mapové sbírky zahraničních topografických map při katedře mapování a kartografie ČVUT autoři Prof.ing. Bohuslav Veverka, DrSc. ČVUT

Více

K154SG01 Stavební geodézie

K154SG01 Stavební geodézie K154SG01 Stavební geodézie Přednášející: Doc. Ing. Martin Štroner, Ph.D; Místnost: B912 Email: martin.stroner@fsv.cvut.cz Literatura: [1] Hánek, P. a kol.: Stavební geodézie. Česká technika -nakladatelství

Více

Matematické metody v kartografii. Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma.

Matematické metody v kartografii. Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma. Matematické metody v kartografii Přednáška 3. Důležité křivky na kouli a elipsoidu. Loxodroma a ortodroma. . Přehled důležitých křivek V matematické kartografii existují důležité křivky, které jdou po

Více

Souřadnicové systémy Souřadnice na referenčních plochách

Souřadnicové systémy Souřadnice na referenčních plochách Geodézie přednáška 2 Souřadnicové systémy Souřadnice na referenčních plochách Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Souřadnicové systémy na území

Více

poválečná situace, jednotná evidence půdy

poválečná situace, jednotná evidence půdy Katastrální mapování poválečná situace, jednotná evidence půdy Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Obsah přednášky Poválečná

Více

10. SOUDOBÉ TOPOGRAFICKÉ MAPY

10. SOUDOBÉ TOPOGRAFICKÉ MAPY 102 10. Soudobé topografické mapy 10. SOUDOBÉ TOPOGRAFICKÉ MAPY V této kapitole se seznámíme se dvěmi soudobými státními mapovými díly topografické povahy. Bude se jednat o vojenskou topografickou mapu

Více

GEODETICKÁ A KARTOGRAFICKÁ INTEGRACE. Pro projekt CTU (2005) s laskavou pomocí Ing. D. Dušátka, CSc.

GEODETICKÁ A KARTOGRAFICKÁ INTEGRACE. Pro projekt CTU (2005) s laskavou pomocí Ing. D. Dušátka, CSc. GEODETICKÁ A KARTOGRAFICKÁ INTEGRACE Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Uvedení do problematiky Cílem integrace je vytvoření jednotného souřadného systému pro tvorbu

Více

Úvod do předmětu geodézie

Úvod do předmětu geodézie 1/1 Úvod do předmětu geodézie Ing. Hana Staňková, Ph.D. IGDM, HGF, VŠB-TU Ostrava hana.stankova@vsb.cz A911, 5269 1 Geodézie 1/2 vědní obor o měření části zemského povrchu, o určování vzájemných vztahů

Více

Zeměpisné souřadnice Zeměpisná šířka rovnoběžce poledníky Zeměpisná délka

Zeměpisné souřadnice Zeměpisná šířka rovnoběžce poledníky Zeměpisná délka Zeměpisné souřadnice Pro určení polohy na zemském povrchu používáme souřadnicovou soustavu. Počátek souřadnic leží ve středu Země S. Rovina proložená středem Země kolmo na osu otáčení je rovina rovníku

Více

Vojenské topografické mapy bývalé koncepce (do konce roku 2005)

Vojenské topografické mapy bývalé koncepce (do konce roku 2005) Vojenské topografické mapy bývalé koncepce (do konce roku 2005) Státní mapová díla (8) produkt, který zachovává vývojovou linii již několik století (od r. 1763) původní měřítková řada 25, 50, 100, 200,

Více

SYLABUS 6. PŘEDNÁŠKY Z GEODÉZIE 2 (Geodetické základy v ČR)

SYLABUS 6. PŘEDNÁŠKY Z GEODÉZIE 2 (Geodetické základy v ČR) SYLABUS 6. PŘEDNÁŠKY Z GEODÉZIE 2 (Geodetické základy v ČR) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. březen 2015 1 Geodézie 2 přednáška č.6 GEODETICKÉ

Více

Téma: Geografické a kartografické základy map

Téma: Geografické a kartografické základy map Topografická příprava Téma: Geografické a kartografické základy map Osnova : 1. Topografické mapy, měřítko mapy 2. Mapové značky 3. Souřadnicové systémy 2 3 1. Topografické mapy, měřítko mapy Topografická

Více

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek S-JTSK SYSTÉM JEDNOTNÉ TRIGONOMETRICKÉ SÍTĚ KATASTRÁLNÍ

Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství. Ing. Pavel Voříšek S-JTSK SYSTÉM JEDNOTNÉ TRIGONOMETRICKÉ SÍTĚ KATASTRÁLNÍ Přípravný kurz k vykonání maturitní zkoušky v oboru Dopravní stavitelství Ing. Pavel Voříšek S-JTSK SYSTÉM JEDNOTNÉ TRIGONOMETRICKÉ SÍTĚ KATASTRÁLNÍ VOŠ a SŠS Vysoké Mýto leden 2008 Jednotná trigonometrická

Více

GEODÉZIE. Co je vlastně geodézie?

GEODÉZIE. Co je vlastně geodézie? Co je vlastně geodézie? Doslovný význam řeckého slova GEODESIE je dělení půdy, země. Geodesie se zabývá měřením, výpočtem a zobrazením částí povrchu zemského, určením tvaru a velikosti země. Základní úlohou

Více

KARTOGRAFIE. Rovinné projekce. Gnómické projekce. 1. Pólová gnómonická projekce

KARTOGRAFIE. Rovinné projekce. Gnómické projekce. 1. Pólová gnómonická projekce KARTOGRAFIE Kartografie se zabývá zobrazováním zemského povrchu. Zemský povrch (geoid) nahrazujeme plochou kulovou a tu zobrazujeme. Délky zmenšujeme v daném měřítku. Na kulové ploše zavádíme souřadný

Více

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu:

Zdroje dat GIS. Digitální formy tištěných map. Vstup dat do GISu: Zdroje dat GIS Primární Sekundární Geodetická měření GPS DPZ (RS), fotogrammetrie Digitální formy tištěných map Kartografické podklady (vlastní nákresy a měření) Vstup dat do GISu: Data přímo ve potřebném

Více

Sada 1 Geodezie I. 15. Podrobné měření polohopisné

Sada 1 Geodezie I. 15. Podrobné měření polohopisné S třední škola stavební Jihlava Sada 1 Geodezie I 15. Podrobné měření polohopisné Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Detekce kartografického zobrazení z množiny bodů, praktické zkušenosti

Detekce kartografického zobrazení z množiny bodů, praktické zkušenosti Detekce kartografického zobrazení z množiny bodů, praktické zkušenosti Tomáš Bayer Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta, Univerzita Karlova v Praze, Albertov 6, 10 78,

Více

METODIKA LOKALIZACE STARÝCH MAP NA VYBRANÝCH MAPOVÝCH SADÁCH

METODIKA LOKALIZACE STARÝCH MAP NA VYBRANÝCH MAPOVÝCH SADÁCH METODIKA LOKALIZACE STARÝCH MAP NA VYBRANÝCH MAPOVÝCH SADÁCH Václav Čada, cada@kma.zcu.cz Západo padočesk eská univerzita v Plzni, Fakulta aplikovaných věd, Katedra matematiky, oddělen lení Geomatiky Digitalizace

Více

Geografické informační systémy

Geografické informační systémy Geografické informační systémy Modelování geografického prostoru Souřadné systémy Úvod Prostorová poloha je nejdůležitější charakteristikou geo objektů. Změřit polohu geo objektu a zase ho někdy najít

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 2 2/6 Transformace souřadnic z ETRF2000 do

Více

Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: V/2

Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: V/2 Název projektu OPVK: Podpora výuky a vzdělávání na GVN J. Hradec CZ.1.07/1.5.00/34.0766 Klíčová aktivita: V/2 Číslo dokumentu: VY_52_INOVACE_ZE.S4.04 Typ výukového materiálu: Pracovní list pro žáka Název

Více

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Zemědělská fakulta. Studijní obor: Pozemkové úpravy a převody nemovitostí.

JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH. Zemědělská fakulta. Studijní obor: Pozemkové úpravy a převody nemovitostí. JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH Zemědělská fakulta Studijní program: Z11060 Zemědělská specializace Studijní obor: Pozemkové úpravy a převody nemovitostí Katedra: Katedra krajinného managementu

Více

Kartografické projekce

Kartografické projekce GYMNÁZIUM CHRISTIANA DOPPLERA Zborovská 45, Praha 5 Ročníková práce z deskriptivní geometrie Kartografické projekce Vypracoval: Nguyen, Viet Bach, 4.C Školní rok: 2011/2012 Zadavatel: Mgr. Ondřej Machů

Více

Maturitní témata z matematiky

Maturitní témata z matematiky Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy

Více

Cílem opatření bylo stanovení optimálního prostorového souřadnicového systému pro třídy objektů NaSaPO a zajištění transformačních služeb.

Cílem opatření bylo stanovení optimálního prostorového souřadnicového systému pro třídy objektů NaSaPO a zajištění transformačních služeb. Český úřad zeměměřický a katastrální Pod sídlištěm 9, Praha 8 - Kobylisy Počet listů: 13 Analýza stanovení jednotného referenčního polohového a výškového souřadnicového systému včetně způsobů transformace

Více

Základy geodézie a kartografie. Státní mapová díla

Základy geodézie a kartografie. Státní mapová díla Základy geodézie a kartografie Státní mapová díla Státní mapová díla Mapy velkých měřítek Základní mapy středních měřítek Mapy územních celků Mapy správního rozložení Tématická státní mapová díla Digitální

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Section 1. Současné možnosti převodu S-JTSK a ETRS89 Systém S-JTSK/05 S-JTSK v EPSG Úloha - transformace S-JTSK a ETRS89

Section 1. Současné možnosti převodu S-JTSK a ETRS89 Systém S-JTSK/05 S-JTSK v EPSG Úloha - transformace S-JTSK a ETRS89 Definice transformace S-JTSK - ETRS89 před 1.1.2011 Definice transformace S-JTSK - ETRS89 po 1.1.2011 Section 1 Současné možnosti převodu S-JTSK a ETRS89 Rozdíly Současné možnosti převodu S-JTSK a ETRS89

Více

OSTRAVSKÁ UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ÚVOD DO KARTOGRAFIE LUDĚ K KRTIČ KA

OSTRAVSKÁ UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ÚVOD DO KARTOGRAFIE LUDĚ K KRTIČ KA OSTRAVSKÁ UNIVERZITA P Ř ÍRODOVĚ DECKÁ FAKULTA ÚVOD DO KARTOGRAFIE LUDĚ K KRTIČ KA OSTRAVA 2007 2 Název: Úvod do kartografie Autor: Mgr. Luděk Krtička Vydání: první, 2007 Počet stran: 87 Recenzovali: Ing.

Více

MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM

MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM WORLD GEODETIC SYSTEM 1984 - WGS 84 MODERNÍ GLOBÁLNÍ GEODETICKÝ REFERENČNÍ GEOCENTRICKÝ SYSTÉM Pro projekt CTU 0513011 (2005) s laskavou pomocí Ing. D. Dušátka, CSc. Soustava základních geometrických a

Více

Aplikace deskriptivní geometrie

Aplikace deskriptivní geometrie INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Rozšíření akreditace učitelství matematiky a učitelství deskriptivní geometrie na PřF UP v Olomouci o formu kombinovanou CZ.1.07/2.2.00/18.0013 Aplikace deskriptivní geometrie

Více

Souřadnicové systémy na území ČR. Státní mapové dílo ČR

Souřadnicové systémy na území ČR. Státní mapové dílo ČR Souřadnicové systémy na území ČR Státní mapové dílo ČR 1 Závazné referenční systémy dle 430/2006 Sb. Nařízení vlády o stanovení geodetických referenčních systémů a státních mapových děl závazných na území

Více

Přehled základních metod georeferencování starých map

Přehled základních metod georeferencování starých map Přehled základních metod georeferencování starých map ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie 4. listopadu 2011 Obsah prezentace 1 2 3 4 5 Zhlediska georeferencování jsou důležité

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Souřadnicový systém 1942 (S-42)

Souřadnicový systém 1942 (S-42) Souřadnicový systém 1942 (S-42) Jakmile byly po I. světové válce zabezpečeny aktuální potřeby praxe, byla vedle JTSK, jejíž zhušťování dále probíhalo, budována od r. 1931 též tzv. Základní trigonometrická

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

SYLABUS PŘEDNÁŠKY 6 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 6 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 6 Z GEODÉZIE 1 (Měřické body, bodová pole, souřadnicové systémy, základy výpočtů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. listopad

Více

Vojenské mapy. Určování souřadnic na mapách. Encyklopedie vojenské geografie. Zpracovali: Ing. Libor Laža, Ing. Petr Janus. GeoSl AČR.

Vojenské mapy. Určování souřadnic na mapách. Encyklopedie vojenské geografie. Zpracovali: Ing. Libor Laža, Ing. Petr Janus. GeoSl AČR. Encyklopedie vojenské geografie Vojenské mapy Určování souřadnic na mapách Zpracovali: Ing. Libor Laža, Ing. Petr Janus Dobruška 008 Osnova. Určení zeměpisných souřadnic WGS8. Určení rovinných souřadnic

Více

Metodika převodu mezi ETRF2000 a S-JTSK varianta 2

Metodika převodu mezi ETRF2000 a S-JTSK varianta 2 Výzkumný ústav geodetický topografický a kartografický v.v.i. Stavební fakulta ČVUT v Praze Metodika převodu mezi ETRF a S-JTSK varianta Jan Kostecký Jakub Kostecký Ivan Pešek GO Pecný červen 1 1 Úvod

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky

11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky Specializovaný kurs U3V Současný stav a výhledy digitálních komunikací 11. Elektronická navigace od lodní přes leteckou po GPS principy, vlastnosti, technické prostředky 7.4.2016 Jiří Šebesta Ústav radioelektroniky

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Přijímací řízení NM studia VGM 2016

Přijímací řízení NM studia VGM 2016 Přijímací řízení NM studia VGM 2016 1. Jak se označuje 11letý cyklus sluneční aktivity, který je doprovázen pravidelným kolísáním počtu slunečních skvrn? a. Wolfův cyklus b. Haleho cyklus c. Gleissbergův

Více

CASSINI SOLDNEROVO ZOBRAZENÍ

CASSINI SOLDNEROVO ZOBRAZENÍ Vysoká škola báňská Technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví Ing. Hana Staňková, Ph.D. ZÁKLADY GEODÉZIE Souřadnicov adnicové systémy Geodetické základy

Více

Mapy - rozdělení podle obsahu, měřítka a způsobu vyhotovení Plán Účelové mapy

Mapy - rozdělení podle obsahu, měřítka a způsobu vyhotovení Plán Účelové mapy Mapy - rozdělení podle obsahu, měřítka a způsobu vyhotovení Plán Účelové mapy Kartografie přednáška 2 Mapy a jejich měřítka, plán výsledkem většiny mapovacích prací je mapa nebo plán Mapa zmenšený generalizovaný

Více

VÝVOJ SOFTWARE PRO LOKALIZACI MAP II. A III. VOJENSKÉHO MAPOVÁNÍ

VÝVOJ SOFTWARE PRO LOKALIZACI MAP II. A III. VOJENSKÉHO MAPOVÁNÍ HISTORICKÉ MAPY. Zborník referátov z vedeckej konferencie, Bratislava 2005 (Kartografická spoločnosť Slovenskej republiky) Bohuslav Veverka VÝVOJ SOFTWARE PRO LOKALIZACI MAP II. A III. VOJENSKÉHO MAPOVÁNÍ

Více

Ověřená technologie georeferencování map III. vojenského mapování

Ověřená technologie georeferencování map III. vojenského mapování Ověřená technologie georeferencování map III. vojenského mapování Milan Talich, Lubomír Soukup, Jan Havrlant, Klára Ambrožová, Ondřej Böhm, Filip Antoš Realizováno z programového projektu DF11P01OVV021:

Více

Sada 2 Geodezie II. 18. Státní mapy

Sada 2 Geodezie II. 18. Státní mapy S třední škola stavební Jihlava Sada 2 Geodezie II 18. Státní mapy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2 - inovace a zkvalitnění

Více

KARTOGRAFIE. Vývoj kartografie. Mapa a glóbus. Vznik mapy. Kapitola 3

KARTOGRAFIE. Vývoj kartografie. Mapa a glóbus. Vznik mapy. Kapitola 3 Kapitola 3 KARTOGRAFIE Vývoj kartografie Kartografie je vědní obor, který se zabývá tvorbou a zpracování map, technikou jejich výroby a jejich využíváním. Tvorba map provází člověka odpradávna. Z prehistorické

Více

Maturitní témata profilová část

Maturitní témata profilová část Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

Geografické informační systémy p. 1

Geografické informační systémy p. 1 Geografické informační systémy Slajdy pro předmět GIS Martin Hrubý hrubym @ fit.vutbr.cz Vysoké učení technické v Brně Fakulta informačních technologií, Božetěchova 2, 61266 Brno akademický rok 2004/05

Více

1 Měrové jednotky používané v geodézii

1 Měrové jednotky používané v geodézii 1 Měrové jednotky používané v geodézii Ke stanovení vzájemné polohy jednotlivých bodů zemského povrchu, je nutno měřit různé fyzikální veličiny. Jsou to zejména délky, úhly, plošné obsahy, čas, teplota,

Více

KARTOGRAFIE. Druhá kapitola: TOPOGRAFICKÁ MAPOVÁNÍ V ČESKÝCH ZEMÍCH. Ing. Hana Lebedová

KARTOGRAFIE. Druhá kapitola: TOPOGRAFICKÁ MAPOVÁNÍ V ČESKÝCH ZEMÍCH. Ing. Hana Lebedová KARTOGRAFIE Druhá kapitola: TOPOGRAFICKÁ MAPOVÁNÍ V ČESKÝCH ZEMÍCH Ing. Hana Lebedová POČÁTKY TOPOGRAFICKÉHO MAPOVÁNÍ počátek 18. století další vývojová etapa kartografie vzájemné propojování geodézie

Více

Geodézie a pozemková evidence

Geodézie a pozemková evidence 2012, Brno Ing.Tomáš Mikita, Ph.D. Geodézie a pozemková evidence Přednáška č.1 - Úvod do geodézie a kartografie Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU

Více

Návod k programu TRANSTOS v1.0

Návod k programu TRANSTOS v1.0 Návod k programu TRANSTOS v1.0 Konzolový program TRANSTOS v1.0 je určen k transformaci souřadnic do systému S-JTSK (Systém Jednotné Trigonometrické sítě Katastrální). Vstupem mohou být souřadnice ETRS-

Více

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita

Kartografické stupnice. Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Kartografické stupnice Přednáška z předmětu Tematická kartografie (KMA/TKA) Otakar Čerba Západočeská univerzita Datum vytvoření dokumentu: 20. 9. 2004 Datum poslední aktualizace: 16. 10. 2012 Stupnice

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření

Více

14 KARTOGRAFIE. 14.1 Tvar a rozměry zemského povrchu

14 KARTOGRAFIE. 14.1 Tvar a rozměry zemského povrchu 14 KARTOGRAFIE Kartografie je vědní a technický obor zabývající se zobrazením Země, kosmu a kosmických těles a jejich částí, objektů a jevů na nich a jejich vztahů, jejich výzkumem a poznáním prostřednictvím

Více

Souřadnicové systémy a stanovení magnetického severu. Luděk Krtička, Jan Langr

Souřadnicové systémy a stanovení magnetického severu. Luděk Krtička, Jan Langr Souřadnicové systémy a stanovení magnetického severu Luděk Krtička, Jan Langr Workshop Příprava mapových podkladů chata Junior, Kunčice u Starého Města pod Sněžníkem 24.-25. 1. 2015 Upozornění Tato prezentace

Více

STÁTNÍ MAPOVÉ DÍLO. Tomáš Bayer bayertom@natur.cuni cz. Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK.

STÁTNÍ MAPOVÉ DÍLO. Tomáš Bayer bayertom@natur.cuni cz. Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK. STÁTNÍ MAPOVÉ DÍLO Tomáš Bayer bayertom@natur.cuni cz Katedra aplikované geoinformatiky a kartografie. Přírodovědecká fakulta UK. MAPOVÉ DÍLO, STÁTNÍ MAPOVÉ DÍLO Mapové dílo: Představováno mapami jednotného

Více

SOUŘADNICOVÉ TRANSFORMACE V GEINFORMATICE

SOUŘADNICOVÉ TRANSFORMACE V GEINFORMATICE Souřadnicové transformace v geoinfomatice GEOS 2006 SOUŘADNICOVÉ TRANSFORMACE V GEINFORMATICE Prof. Ing. Bohuslav Veverka, DrSc. ČVUT v Praze, Fakulta stavební, katedra mapování a kartografie 166 29 Praha

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Mapové produkty Zeměměřického úřadu

Mapové produkty Zeměměřického úřadu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE Mapové produkty Zeměměřického úřadu semestrální práce Lucie Brejníková Darina Řičařová editor:

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra geografie Petra Grulová Vybrané souřadnicové systémy, jejich transformace a využití pro potřeby GIS Bakalářská práce Vedoucí práce: RNDr.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných

Více

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem Kružnice Kružnice je množina všech bodů roviny, které mají od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem je průměr kružnice.

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

MATEMATICKÁ KARTOGRAFIE

MATEMATICKÁ KARTOGRAFIE VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL KARTOGRAFICKÁ ZKRESLENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie

Více