Propočty přechodu Venuše 8. června 2004

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Propočty přechodu Venuše 8. června 2004"

Transkript

1 Propočty přechodu Venuše 8. června 2004 V tomto dokumentu předkládáme podmínky přechodu Venuše pře luneční kotouč 8. června roku Naše výpočty jme založili na planetárních teoriích VSOP87 vytvořených na IMCCE; přenot pozic vnitřních planet v je doažena max. odchylkou 0,005 tupně. Abychom mohli zíkat co nejpřenější ouřadnice pozic planet, mueli jme ve vých výpočtech uplatnit i znaloti precee, nutace a hvězdného čau. Precei jme počítali podle Liekeho (1976), nutaci podle Wahra (1981) a hvězdný ča podle Aokiho (1992). Přenot předpovědi přechodu také závií na určitém počtu fyzikálních parametrů, které muí být v ouladu teoriemi, které jme při výpočtech uplatnili. Jako teorie VSOP87 používá hodnotu atronomické jednotky UAI 1976 (= km), tak i my jme použili UAI 1976 pro výpočet poloměru Země (R = 6378,140 km) a pro výpočet třední hodnoty horizontální rovníkové paralaxy Slunce (p 0 = 8,794148"= R/a). Navíc jem použili kontanty UAI 1976 pro určení zdánlivého lunečního poloměru viděného z AU (D = 15 59,63') a pro určení zdánlivého poloměru Venuše (d' = 6051,8 km). Plochot Země je brána jako 1/298,257 (IERS 1992). V naší predikci e objevují tři druhy informací : obecné podmínky přechodu, podmínky z pohledu Země a podmínky týkající e dané oblati. Ve všech případech je však použita tejná tupnice měření čau, a ice univerzální koordinovaný ča (UTC nebo UT). Rozdíl mezi UTC a TT (zemký ča) je tanoven na 65,184. V našich tabulkách je zeměpiná délka vždy kladná měrem na západ a záporná měrem na východ. Obecné podmínky přechodu O co vlatně jde, když e řekne konjunkce v zeměpiné délce Venuše a Slunce. Je to moment, kdy e zdánlivá zeměpiná délka Venuše a Slunce hodují. Obecné podmínky přechodu popiují kontakty zemkého elipoidu (Země) okraji kužele polotínu a tínu. Každý takový kontakt zaujímá konkrétní míto a konkrétní ča. Toto míto na zemkém povrchu je vlatně bod pojnice (nebo tečny pozn. př.) mezi zemkým elipoidem a kuželem tínu či polotínu v době kontaktu. Vyvrcholení pojení (kontaktu) na povrchu Země pak natává v momentě, kdy je vzdálenot mezí tímto mítem (na Zemi) a oou kužele minimální. Dále uvedeme pro daný kontakt míta na Zemi, která mají Venuši či Slunce v zenitu. To nám pak umožňuje ledovat v uvažovaném čae Venuši tam, kde je dobře viditelná.

2 Konjunkce 8.června v 8 h 43 min 4,97 UTC. Zeměpiná délka Venuše 77 53' 20,783 Zeměpiná šířka Venuše -0 10' 34,42" Zeměpiná délka Slunce 77 53' 20,783" Zeměpiná šířka Slunce -0 0' 0,60" Rovníková paralaxa Slunce 8,66" Rovníková paralaxa Venuše 30,44" Pravý poloměr Slunce 15' 45,4" Pravý poloměr Venuše 28,88" Hlavní fáze Fáze Ča v UTC Souřadnice kontaktu Bod, který má planeta v zenitu Zem. délka Zem. šířka Zem. délka Zem. šířka První kontakt polotínu 5 h 6 min 30, ,7' ,9' ,1' ,4' První kontakt tínu 5 h 25min 27, ,6' ,1' ,6' ,2' Vyvrcholení přechodu 8 h 19 min 44, ,9' ,9' ,4' ,1' Polední kontakt tínu Polední kontakt polotínu 11 h 13 min 58,9 11 h 32 min 56, ,7' ,5' -11 6,8' ,0' ,2' -47 8,5' -6 21,3' ,7' Trvání hlavní fáze Trvání hlavní fáze: 6 h 26 min 25,45. Trvání přechodu pře tín: 5h 48 mn 31,49. Fyzikální parametry tínového kužele poloměr tínového kužele: 42,08 pol. Země geocentrická vzdálenot ke kraji tínu: 13,30 pol. Země geocentrická vzdálenot k okraji polotínu: 15,95 pol. Země poloměr polotínového kužele: 44,73 pol. Země topocentrická minimální vzdálenot mezi tředem Slunce a Venuše: 10' 5,156" Geocentrické podmínky Tyto podmínky jou vztaženy k určitému bodu: ke tředu zemkého elipoidu. My uvádíme doby různých kontaktů, které korepondují dobami, kdy e (viděno ze Země) dik Venuše promítá mimo či přímo na luneční dik. Jou zde také uvedeny čay, kdy třed Země vchází a poté opouští kužel tínu repektive polotínu. Vyvrcholení pak natává, když je vzdálenot tředu Venuše a tředu Slunce minimální.

3 Stejně jako pro obecné podmínky přechodu, i zde uvádíme míta na Zemi, která budou mít planetu Venuši v zenitu v době kontaktu. Pro jednotlivé kontakty pak předkládáme úhel bodem kontaktu, což je úhel mezi lunečním tředem a okrajem lunce (obr. 1) obr. 1 Geocentrická fáze Ča v UTC Bod, který má planeta v zenitu Zem. délka Zem. šířka Polární úhel První vnější kontakt První vnitřní kontakt Vyvrcholení kontaktu Polední vnitřní kontakt Polední vnější kontakt 5 h 13 min 33,2 5 h 32 min 49,8 8 h 19 min 43,5 11 h 6 min 37,1 11 h 25 min 53, ,9' ,3' ,7' ,5' ,1' ,7' ,6' ,1' ,8' ,0' ,2' -8 7,3' ,8' ,2' Trvání geocentrické fáze Trvání hlavní fáze: 6 h 12 min 20,68. Trvání přechodu pře tín: 5h 33 min 47,26. Minimální geocentrická úhlová vzdálenot: 10' 26,875".

4 Poznámky Trvání geocentrické fáze je kratší než trvání fáze hlavní. Tento rozdíl je dán čaem, který potřebují okraje kužele tínu a polotínu k překročení zemkého poloměru. Rozdíl mezi geocentrickou minimální úhlovou vzdálenotí a topocentrickou minimální úhlovou vzdálenotí je dán rozdílem v paralaxe mezi tředem Země a mítem pozorování na Zemi. Tento rozdíl muí být hodný rozdílem rovníkové horizontální paralaxy Venuše a Slunce. Pro názornot máme 10' 26,875"- 10' 5,156" = 21,719" a rozdíl kutečné rovníkové paralaxy (v momentě konjunkce) je 30,44" - 8,66"= 21,78". Lokální podmínky Lokální podmínky jou ve všech bodech tejné jako podmínky geocentrické, jen tím rozdílem, že jou vztaženy k určitému mítu. My zde neuvedeme lokální podmínky pro všechna míta na Zemi jednak z nedotatku míta a jednak z toho důvodu, že taková měření i jitě uděláte ami. Pouze uvedeme hodnoty koeficientů E, F, G pro každý kontakt popaný v předchozích čátech tohoto dokumentu. Tyto koeficienty pak umožní nadné vypočítaní přibližných hodnot v jakémkoli mítě od prvního geocentrického kontaktu. Fáze E F G První vnější kontakt 6,4823 min -0,0556 min 2,8992 min První vnitřní kontakt 6,6111 min 0,6731 min 3,3721 min Polední vnitřní kontakt 3,2893 min 3,4236 min -5,7456 min Polední vnější kontakt 2,8106 min 3,8404 min -5,2725 min Odlišnot od doby geocentrického kontaktu je dána náledujícím vztahem (teprve bude vložen - pozn. př.), kde λ a φ jou zeměpiná délka, repektive zeměpiná šířka. Příklad: Výpočet lokálních okolnotí pro Paříž Zeměpiné ouřadnice pro Paříž jou: zeměpiná délka: zeměpiná šířka: Topocentrické kontakty ΔT počten na základě našeho vztahu Ča počten na základě našeho vztahu Ča počten na základě definice První vnější kontakt 6,4474 min 5 h 20min 0,0 5 h 20 min 6,1 První vnitřní kontakt 6,8685 min 5 h 39 min 41,9 5 h 39 min 48,3 Polední vnitřní kontakt -2,2539 min 11 h 4 min 21,9 11 h 4 min 20,8 Polední vnější kontakt -2,2237 min 11 h 23 min 40,4 11 h 23 min 39,9 Schéma viditelnoti Náledující nákrey byly zhotoveny pomocí GMT (Generic Mapping Tool Graphic) Paulem Weelem a Waltrem H. F. Smithem.

5 Přiloženy jou tři mapy První z nich ukazuje hranici viditelnoti fenoménu. Na everní polokouli e chyluje k začátku léta, a tím vzniká nedaleko everního pólu zóna, kde Slunce nezapadá. Celý přechod je zde viditelný, avšak Slunce je velice nízko nad horizontem. Na druhé traně, blízko jižního pólu, je naopak zóna, kde Slunce nevychází, a tím e celý jev tává nepozorovatelný. Za pozornot tojí tedy pouze dvě zóny. V první z nich Slunce vyjde a zae zapadne, v té druhé je tále na obloze nezapadá (everní pól). Druhý nákre je hodný prvním, avšak ukazuje navíc tři typy křivek. Křivku začátku (rep. konce) přechodu v daný ča a křivku rovnoměrného trvání přechodu. Křivka začátku a konce v daný ča plně koreponduje míty na Zemi, kde e v tutéž dobu odehrává vnější kontakt. Křivka rovnoměrného trvání přechodu protíná míta, kde je rozdíl mezi dobou prvního a poledního vnějšího kontaktu kontantní. Je třeba upozornit, že křivky námi znázorněné nejou rovnoběžné poledníky. Třetí nákre je hodný nákreem druhým, jen tím rozdílem, že použité křivky tentokrát znázorňují tav v době vnitřního kontaktu a dobu trvání přechodu. mapa 1

6 mapa3 Pozorovaný jev Z jakéhokoli míta v zóně úplné viditelnoti uvidí každý pozorovatel dik Venuše přecházející pře luneční kotouč. Zdánlivé trajektorie Venuše a Slunce budou záviet zejména na: na mítě, ze kterého pozorujeme potupu, který při pozorování uplatňujeme na polárním úhlu P kontaktu na úhlu e zenitem Z příklad: Paříž zem. délka: 48 51'54,18" everně zem. šířka: 2 20'59,16" východně UT P Z První vnější kontakt 5 h 20 min 6,0 117,7 159,8 První vnitřní kontakt 5 h 39m 48,2 121,0 164,2 Polední vnitřní kontakt 11 h 4min 20,6 212,4 228,9 Polední vnější kontakt 11 h 23min 39,7 215,6 225,4 Trvání hlavní fáze: 5 h 24 min 32,4 Trvání celé fáze: 6h 3 min 33,7 Charakteritika vyvrcholení přechodu: okamžik vyvrcholení: 8 h 22 min 53,4 minimální vzdálenot: 10' 40,9" Výška Slunce nad horizontem: 42 azimut: 284

7 Obr. 2 Obr. 3

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku 4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního

Více

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,

Více

Rovnice rovnoměrně zrychleného pohybu

Rovnice rovnoměrně zrychleného pohybu ..8 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 7 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně píše minut na řešení příkladů

Více

5. cvičení z Matematické analýzy 2

5. cvičení z Matematické analýzy 2 5. cvičení z Matematické analýz 2 30. října - 3. litopadu 207 5. linearizace funkce a Pro funkci f, = e nalezněte její linearizaci v bodě a 0 = 6, 0. Použijte ji k přibližnému určení hodnot funkce f v

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM Hynčicová Tereza, H2IGE1 2014 ČAS Jedna ze základních fyzikálních veličin Využívá se k určení časových údajů sledovaných jevů Časovou škálu

Více

1.1.7 Rovnoměrný pohyb II

1.1.7 Rovnoměrný pohyb II 1.1.7 Rovnoměrný pohyb II Předpoklady: 16 Minulou hodinu jme zakončili předpovídáním dalšího pohybu autíčka. Počítali jme jeho dráhy v dalších okamžicích pomocí tabulky a nakonec i přímé úměrnoti: autíčko

Více

1.1.14 Rovnice rovnoměrně zrychleného pohybu

1.1.14 Rovnice rovnoměrně zrychleného pohybu ..4 Rovnice rovnoměrně zrychleného pohybu Předpoklady: 3 Pedagogická poznámka: Stejně jako u předchozí hodiny je i v této hodině potřeba potupovat tak, aby tudenti měli minimálně minut na řešení příkladů

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář MASARYKOA UNIERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE květen 2008 I Měření vzdáleností ve vesmíru 1) ýpočet hodnoty pc a ly ze známé AU a převod těchto hodnot. 1 AU = 150 10 6 km Z definice paralaxy

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

Kdy a odkud pozorovat přechod Venuše

Kdy a odkud pozorovat přechod Venuše Kdy a odkud pozorovat přechod Venuše Václav Pavlík, Michael Prouza a David Ondřich Mezi velmi vzácné úkazy na obloze patří bez pochyby přechody planet (Merkur a Venuše) přes sluneční disk. Přechod Venuše

Více

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony

Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Vzdálenosti ve sluneční soustavě: paralaxy a Keplerovy zákony Astronomové při sledování oblohy zaznamenávají především úhly a pozorují něco, co se nazývá nebeská sféra. Nicméně, hvězdy nejsou od Země vždy

Více

4. cvičení z Matematické analýzy 2

4. cvičení z Matematické analýzy 2 4. cvičení z Matematické analýzy 2 22. - 26. října 208 4. Po funkci fx, y, z xy 2 + z 3 xyz učete v bodě a 0,, 2 deivaci ve měu u, kteý je učen tím, že víá kladnými měy ouřadných o potupně úhly 60, 45

Více

Astronomická pozorování

Astronomická pozorování KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové

Více

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci

Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Geometrie Gradovaný řetězec úloh Téma: Komolý kužel Autor: Kubešová Naděžda Klíčové pojmy:

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ týden doc Ing Renata WAGNEROVÁ, PhD Otrava 013 doc Ing Renata WAGNEROVÁ, PhD Vyoká škola báňká Technická univerzita

Více

Vysokofrekvenční obvody s aktivními prvky

Vysokofrekvenční obvody s aktivními prvky Vokofrekvenční obvod aktivními prvk Základními aktivními prvk ve vokofrekvenční technice jou bipolární a unipolární tranzitor. Dalšími aktivními prvk jou hbridní nebo monolitické integrované obvod. Tranzitor

Více

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE

REKONSTRUKCE ASTROLÁBU POMOCÍ STEREOGRAFICKÉ PROJEKCE REKONTRUKCE ATROLÁBU POMOCÍ TEREOGRAFICKÉ PROJEKCE Václav Jára 1 1 tereografická projekce a její vlastnosti tereografická projekce kulové plochy je středové promítání z bodu této kulové plochy do tečné

Více

II. Kinematika hmotného bodu

II. Kinematika hmotného bodu II Kinematika hmotného bodu Všechny vyřešené úlohy jou vyřešeny nejprve obecně, to znamená bez číel Číelné hodnoty jou doazeny až tehdy, dopějeme-li k vyjádření neznámé pomocí vztahu obahujícího pouze

Více

Vzdálenosti a východ Slunce

Vzdálenosti a východ Slunce Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM

Více

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do

s požadovaným výstupem w(t), a podle této informace generuje akční zásah u(t) do Vážení zákazníci, dovolujeme i Vá upozornit, že na tuto ukázku knihy e vztahují autorká práva, tzv. copyright. To znamená, že ukázka má loužit výhradnì pro oobní potøebu potenciálního kupujícího (aby ètenáø

Více

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů.

Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl sloužit jako vzor pro tvorbu vašich vlastních protokolů. Vzorový protokol pro předmět Zpracování experimentu. Tento protokol by měl loužit jako vzor pro tvorbu vašich vlatních protokolů. Na příkladech je zde ukázán právný zápi výledků i formát tabulek a grafů.

Více

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA

ÚSTAV PRO VÝZKUM MOTOROVÝCH VOZIDEL s.r.o. TÜV Süddeutschland Holding AG TECHNICKÁ ZPRÁVA TÜV Süddeutchland Holding AG Lihovarká 12, 180 68 Praha 9 www.uvmv.cz TECHNICKÁ ZPRÁVA Metodika pro hodnocení vozidel v jízdních manévrech na základě počítačových imulací a jízdních zkoušek. Simulační

Více

URČENÍ SOUŘADNIC A VÝŠKY BODU (číslo bodu 1, místopisný popis: střecha FSv, budova B)

URČENÍ SOUŘADNIC A VÝŠKY BODU (číslo bodu 1, místopisný popis: střecha FSv, budova B) Polední úprava: 5.9.08 6:5 URČENÍ SOUŘDNC VÝŠKY ODU čílo bodu, mítopiný popi: třecha FSv, budova. Určení ouřadnic bodu Z ecentrického potavení teodolitu označení tanovika E e změří: a vodorovné měr ve

Více

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných

Více

1.2 Sluneční hodiny. 100+1 příklad z techniky prostředí

1.2 Sluneční hodiny. 100+1 příklad z techniky prostředí 1.2 Sluneční hodiny Sluneční hodiny udávají pravý sluneční čas, který se od našeho běžného času liší. Zejména tím, že pohyb Slunce během roku je nepravidelný (to postihuje časová rovnice) a také tím, že

Více

základy astronomie 1 praktikum 3. Astronomické souřadnice

základy astronomie 1 praktikum 3. Astronomické souřadnice základy astronomie 1 praktikum 3. Astronomické souřadnice 1 Úvod Znalost a správné používání astronomických souřadnic patří k základní výbavě astronoma. Bez nich se prostě neobejdete. Nejde ale jen o znalost

Více

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu

přednáška TLAK - TAH. Prvky namáhané kombinací normálové síly a ohybového momentu 7..0 přednáška TLAK - TAH Prvky namáhané kombinací normálové íly a ohybového momentu Namáhání kombinací tlakové (tahové) íly a momentu tlak Namáhání kombinací tlakové (tahové) íly a momentu Namáhání kombinací

Více

Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách

Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách Zpracoval Doc. RNDr. Zdeněk Hlaváč, Cc Vlivem vzájemné polohy lunce, Země a dalšího tělesa(např. jiné planety nebo Měsíce) dochází k jevu,

Více

MAPY VELKÉHO A STŘEDNÍHO MĚŘÍTKA

MAPY VELKÉHO A STŘEDNÍHO MĚŘÍTKA MAPA A GLÓBUS Tento nadpis bude stejně velký jako nadpis Planeta Země. Můžeš ho napsat přes půl nebo klidně i přes celou stranu. GLÓBUS Glóbus - zmenšený model Země - nezkresluje tvary pevnin a oceánů

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm *

3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm * Fyzika 1 2009 Otázky za 2 body 1. Mezi tavové veličiny patří a) teplo b) teplota * c) práce d) univerzální plynová kontanta 2. Krychle má hranu o délce 2 mm. Jaký je její objem v krychlových metrech? a)

Více

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace

REGULACE EL. POHONŮ Stabilita a tlumení. Obr. 1. Schéma uzavřené regulační smyčky. Obr. 2. Ukazatele kvality regulace EP-egulace EP EGULACE EL. POHONŮ Stabilita a tlumení Obr.. Schéma uzavřené regulační myčky Obr.. Ukazatele kvality regulace V regulačních pohonech pouzujeme kvalitu regulace nejčatěji dle přechodové charakteritiky,

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

ČAS. Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s pohyby Země, počítáním času a časovými pásmy.

ČAS. Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s pohyby Země, počítáním času a časovými pásmy. ČAS Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s pohyby Země, počítáním času a časovými pásmy. Pohyby Země v minulosti si lidé mysleli, že je Země centrem Sluneční

Více

Hvězdářská ročenka 2016

Hvězdářská ročenka 2016 Hvězdářská ročenka 2016 Hvězdárna a planetárium hl. m. Prahy Tato publikace vyšla s podporou Ediční rady Akademie věd České republiky. Hvězdářská ročenka 2016 Pod redakcí Jakuba Rozehnala připravili Martin

Více

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. )

( LEVEL 3 Laplaceova transformace jako nástroj řešení lineárních diferenciálních rovnic. ) ( LEVEL 3 Laplaceova tranformace jako nátroj řešení lineárních diferenciálních rovnic. ) Podívejme e tentokrát na dynamiku pracovní edačky řidiče prizmatem matematiky aneb trocha teorie jitě nikomu neuškodí...

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Výfučtení: Triky v řešení fyzikálních úkolů

Výfučtení: Triky v řešení fyzikálních úkolů Výfučtení: Triky v řešení fyzikálních úkolů Úvod Ve fyzice obča narazíme na problémy jejichž řešení je mnohdy komplikované a zdlouhavé. Avšak v určitých případech e tyto ložité problémy dají vyřešit velmi

Více

Podpořeno z projektu FRVŠ 584/2011.

Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Podpořeno z projektu FRVŠ 584/2011. Křovákovo zobrazení Křovákovo zobrazení

Více

Návody na výpočty směrových a sklonových poměrů dle zadání do cvičení

Návody na výpočty směrových a sklonových poměrů dle zadání do cvičení Návody na výpočty měrových a klonových poměrů dle zadání do cvičení Kombinované tudium BO01, čát Dopravní tavby Ad 1) Návrh obou měrových oblouků bez přechodnic a) Změřte tředové úhly pomocí tangenty úhlu

Více

7. cvičení návrh a posouzení smykové výztuže trámu

7. cvičení návrh a posouzení smykové výztuže trámu 7. cvičení návrh a poouzení mykové výztuže trámu Výtupem domácího cvičení bude návrh proilů a roztečí třmínků na trámech T1 a T2. Pro návrh budeme jako výchozí hodnotu V Ed uvažovat největší hodnotu mykové

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrký manuál č. 8 Aktualizace: 02/2016 Poouzení tability vahu Program: Soubor: Stabilita vahu Demo_manual_08.gt V tomto inženýrkém manuálu je popán výpočet tability vahu, nalezení kritické kruhové

Více

Hvězdářská ročenka 2018

Hvězdářská ročenka 2018 Hvězdářská ročenka 2018 Hvězdárna a planetárium hl. m. Prahy Tato publikace vyšla s podporou Ediční rady Akademie věd České republiky. Hvězdářská ročenka 2018 Pod redakcí Jakuba Rozehnala připravili Jakub

Více

2. Zeměpisná síť Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

2. Zeměpisná síť Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Planeta Země 2. Zeměpisná síť Planeta Země ZEMĚPISNÁ SÍŤ Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí se základními

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky. Bakalářská práce. Řízení Trojkolového vozíku

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky. Bakalářská práce. Řízení Trojkolového vozíku Západočeká univerzita v Plzni Fakulta aplikovaných věd Katedra kbernetik Bakalářká práce Řízení Trojkolového vozíku Plzeň, 23 Jan Holub Prohlášení Předkládám tímto k poouzení a obhajobě bakalářkou práci

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou

Automatizace Úloha č.1. Identifikace regulované soustavy Strejcovou metodou Automatizace Úloha č. Identifikace regulované outavy Strejcovou metodou Petr Luzar 008/009 Zadání. Zapojte regulační obvod reálnou tepelnou outavou a eznamte e monitorovacím a řídicím programovým ytémem

Více

Čas na Zemi cv. č. 3

Čas na Zemi cv. č. 3 Čas na Zemi cv. č. 3 PedF, katedra geografie 1 Co je to čas? Čas je možné charakterizovat jako něco, co jde spojitě ve vesmíru za sebou v nevratném pořadí. To znamená, že i otočení Země kolem své osy a

Více

Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) řešení

Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) řešení Poštovní adresa pro zaslání vypracovaných úloh: Mgr. Lenka Soumarová, Štefánikova hvězdárna, Strahovská 205, 118 00 Praha 1 Termín odeslání: nejpozději 20. 3. 2015 (rozhoduje datum poštovního razítka)

Více

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.

Více

Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra

Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem Slunce kolem barycentra Úvaha nad slunečními extrémy - 2 A consideration about solar extremes 2 Jiří Čech Abstrakt: Autor navazuje na svůj referát z r. 2014; pokusil se porovnat hodnoty extrémů některých slunečních cyklů s pohybem

Více

Asynchronní motor s klecí nakrátko

Asynchronní motor s klecí nakrátko Aynchronní troje Aynchronní motor klecí nakrátko Řez aynchronním motorem Princip funkce aynchronního motoru Točivé magnetické pole lze imulovat polem permanentního magnetu, otáčejícího e kontantní rychlotí

Více

ČAS, KALENDÁŘ A ASTRONOMIE

ČAS, KALENDÁŘ A ASTRONOMIE ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Vyhodnocení měření, která byla prováděna v Chorvatsku od 15-22.05 2010. Pro měření byl použit sextant:

Vyhodnocení měření, která byla prováděna v Chorvatsku od 15-22.05 2010. Pro měření byl použit sextant: Vyhodnocení měření, která byla prováděna v Chorvatsku od 15-22.05 2010. Pro měření byl použit sextant: 1, Určení polohy ze Slunce z plovoucí jachty. LOP (line of position dále LOP) byly prováděny třemi

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 10: Interference a ohyb větla Datum měření: 6. 5. 2016 Doba vypracovávání: 7 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klaifikace: 1 Zadání 1. Bonu:

Více

Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6)

Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) Řešení úloh 1. kola 48. ročníku fyzikální olympiády. Kategorie D Autořiúloh:J.Jírů(1,3,4,7),I.Čáp(5),I.Volf(2),J.JírůaP.Šedivý(6) 1.a) Jetliže kolo automobilu neprokluzuje, je velikot okamžité rychloti

Více

2.1.2 Měsíční fáze, zatmění Měsíce, zatmění Slunce

2.1.2 Měsíční fáze, zatmění Měsíce, zatmění Slunce 2.1.2 Měsíční fáze, zatmění Měsíce, zatmění Slunce Předpoklady: 020101 Pomůcky: lampičky s klasickými žárovkami, stínítko, modely slunce, země, měsíce na zatmění Měsíc je velmi zajímavé těleso: jeho tvar

Více

Je rychlejší dostat se do školy (budovy ČVUT na Karlově Náměstí) ze Strahovských kolejí pomocí autobusu, nebo tramvaje?

Je rychlejší dostat se do školy (budovy ČVUT na Karlově Náměstí) ze Strahovských kolejí pomocí autobusu, nebo tramvaje? Seminární práce pro předmět X36MVT Matematika pro výpočetní techniku Je rchlejší dotat e do škol (budov ČVUT na Karlově Námětí) ze Strahovkých kolejí pomocí autobuu, nebo tramvaje? Vpracoval: Tomáš Valenta,

Více

Eudoxovy modely. Apollónios (225 př. Kr.) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní. Deferent, epicykl a excentr

Eudoxovy modely. Apollónios (225 př. Kr.) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní. Deferent, epicykl a excentr Počátek goniometrie Eudoxovy modely Deferent, epicykl a excentr Apollónios (225 př Kr) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní Zdeněk Halas (KDM MFF UK) Goniometrie v antice 25

Více

Astronomie jednoduchými prostředky. Miroslav Jagelka

Astronomie jednoduchými prostředky. Miroslav Jagelka Astronomie jednoduchými prostředky Miroslav Jagelka 20.10.2016 Když si vystačíte s kameny... Stonehenge (1600-3100 BC) Pyramidy v Gize (2550 BC) El Castilllo (1000 BC) ... nebo s hůlkou Gnomón (5000 BC)

Více

Dráha rovnoměrného pohybu

Dráha rovnoměrného pohybu POHYB TĚLESA Dráha rovnoěrného pohybu Řidič i na dálnici zapnul tepoat To je zařízení, které udržuje tálou rychlot autoobilu bez ohledu na jízdu do kopce či z kopce Od té doby jel rovnoěrně rychlotí 1

Více

PŘÍTECH. Smykové tření

PŘÍTECH. Smykové tření PŘÍTECH Smykové tření Gymnázium Cheb Nerudova 7 Tomáš Tomek, 4.E 2014/2015 Prohlášení Prohlašuji, že jem maturitní práci vypracoval amotatně pod vedením Mgr. Vítězlava Kubína a uvedl v eznamu literatury

Více

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů

Více

Pro mapování na našem území bylo použito následujících souřadnicových systémů:

Pro mapování na našem území bylo použito následujících souřadnicových systémů: SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno

Více

Praktikum z astronomie 0. Měření refrakce. Zadání

Praktikum z astronomie 0. Měření refrakce. Zadání 20. února 2007 Praktikum z astronomie 0 Zadání Astronomická refrakce Úkolem je určit polohu zapadajícího nebo vycházejícího nebeského tělesa měřením a výpočtem. str. 48 Teodolitem změřte polohu známého

Více

Planeta Země. Pohyby Země a jejich důsledky

Planeta Země. Pohyby Země a jejich důsledky Planeta Země Pohyby Země a jejich důsledky Pohyby Země Planeta Země je jednou z osmi planet Sluneční soustavy. Vzhledem k okolnímu vesmíru je v neustálém pohybu. Úkol 1: Které pohyby naše planeta ve Sluneční

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 2/99 Tektonika zemských desek školní rok

Více

3 Chyby měření. 3.1 Hrubé chyby

3 Chyby měření. 3.1 Hrubé chyby 3 Chyby měření Za daných podmínek má každá fyzikální veličina určitou hodnotu, kterou ovšem z principiálních důvodů nemůžeme zjitit úplně přeně. Každé měření je totiž zatíženo chybami, které jou nejrůznějšího

Více

Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) Identifikace

Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) Identifikace Žák A Astronomická Identifikace jméno: příjmení: identifikátor: Škola název: město: PSČ: Hodnocení A B C D Σ (100 b.) Účast v AO se řídí organizačním řádem, č.j. MŠMT 14 896/2012-51. Organizační řád a

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Téma / kapitola ZŠ Dělnická žáky 6. a 7. ročníků

Více

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ VY_32_INOVACE_06_III./20._SOUHVĚZDÍ Severní obloha Jižní obloha Souhvězdí kolem severního pólu Jarní souhvězdí Letní souhvězdí Podzimní souhvězdí Zimní souhvězdí zápis Souhvězdí Severní hvězdná obloha

Více

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY

ÚSTŘEDNÍ KOMISE FYZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY ÚSTŘEDNÍ KOMISE YZIKÁLNÍ OLYMPIÁDY ČESKÉ REPUBLIKY E-mail: ivo.volf@uhk.cz, tel.: 493 331 19, 493 331 189 Řešení úloh krajkého kola 55. ročníku yzikální olympiády Kategorie E Předložená řešení by neměla

Více

VESMÍR. Vesmír vznikl Velkým Třeskem (Big Bang) asi před 14 (13,8) miliardami let

VESMÍR. Vesmír vznikl Velkým Třeskem (Big Bang) asi před 14 (13,8) miliardami let VESMÍR Vesmír vznikl Velkým Třeskem (Big Bang) asi před 14 (13,8) miliardami let Čím je tvořen? Planety, planetky, hvězdy, komety, měsíce, mlhoviny, galaxie, černé díry; dalekohledy, družice vytvořené

Více

LABORATORNÍ CVIČENÍ Z FYZIKY

LABORATORNÍ CVIČENÍ Z FYZIKY ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATEDRA FYZIKY LABORATORNÍ CVIČENÍ Z FYZIKY méno Stanilav Matoušek Datum měření 16. 5. 5 Stud. rok 4/5 Ročník 1. Datum odevzdání 3. 5. 5 Stud. kupina 158/45 Lab. kupina

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

Seriál VII.IV Astronomické souřadnice

Seriál VII.IV Astronomické souřadnice Výfučtení: Astronomické souřadnice Představme si naši oblíbenou hvězdu, kterou chceme ukázat našemu kamarádovi. Kamarád je ale zrovna na dovolené, a tak mu ji nemůžeme ukázat přímo. Rádi bychom mu tedy

Více

Návrh na pořádání letní časti Okresního kola hry Plamen v ročníku 2014/2015

Návrh na pořádání letní časti Okresního kola hry Plamen v ročníku 2014/2015 Návrh na pořádání letní čati Okreního kola hry Plamen v ročníku 0/05 Zpracovalo SDH Staré Heřminovy Anotace Zde jou rozebrány možnoti pořádání outěže letní čáti Okreního kola hry Plamen v ročníku 0/05

Více

Hvězdářský zeměpis Obloha a hvězdná obloha

Hvězdářský zeměpis Obloha a hvězdná obloha Hvězdářský zeměpis Obloha a hvězdná obloha směr = polopřímka, spojující oči, kterými sledujeme svět kolem sebe, s daným objektem obzor = krajina, kterou obzíráme, v našem dohledu (budovy, stromy, kopce)

Více

HALOVÉ JEVY OBJEKTIVEM AMATÉRSKÉHO FOTOGRAFA. Mgr. Hana Tesařová

HALOVÉ JEVY OBJEKTIVEM AMATÉRSKÉHO FOTOGRAFA. Mgr. Hana Tesařová HALOVÉ JEVY OBJEKTIVEM AMATÉRSKÉHO FOTOGRAFA Mgr. Hana Tesařová Halové jevy v atmosféře Optické jevy v atmosféře objevují se díky lomu a odrazu slunečního nebo měsíčního světla v drobných ledových krystalech

Více

Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test

Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test Ukázkové řešení úloh ústředního kola kategorie EF A) Úvodní test 1. Ve kterém městě je pohřben Tycho Brahe? [a] v Kodani [b] v Praze [c] v Gdaňsku [d] v Pise 2. Země je od Slunce nejdál [a] začátkem ledna.

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D

Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kategorie D 1.a) Graf v km h 1 Řešení úloh 1. kola 55. ročníku fyzikální olympiády. Kaegorie D 50 Auor úloh: J. Jírů 40 30 0 10 0 0 1 3 4 5 6 7 8 9 10 11 1 13 14 6bodů b) Pomocí obahu plochy pod grafem určíme dráhu

Více

Budování EME pracoviště

Budování EME pracoviště Budování EME pracoviště aneb Co je třeba zvážit při návrhu a instalaci parabolické antény? Matěj Petržílka, OK1TEH ARP 11 Ústí nad Labem 1.12 2018 www.ok2kkw.com Umístění antény vůči pohybu Měsíce Zvážení

Více

Příklad 1 Ověření šířky trhlin železobetonového nosníku

Příklad 1 Ověření šířky trhlin železobetonového nosníku Příklad 1 Ověření šířky trhlin železobetonového noníku Uvažujte železobetonový protě podepřený noník (Obr. 1) o průřezu b = 00 mm h = 600 mm o rozpětí l = 60 m. Noník je oučátí kontrukce objektu pro kladování

Více

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou.

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou. Obsah Obsah 1 Newtonův gravitační zákon 1 2 Gravitační pole 3 2.1 Tíhové pole............................ 5 2.2 Radiální gravitační pole..................... 8 2.3..................... 11 3 Doplňky 16

Více

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM

ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM ANALÝZA PRŮCHODU PAPRSKOVÝCH SVAZKŮ KOUTOVÝM ODRAŽEČEM P Kytka J Novák ČVUT v Praze Fakulta tavební katedra fyziky Práce e zabývá analýzou průchodu paprků koutovým odražečem což je typ hranolu který je

Více

4. Práce, výkon, energie

4. Práce, výkon, energie 4. Práce, výkon, energie Mechanická práce - konání mechanické práce z fyzikálního hledika je podmíněno vzájemným ilovým půobením těle, která e přitom vzhledem ke zvolené vztažné outavě přemíťují. Vztahy

Více

4. Matematická kartografie

4. Matematická kartografie 4. Země má nepravidelný tvar, který je dán půsoením mnoha sil, zejména gravitační a odstředivé (vzhledem k rotaci Země). Odstředivá síla způsouje, že tvar Země je zploštělý, tj. zemský rovník je dále od

Více

Magnetické pole drátu ve tvaru V

Magnetické pole drátu ve tvaru V Magnetické pole drátu ve tvaru V K prvním úspěchům získaným Ampèrem při využívání magnetických jevů patří výpočet indukce magnetického pole B, vytvořeného elektrickým proudem procházejícím vodiči. Srovnáme

Více

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY

GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY GEOGRAFICKÁ SLUŽBA ARMÁDY ČESKÉ REPUBLIKY VOJENSKÝ GEOGRAFICKÝ A HYDROMETEOROLOGICKÝ ÚŘAD Popis a zásady používání světového geodetického referenčního systému 1984 v AČR POPIS A ZÁSADY POUŽÍVÁNÍ V AČR

Více

Datová analýza. Strana 1 ze 5

Datová analýza. Strana 1 ze 5 Strana 1 ze 5 (D1) Binární pulzar Astronomové díky systematickému hledání v posledních desetiletích objevili velké množství milisekundových pulzarů (perioda rotace 10 ms). Většinu těchto pulzarů pozorujeme

Více