ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE"

Transkript

1 ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 5/ Určování astronomických zeměpisných souřadnic a azimutu z měření na Slunce školní rok semestr skupina zpracoval datum klasifikace 2010/11 2 NG1-90 Jan Dolista, Radka Junová Rudolf Šrutka

2 Zadání: Určování astronomických zeměpisných souřadnic a azimutu z měření na Slunce 1. Z měřených zenitových vzdáleností Slunce a časů určete zeměpisnou šířku stanoviska. Zeměpisnou délku získáte výpočtem ze souřadnic pilíře na střeše budovy B, kde se měření uskuteční. Pro opravu z astronomické refrakce je nezbytné zjišťovat teplotu a atmosférický tlak. Údaje potřebné pro převody časů hledejte na 2. Z měřených vodorovných směrů na Slunce a zvolený trigonometrický bod a registrovaných časů určete směrník vybraného pozemního cíle v S-JTSK. Číselné zadání: X [m] Y [m] Pilíř č.4 ve směru od kopule Hradčany, chrám sv. Víta Vypracování: Veškeré výpočty byly provedeny v programu Octave. 1 Určení zeměpisné šířky 1.1 Měření Měření bylo provedeno Použit byl teodolit Zeiss Theo 010 (č ). Měřeny a zapisovány byly zenitové úhly a okamžiky měření. Časy byly měřeny pomocí pracovních stopek, kteé byly synchronizovány se středoevropským časem SEČ pomocí hodin řízených radiovým signálem. Každý člen měřil zenitové úhly dle schematu: 3x spodní okraj Slunce v I.poloze 3x spodní okraj Slunce v II.poloze 3x horní okraj Slunce v II.poloze 3x horní okraj Slunce v I.poloze Pozn.: Pořadí měření na spodní a horní okraj mohlo být zaměněno. V průběhu měření byla několikrát zaznamenána teplota a tlak. Teplota byla zaznamenávána častěji neboť se rychleji měnila. Hodnoty jsou uvedeny v přiložených zápisnících. 1.2 Vyhledání hodnot v tabulkách Nejprve byl v astronomických tabulkách vyhledán greenwichský hvězdný čas pro světovou půlnoc daného dne. S 0 = 11 h 56 m s Dále byla vyhledána rektascenze a deklinace pro datum měření a vypočteny 1. diference a to vždy jedna zpět a dvě následující k datu měření. Hodnoty rektascenze a deklinace jsou v tabulkách uvedeny v kroku 1 den a to vždy pro 0h terestrického času TČ. α 0 I 0.5 I +0.5 I +1.5 δ 0 I 0.5 I +0.5 I h 3 m 44.5 s 3 m 38.7 s 3 m 38.5 s 3 m 38.5 s

3 1.3 Převod okamžiku měření ze SEČ na TČ Pro interpolaci v tabulkách bylo nutné převést okamžiky měření ze SEČ na čas terestrický, pro který jsou hodnoty tabelovány. Nejprve byly časy měření převedeny na časy UTC: a ty následně převedeny na čas terestrický TČ: UT C = SEC 1 h T C = UT C + 34 s s kde 34 s je rozdíl mezi koordinovaným časem UTC a atomovým časem TAI s je rozdíl mezi atomovým časem TAI a dynamickým časem TČ 1.4 Interpolace v astronomických tabulkách Pro Slunce byly vyinterpolovány souřadnice α, δ pro každý okamžik měření. Použit byl Besselův interpolační polynom 2.stupně. Kromě 1.diferencí získaných z tabulek bylo tedy nutné dopočítat 2.diference 0 = I +0.5 I = I +1.5 I +0.5 a jejich průměr +0.5 = 1 ( ) Rektascenze Slunce v okamžiku pozorování je pak dána vztahem: resp. deklinace v okamžik pozorování: α = α 0 + n I n(n 1) II δ = δ 0 + n I n(n 1) II , kde n = T C 1.5 Hodinový úhel v okamžiku měření Pro každý z okamžiků měření zenitové vzdálenosti byl určen hodinový úhel s použitím rektascenze vyinterpolované pro střed intervalu měření: t = S 0 + (UT C + DUT 1) (1 + μ) + λ α, kde DUT 1 = ms je rozdíl mezi rotačním časem UT1 a koordinovaným časem UTC získaný z Bulletinu B 1 + μ = je změna měřítka mezi hvězdným a slunečním časem λ je zeměpisná délka pilíře spočtená ze souřadnic v programu Matkart 1.6 Převod čtení v II. poloze Pro měření byl použit stroj se setinným dělením kruhu, tedy: Pro čtení v I. poloze platí: z = 400 g o II z = o I Zenitové vzdálenosti z byly zároveň převedeny z grádů na stupně.

4 1.7 Oprava o refrakci, denní aberaci a paralaxu Zenitové vzdálenosti byly opraveny o refrakci: R = ( tan z 0.07 tan 3 z ) kde t je teplota v okamžiku měření v C b je atm. tlak v mbar o denní paralaxu: π = π 0 sin z kde π 0 = je horizontální rovníková paralaxa Sluce o denní aberaci: b z = 0.32 cos φ sin a cos z kde φ je zem. šířka pilíře určená ze souřadnic v programu Matkart a je astronomický azimut určený z nautického trojúhelníka: ( ) sin t cos δ a = arcsin sin z Opravená zenitová vzdálenost pak je: 1.8 Určení zeměpisné šířky φ Z nautickeho trojúhelníka platí kosinová věta: Zavedení substitucí Do kosínové věty jsou zavedeny substituce: z = z + R + π + z cos z = sin φ sin δ + cos φ cos δ cos t sin δ = m sin M cos δ cos t = m sin M t Po umocnění obou výrazů a jejich sečtení lze ze substitucí vyloučit proměnnou M a tedy vyjádřit neznámou m: m = sin 2 δ + cos 2 δ cos 2 t Obdobně lze poměrem obou substitucí vyloučit proměnnou m a získat výraz pro proměnnou M: tan δ tan M = cos t Dosazením substitucí do kosínové věty je získán výraz: cos z = m sin M sin φ + m cos M cos φ Aplikací součtového vzorce je získán výraz: cos z = cos(φ M) m Následně je pak vyjádřena zeměpisná šířka: φ = M + arccos ( ) cos z m Z daného vztahu byla určena zeměpisná šířka pro každou z dvojic měřená zenitová vzdálenost - hodinový úhel (závislý na okamžiku měření). Výsledná zeměpisná šířka určovaného bodu byla určena aritmetickým průměrem dílčích výsledků a to nejprve zvlášť pro každého člena skupiny a následně pro celou skupinu.

5 1.9 Číselné výsledky φ měření Dolista Junová Šrutka průměr Průměrná zeměpisná šířka určovaného bodu za skupinu: φ = Zeměpisná šířka bodu určená ze souřadnic: φ = Jan Dolista, 2 - Radka Junová, 3 - Rudolf Šrutka, 4 - průměr, 5 - ze souřadnic

6 2 Určení azimutu 2.1 Měření Měření bylo provedeno Použit byl opět přístroj Zeiss Theo 010 (č ), pomocí kterého byly měřeny vodorovné směry na kostel a Slunce. Ke směrům na Slunce byly rovněž registrovány časy měření, k tomu byly použity ruční stopky synchronizované s hodinanmi řízenými radiovým signálem. Každý z členů skupiny zaměřil dvě jednotky dle schematu: vodorovný směr na kostel v I.poloze vodorovný směr na levý okraj Slunce v I.poloze vodorvný směr na pravý okraj Slunce v II.poloze vodorovný směr na levý okraj Slunce v I.poloze vodorvný směr na pravý okraj Slunce v II.poloze vodorovný směr na kostel v II.poloze Mezi I. a II.polohou při měření na Slunce musel být dodržen maximální časový odstup 2 minuty. 2.2 Zpracování zápisníku Pro měření byl použit zápisník astronomické orientace na Slunce, který byl spočten dle pokynů v záhlaví. Nejprve byl vypočten průměr z měření v I. a II.poloze a také průměr z časů měření v I. a II.poloze. Výpočtem průměru z I. a II.polohy měření na Slunce byl vodorovný směr vztažen ke středu Slunce ačkoliv měření bylo prováděna na jeho levý, resp. pravý okraj. Díky tomu mohla být dále použita rektascenze a deklinace uváděná v astronomických tabulkách. Následně byl jako rozdíl dvou směrů vypočten vodorovný úhel ω mezi kostelem a středem Slunce. 2.3 Hodinový úhel v okamžiku měření Hodinový úhel byl spočten stejným způsobem jako při určování zeměpisné šířky a to včetně převodu časů a interpolace v astronomických tabulkách (viz. kap ). 2.4 Určení azimutu A Azimut Slunce se spočte z nautického trojúhelníka jako: ( ) a sin t cos δ = arctan sin φ cos δ cos t cos φ sin δ kde φ je zem. šířka pilíře spočtená ze souřadnic v programu Matkart Takto určený azimut byl opraven o denní aberaci (denní paralaxa je zanedbatelná): δa = 0.32 cos φ cos a cos z kde z je zenitová vzdálenost spočtená z nautického trojúhelníka: ( ) sin t cos δ z = arcsin sin a Azimut Slunce opravený o denní aberaci je pak: Azimut věže kostela A se spočte jako: a = a + δa A = a + ω kde ω je vodorovný úhel mezi věží kostela a středem Slunce.

7 2.5 Určení směrníku σ Výsledný směrník je pak určen vztahem: σ = A c + 10 kde c = je meridiánová konvergence, která byla spočtena v programu Matkart 10 je rozdíl mezi astronomickým a geodetickým poledníkem 2.6 Číselné výsledky σ P 4,V it měření Dolista Junová Šrutka průměr Pozn.: Hodnoty zvýrazněné tučně byly z výpočtu průměru vyloučeny kvůli velké odlehlosti od ostatních hodnot. Průměrný směrník z pilíře č.4 na chrám sv.víta za skupinu: σ = Směrník určený ze souřadnic: σ = Závěr: Z měření zenitových vzdáleností na Slunce a časů měření byla vypočtena zeměpisná šířka stanoviska. Průměrná hodnota z měření celé skupiny je Hodnota určená ze souřadnic pilíře je Dosažený rozdíl tedy činí Dílčí výsledky každého z členů skupiny jsou uvedeny v technické zprávě včetně zobrazení bodů v mapě. Z měřených vodorovných směrů na Slunce a věž kostela a časů měření byl vypočten směrník stanoviska a chrámu sv. Víta. Výsledná hodnota byla spočtena jako průměr z měření všech členů skupiny, tj Směrník určený ze souřadnic má hodnotu Rozdíl tedy činí V Praze Jan Dolista Radka Junová Rudolf Šrutka

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 1/99 Výpočet zeměpisné šířky z měřených

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 4/003 Průběh geoidu z altimetrických měření

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 2 2/6 Transformace souřadnic z ETRF2000 do

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 3/7 Výpočet lokálního geoidu pro body

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 2/99 Tektonika zemských desek školní rok

Více

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář

MASARYKOVA UNIVERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE. Planetární geografie seminář MASARYKOA UNIERZITA PEDAGOGICKÁ FAKULTA KATEDRA GEOGRAFIE květen 2008 I Měření vzdáleností ve vesmíru 1) ýpočet hodnoty pc a ly ze známé AU a převod těchto hodnot. 1 AU = 150 10 6 km Z definice paralaxy

Více

Praktikum z astronomie 0. Měření refrakce. Zadání

Praktikum z astronomie 0. Měření refrakce. Zadání 20. února 2007 Praktikum z astronomie 0 Zadání Astronomická refrakce Úkolem je určit polohu zapadajícího nebo vycházejícího nebeského tělesa měřením a výpočtem. str. 48 Teodolitem změřte polohu známého

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II 1/5 Určení nepřístupné vzdálenosti

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA GEODÉZIE A POZEMKOVÝCH ÚPRAV název předmětu VÝUKA V TERÉNU Z GEODÉZIE 1, 2 - VY1 kód úlohy název úlohy K PŘÍMÉ

Více

Vzdálenosti a východ Slunce

Vzdálenosti a východ Slunce Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 1/3 GPS - zpracování kódových měření školní

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 2/3 GPS - Výpočet drah družic školní rok

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 4/3 GPS - oskulační elementy dráhy družice

Více

Triangulace a trilaterace

Triangulace a trilaterace Výuka v terénu z vyšší geodézie Triangulace a trilaterace Staré Město pod Sněžníkem 2015 1 Popis úlohy V rámci úlohy Triagulace budou metodami klasické geodézie (triangulace, trilaterace, astronomické

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku 4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 6 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografická zobrazení použitá na našem území důležitá jsou zejména zobrazení pro státní mapová díla v

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu

Úloha č. 1 : TROJÚHELNÍK. Určení prostorových posunů stavebního objektu Václav Čech, ČVUT v Praze, Fakulta stavební, 008 Úloha č. 1 : TROJÚHELNÍK Určení prostorových posunů stavebního objektu Zadání : Zjistěte posun bodu P do P, umístěného na horní terase Stavební fakulty.

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TABELACE FUNKCE LINEÁRNÍ INTERPOLACE TABELACE FUNKCE Tabelace funkce se v minulosti často využívala z důvodu usnadnění

Více

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21

OBSAH 1 Úvod Fyzikální charakteristiky Zem Referen ní plochy a soustavy... 21 OBSAH I. ČÁST ZEMĚ A GEODÉZIE 1 Úvod... 1 1.1 Historie měření velikosti a tvaru Země... 1 1.1.1 První určení poloměru Zeměkoule... 1 1.1.2 Středověké měření Země... 1 1.1.3 Nové názory na tvar Země...

Více

Podpořeno z projektu FRVŠ 584/2011.

Podpořeno z projektu FRVŠ 584/2011. Podpořeno z projektu FRVŠ 584/2011. Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Obsah Křovákovo zobrazení 1 Křovákovo zobrazení Podpořeno z projektu FRVŠ 584/2011. Křovákovo zobrazení Křovákovo zobrazení

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 1 Mapové podklady

Více

základy astronomie 1 praktikum 3. Astronomické souřadnice

základy astronomie 1 praktikum 3. Astronomické souřadnice základy astronomie 1 praktikum 3. Astronomické souřadnice 1 Úvod Znalost a správné používání astronomických souřadnic patří k základní výbavě astronoma. Bez nich se prostě neobejdete. Nejde ale jen o znalost

Více

Astronomická refrakce

Astronomická refrakce Astronomická refrakce Co mají společného zamilované páry, které v láskyplném objetí nedočkavě čekají na západ slunce a parta podivně vyhlížejících mladých lidí, kteří s teodolitem pobíhají po parku a hledají

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Vyšší geodézie 1 3/3 GPS - výpočet polohy stanice pomocí

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese,

pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, Změny souřadnic nebeských těles pohyb hvězdy ve vesmírném prostoru vlastní pohyb hvězdy vlastní pohyb max. 10 /rok, v průměru 0.013 /rok pohyb, změna, souřadné soustavy vzhledem ke stálicím precese, nutace,

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ, OBOR GEODÉZIE A KARTOGRAFIE KATEDRA MAPOVÁNÍ A KARTOGRAFIE název předmětu TOPOGRAFICKÁ A TEMATICKÁ KARTOGRAFIE číslo úlohy název úlohy 2 Tvorba tematických

Více

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště

Více

T a c h y m e t r i e

T a c h y m e t r i e T a c h y m e t r i e (Podrobné měření výškopisu, okolí NTK) Poslední úprava: 2.10.2018 9:59 Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_7, vztažné měřítko

Více

Poznámky k sestavení diagramu zastínění

Poznámky k sestavení diagramu zastínění Poznámky k sestavení diagramu zastínění pojmy uvedené v tomto textu jsou detailně vysvětleny ve studijních oporách nebo v normách ČSN 73 4301 a ČSN 73 0581 podle ČSN 73 4301 se doba proslunění hodnotí

Více

Klasická měření v geodetických sítích. Poznámka. Klasická měření v polohových sítích

Klasická měření v geodetických sítích. Poznámka. Klasická měření v polohových sítích Klasická měření v geodetických sítích Poznámka Detailněji budou popsány metody, které se používaly v minulosti pro budování polohových, výškových a tíhových základů. Pokud se některé z nich používají i

Více

České vysoké učení technické v Praze. Vývoj systému pro automatické určování azimutu z měření na Slunce

České vysoké učení technické v Praze. Vývoj systému pro automatické určování azimutu z měření na Slunce České vysoké učení technické v Praze fakulta stavební Vývoj systému pro automatické určování azimutu z měření na Slunce Developement of system for automatic azimuth determination based on Sun observations

Více

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM

ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM ČASOMÍRA ROTAČNÍ ČASY FYZIKÁLNĚ DEFINOVANÉ ČASY JULIÁNSKÉ DATUM Hynčicová Tereza, H2IGE1 2014 ČAS Jedna ze základních fyzikálních veličin Využívá se k určení časových údajů sledovaných jevů Časovou škálu

Více

Hvězdářská ročenka 2016

Hvězdářská ročenka 2016 Hvězdářská ročenka 2016 Hvězdárna a planetárium hl. m. Prahy Tato publikace vyšla s podporou Ediční rady Akademie věd České republiky. Hvězdářská ročenka 2016 Pod redakcí Jakuba Rozehnala připravili Martin

Více

= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček).

= + = + = 105,3 137, ,3 137,8 cos37 46' m 84,5m Spojovací chodba bude dlouhá 84,5 m. 2 (úhel, který spolu svírají síly obou holčiček). 4.4.4 Trigonometrie v praxi Předpoklady: 443 Nejdřív něco jednoduchého na začátek. Př. : vě přímé důlní chodby ústící do stejného místa svírají úhel α = 37 46' mají být spojeny chodbou, spojující bodu

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

Hvězdářská ročenka 2018

Hvězdářská ročenka 2018 Hvězdářská ročenka 2018 Hvězdárna a planetárium hl. m. Prahy Tato publikace vyšla s podporou Ediční rady Akademie věd České republiky. Hvězdářská ročenka 2018 Pod redakcí Jakuba Rozehnala připravili Jakub

Více

4.1 Základní pojmy Zákonné měřicí jednotky.

4.1 Základní pojmy Zákonné měřicí jednotky. 4. Měření úhlů. 4.1 Základní pojmy 4.1.1 Zákonné měřicí jednotky. 4.1.2 Vodorovný úhel, směr. 4.1.3 Svislý úhel, zenitový úhel. 4.2 Teodolity 4.2.1 Součásti. 4.2.2 Čtecí pomůcky optickomechanických teodolitů.

Více

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ

ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ 5. PŘEDNÁŠKA LETNÍ 00 ING. HANA STAŇKOVÁ, Ph.D. MĚŘENÍ ÚHLŮ METODY MĚŘENÍ ÚHLŮ A SMĚRŮ CHYBY PŘI MĚŘENÍ ÚHLŮ A SMĚRŮ GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 METODY MĚŘENÍ ÚHLŮ. měření úhlů v jedné poloze dalekohledu.

Více

Souřadnicové výpočty. Geodézie Přednáška

Souřadnicové výpočty. Geodézie Přednáška Souřadnicové výpočt Geodézie Přednáška Souřadnicové výpočt strana 2 Souřadnicové výpočt (souřadnicová geometrie) vchází z analtické geometrie zkoumá geometrické tvar pomocí algebraických a analtických

Více

Úvod do předmětu geodézie

Úvod do předmětu geodézie 1/1 Úvod do předmětu geodézie Ing. Hana Staňková, Ph.D. IGDM, HGF, VŠB-TU Ostrava hana.stankova@vsb.cz A911, 5269 1 Geodézie 1/2 vědní obor o měření části zemského povrchu, o určování vzájemných vztahů

Více

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání H/190-4 název úlohy Hloubkové

Více

Limita ve vlastním bodě

Limita ve vlastním bodě Výpočty it Definice (a případné věty) jsou z knihy [] příklady z [] [] a []. Počítám u zkoušky dvacátou itu hlavu mám dávno už do čista vymytu papír se značkami skvěje z čela mi pot v proudech leje než

Více

5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk

5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk 5a. Globální referenční systémy Parametry orientace Země (EOP) Aleš Bezděk Teoretická geodézie 4 FSV ČVUT 2017/2018 LS 1 Celková orientace zemského tělesa, tj. precese-nutace+pohyb pólu+vlastní rotace,

Více

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE

SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE SYLABUS 9. PŘEDNÁŠKY Z INŢENÝRSKÉ GEODÉZIE (Řešení kruţnicových oblouků v souřadnicích) 3. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec 2015

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Měření vodorovných úhlů Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Základním

Více

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze

Přednášející: Ing. M. Čábelka Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Seminář z geoinformatiky Úvod do geodézie Seminář z geo oinform matiky Přednášející: Ing. M. Čábelka cabelka@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie PřF UK v Praze Úvod do geodézie

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 3. ročník S3G SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 3. ročník S3G ROZPIS TÉMAT PRO ŠK. ROK 2018/2019 1) Kartografické zobrazení na území ČR Cassiny-Soldnerovo zobrazení Obecné konformní kuželové zobrazení Gauss-Krügerovo

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu Geodézie v podzemních prostorách 10 úloha/zadání U1-U2/190-4 název úlohy Připojovací

Více

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice

Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Referenční plochy a souřadnice na těchto plochách Zeměpisné, pravoúhlé, polární a kartografické souřadnice Kartografie přednáška 5 Referenční plochy souřadnicových soustav slouží k lokalizaci bodů, objektů

Více

Vytyčení polohy bodu polární metodou

Vytyčení polohy bodu polární metodou Obsah Vytyčení polohy bodu polární metodou... 2 1 Vliv měření na přesnost souřadnic... 3 2 Vliv měření na polohovou a souřadnicovou směrodatnou odchylku... 4 3 Vliv podkladu na přesnost souřadnic... 5

Více

Seriál VII.IV Astronomické souřadnice

Seriál VII.IV Astronomické souřadnice Výfučtení: Astronomické souřadnice Představme si naši oblíbenou hvězdu, kterou chceme ukázat našemu kamarádovi. Kamarád je ale zrovna na dovolené, a tak mu ji nemůžeme ukázat přímo. Rádi bychom mu tedy

Více

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os

Více

Srovnání konformních kartografických zobrazení pro zvolené

Srovnání konformních kartografických zobrazení pro zvolené Srovnání konformních kartografických zobrazení pro zvolené území (návod na cvičení) 1 Úvod Cílem úlohy je srovnání vlastnosti jednoduchých konformních zobrazení a jejich posouzení z hlediska vhodnosti

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 7 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 válcové konformní zobrazení v transverzální poloze někdy také nazýváno transverzální Mercatorovo nebo Gauss-Krügerovo

Více

Tachymetrie (Podrobné měření výškopisu)

Tachymetrie (Podrobné měření výškopisu) Tachymetrie (Podrobné měření výškopisu) Úkolem je vyhotovit digitální model terénu pomocí programového systému Atlas DMT (úloha U_8). Pro jeho vytvoření je potřeba znát polohu a výšku vhodně zvolených

Více

Měření vzdáleností, určování azimutu, práce s buzolou.

Měření vzdáleností, určování azimutu, práce s buzolou. Měření vzdáleností, určování azimutu, práce s buzolou. Měření vzdáleností Odhadem Vzdálenost lze odhadnout pomocí rozlišení detailů na pozorovaných objektech. Přesnost odhadu závisí na viditelnosti předmětu

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE. Kateřina BEJVANČICKÁ

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE. Kateřina BEJVANČICKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ BAKALÁŘSKÁ PRÁCE PRAHA 2014 Kateřina BEJVANČICKÁ ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ PROGRAM GEODÉZIE A KARTOGRAFIE OBOR GEODÉZIE,

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Pro mapování na našem území bylo použito následujících souřadnicových systémů:

Pro mapování na našem území bylo použito následujících souřadnicových systémů: SOUŘADNICOVÉ SYSTÉMY Pro mapování na našem území bylo použito následujících souřadnicových systémů: 1. SOUŘADNICOVÉ SYSTÉMY STABILNÍHO KATASTRU V první polovině 19. století bylo na našem území mapováno

Více

1.1 Oslunění vnitřního prostoru

1.1 Oslunění vnitřního prostoru 1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA SPECIÁLNÍ GEODÉZIE název předmětu úloha/zadání název úlohy Inženýrská geodézie II /5 Analýza deformací školní rok

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 2 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Kartografické zobrazení kartografické zobrazení vzájemné přiřazení polohy bodů na dvou různých referenčních

Více

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu

Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Trigonometrické určení výšek nepřístupných bodů na stavebním objektu Prof. Ing. Jiří Pospíšil, CSc., 2010 V urbanismu a pozemním stavitelství lze trigonometrického určování výšek užít při zjišťování relativních

Více

Eudoxovy modely. Apollónios (225 př. Kr.) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní. Deferent, epicykl a excentr

Eudoxovy modely. Apollónios (225 př. Kr.) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní. Deferent, epicykl a excentr Počátek goniometrie Eudoxovy modely Deferent, epicykl a excentr Apollónios (225 př Kr) ukázal, že oba přístupy jsou při aplikaci na Slunce ekvivalentní Zdeněk Halas (KDM MFF UK) Goniometrie v antice 25

Více

16 Fourierovy řady Úvod, základní pojmy

16 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE

4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE 4.3. GONIOMETRICKÉ ROVNICE A NEROVNICE V této kapitole se dozvíte: jak jsou definovány goniometrické rovnice a nerovnice; jak se řeší základní typy goniometrických rovnic a nerovnic. Klíčová slova této

Více

Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí

Petr Šafařík 21,5. 99,1kPa 61% Astrofyzika Druhý Třetí 1 Petr Šafařík Astrofyzika Druhý Třetí 1,5 11 99,1kPa 61% Fyzikální praktika 11 Měření tloušt ky tenkých vrstev Tolanského metodou Průchod světla planparalelní deskou a hranolem Petr Šafařík 0. listopadu

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadnicové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnic. 3.9 Volné

Více

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu

Více

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen.

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen. Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 3. URČOV OVÁNÍ VÝŠEK metody Trigonometrická metoda

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii

Více

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje

Více

Orientace v terénu bez mapy

Orientace v terénu bez mapy Písemná příprava na zaměstnání Terén Orientace v terénu bez mapy Zpracoval: por. Tomáš Diblík Pracoviště: OVIÚ Osnova přednášky Určování světových stran Určování směrů Určování č vzdáleností Určení č polohy

Více

Astronomická pozorování

Astronomická pozorování KLASICKÁ ASTRONOMIE Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové

Více

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z

SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ. JS pro 2. ročník S2G 1. ročník G1Z SPŠ STAVEBNÍ České Budějovice MAPOVÁNÍ JS pro 2. ročník S2G 1. ročník G1Z Všeobecné základy MAP Mapování řeší problém znázornění nepravidelného zemského povrchu do roviny Vychází se z: 1) geometrických

Více

Výuka v terénu I. Obory: Inženýrská geodézie a Důlní měřictví. Skupiny: GB1IGE01, GB1IGE02, GB1DME

Výuka v terénu I. Obory: Inženýrská geodézie a Důlní měřictví. Skupiny: GB1IGE01, GB1IGE02, GB1DME Výuka v terénu I Obory: Inženýrská geodézie a Důlní měřictví Skupiny: GB1IGE01, GB1IGE02, GB1DME01 27. 4-30. 4. 2015 1. Trojúhelníkový řetězec Zásady pro zpracování úlohy: Zaměřte ve skupinách úhly potřebné

Více

GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I

GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JAN FIXEL, RADOVAN MACHOTKA GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I MODUL 01 SFÉRICKÁ ASTRONOMIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b 008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly

Více

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2

7.1 Definice délky. kilo- km 10 3 hekto- hm mili- mm 10-3 deka- dam 10 1 mikro- μm 10-6 deci- dm nano- nm 10-9 centi- cm 10-2 7. Měření délek 7.1 Definice délky, zákonné měřící jednotky 7.2 Měření délek pásmem 7.3 Optické měření délek 7.3.1 Paralaktické měření délek 7.3.2 Ryskový dálkoměr 7.4 Elektrooptické měření délek 7.5 Fyzikální

Více

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách

13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách 13 Regrese 13.1. Úvod Cílem regresní analýzy je popsat závislost hodnot znaku Y na hodnotách znaku X. Přitom je třeba vyřešit jednak volbu funkcí k vystižení dané závislosti a dále stanovení konkrétních

Více

Metodika převodu mezi ETRF2000 a S-JTSK varianta 2

Metodika převodu mezi ETRF2000 a S-JTSK varianta 2 Výzkumný ústav geodetický topografický a kartografický v.v.i. Stavební fakulta ČVUT v Praze Metodika převodu mezi ETRF a S-JTSK varianta Jan Kostecký Jakub Kostecký Ivan Pešek GO Pecný červen 1 1 Úvod

Více

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů

Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů 5. PŘEDNÁŠKA LETNÍ 00 Ing. Hana Staňková, Ph.D. Měření úhlů Popis teodolitu Podmínky správnosti teodolitu Metody měření úhlů GEODÉZIE 5. PŘEDNÁŠKA LETNÍ 00 POPIS TEODOLITU THEO 00 THEO 00 kolimátor dalekohled

Více

Čas a kalendář. RNDr. Aleš Ruda, Ph.D.

Čas a kalendář. RNDr. Aleš Ruda, Ph.D. Čas a kalendář RNDr. Aleš Ruda, Ph.D. Obsah přednášky 1) Čas a způsoby jeho 2) Místní a pásmový čas 3) Datová hranice 4) Kalendář 1. Čas a způsoby jeho podstata určování času rotace Země - druhy časů:

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení),

Geodézie. Pozemní stavitelství. denní. Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho 1 hodina cvičení), Učební osnova předmětu Geodézie Studijní obor: Stavebnictví Zaměření: Forma vzdělávání: Pozemní stavitelství denní Celkový počet vyučovacích hodin za studium: 96 3. ročník: 32 týdnů po 3 hodinách (z toho

Více