Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová"

Transkript

1 Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i

2 Prohlašuji, že jsem tuto práci vypracovala samostatě a že jsem vyzačila všechy pramey, z ichž jsem čerpala. Souhlasím se zapůjčováím práce. V Praze, dube 998 Reata Sikorová ii

3 Děkuji vedoucímu diplomové práce Jiřímu Kottasovi za ceé odboré rady a za ochotu, s íž mi vždy pomáhal. iii

4 Obsah Předmluva Fiačí záležitosti K limitě, pokud existuje Existece limity Pohodlý postup pro výpočet e Ještě ěco avíc pro áročé Kvadratura hyperboly Reé Descartes a Pierre de Fermat Je plocha pod hyperbolou koečá? O jedé vlastosti čísla e Výzam e v difereciálím a itegrálím počtu 38. Čísla a kus jejich historie Číslo e je iracioálí Důkaz trascedece čísla e Neočekávaý výskyt čísla e Některá zvláští čísla vztahující se k e Nezbytá trocha historie Fasciující číslo e Literatura iv

5 Předmluva Než se pustíme do práce, měli bychom si říci ěkolik slov a úvod. Už jste ěkdy slyšeli o Eulerově čísle e? Věřím, že většia z Vás ao, ale pro mohé je to možá je abstraktí pojem, který pouze zavádí zmatek do matematiky. Někteří si sad vzpomeou, že je to základ přirozeého logaritmu. Ale proč zrova toto číslo? Protože..., ale to už bychom zasahovali do obsahu této kihy. Takže kdo má odvahu pustit se do čteí, určitě dostae odpověď a tuto otázku a dozví se moho dalších zajímavých iformací. Při psaí této práce bylo mým cílem říci příběh čísla e tak, aby si přišli a své všichi čteáři. Práce je sestavea tak, aby její prví kapitoly byly pochopitelé i pro čteáře s pouze skromým matematickým zázemím. S defiicí ěkterých pojmů, jako jsou apř. limita ebo ekoečá řada a její součet, se čteář setká pouze a ituitiví úrovi. Práce by měla především motivovat studety k dalšímu studiu aalýzy, a e odradit je hed a začátku příliš striktím pojetím problému. Obtížost se ovšem stupňuje a pro ty ejáročější čteáře je zde předvede důkaz trascedece e, který už vyžaduje ějaké zalosti z itegrálího počtu. Také jsem si ěkolikrát dovolila odstoupit od hlavího tématu a trochu ahlédout do ději matematiky. Najdete zde ěco z historie teorie čísel a také životopisé výňatky ěkolika osobostí, které sehrály roli v historii e. Tyto iformace se totiž v učebicích vyskytují velice zřídka. Nakoec je tu i ěkolik příkladů, kde se dá zalost čísla e využít. Mohou tedy posloužit učitelům matematiky jako prostředek pro motivaci studetů k lepšímu zapamatováí tohoto čísla. Tak to by sad bylo a úvod všecho. Co říkáte, pustíme se do toho?

6 Kapitola. Fiačí záležitosti Jede americký idiá řekl: Když se porazí posledí strom a umře posledí ryba, pak si člověče uvědomíš, že peíze se jíst edají. Ovšem život bez peěz si ikdo z ás představit eumí a již od epaměti byly právě fiačí záležitosti ve středu zájmů lidstva. Dokážete si představit méě zajímavý životí cíl ež je touha získat bohatství a dosáhout fiačí jistoty? Je tedy podivuhodé, že aoymí matematik ebo sad obchodík či lichvář si a začátku 7. století všiml zvláští spojitosti mezi tím, jak vzrůstají fiace, a chováím jistého matematického vyjádřeí ekoeča. Nyí se blíže sezámíme s tímto problémem. Zaměříme se a velmi důležitou oblast ve fiačictví: a úrokový počet. Úrok, jak všichi dobře víme, je poplatek za půjčeí peěz. Zvyk účtovat teto poplatek sahá do počátků zazameávaí historie; vskutku většia ejstarší ám zámé matematické literatury se zabývá otázkami, které se týkají úroků. Například a hliěé destičce z Mezopotámie, datovaé kolem roku 700 př..l. yí se achází v Louvru), ajdeme ásledující problém: Máme daou částku peěz. Za jak dlouho se tato částka zdvojásobí, když budeme každoročě skládat 20% úrokovou sazbu? Zformulujme yí teto problém v algebraickém jazyce. Víme, že a koci každého roku suma vzroste o 20 procet, t.j. částku vyásobíme čiitelem.2. Když původí částku ozačíme jako P, budeme mít a koci prvího roku kapitál.2 P, a koci druhého roku.2.2 P ) =.2 2 P, a po x letech suma vzroste o čiitel.2 x. Protože suma se má oproti původí částce zdvojásobit, máme.2 x P = 2 P a dostáváme se k rovici.2 x = 2 všimeme si, že původí částka se v rovosti evyskytuje). Vyřešit tuto rovici t.j. odstrait x z expoetu pro ás zameá použít logaritmy, které ovšem Babylóňaé ezali. Přesto byli schopi ajít přibližé řešeí. Jak? Všimli si, že.2 3 =.728 je meší ež 2, zatímco.2 4 = je větší ež 2; takže x musí mít hodotu mezi 3 a 4. K zúžeí itervalu používali postup zámý jako lieárí iterpolace alezeí čísla, které rozděluje iterval od 3 do 4 ve stejém poměru jako dvojka rozděluje iterval od.728 do Tato myšleka vede k lieárí rovici pro x, která se dá jedoduše vyřešit pomocí elemetárí algebry. Bohužel Babylóňaé ezali aše moderí algebraické metody a alezeí potřebých hodot ebylo pro ě tak jedoduchou otázkou. Přesto jejich řešeí x = což jsou asi 3 roky, 9 měsíců a 3 dů) se je málo liší od správé hodoty asi 3 roky, 9 měsíců a 8 dů). Pro zajímavost bychom ještě mohli upozorit a to, že Babylóňaé epoužívali áš desítkový systém te se začal používat až v raém středověku), ale systém šedesátkový, který je a rozdíl od desítkového epozičí. Řešeí problému bylo tedy a hliěé destičce zapsáo jako 3;47,3,20, což v šedesátkovém systému zameá /60 + 3/ /60 3, a to je přibližě K výpočtům používali Babylóňaé jistý druh logaritmických tabulek. Svědčí o tom zachovalé hliěé destičky, a ichž je sezam prvích deseti 2

7 moci čísel /36, /6, 9 a 6 prví dvě vyjádřeé v šedesátkovém systému jako 0;,40 a 0;3,45). Nebyly to logaritmické tabulky v takové podobě, jak je des záme, byly to spíše sezamy moci čísel, a kromě toho pro mociu ebyl vždy použit stadardí základ. Zdá se, že tyto tabulky ebyly určey k obecějšímu použití, sloužily pouze ke kokrétímu účelu, jakým bylo složeé úrokováí. Zastavíme se a chvíli u složeého úrokováí. Předpokládejme, že jsme vložili $00 tzv. základ) a koto s 5% úrokem, úrokovaým ročě částku uvádíme v dolarech, protože je to měa, která se ve světě používá ejběžěji). Po roce bude a ašem kotě $00.05 = $05. Tuto částku bude baka v dalším roce považovat za ový základ pro úrokováí. Tedy a koci druhého roku budeme mít kapitál $05.05 = $0.25, a koci třetího roku $ = $5.76, atd. Je vidět, že úroky přiáší ejeom původí základ $00), ale počítají se i úroky z úroků z toho vzikl pojem složeého úrokováí). Takto bude áš kapitál růst podle geometrické poslouposti s kvocietem.05. Porovejme to s případem, že bychom vložili peíze a koto, které vyplácí úroky pomocí jedoduchého úrokováí. Vložíme ašich $00 a 5% jedoduchý úrok. Náš kapitál bude každoročě růst o $5, tedy podle aritmetické poslouposti 00, 05, 0, 5, atd. Vidíme, že v ašem případě se vyplatí spořit a koto se složeým úrokem. V praxi je třeba si dávat pozor a dobře počítat, protože spořeí se zdálivě výhodější úrokovou sazbou, ale při jedoduchém úrokováí, se po ějaké době přestae vyplácet vzhledem k původě méě výhodému spořeí se složeým úrokem. Z uvedeého můžeme sado vyvodit, co se stae v obecém případě. Předpokládejme, že ivestujeme základí částku P dolarů a koto, které vyplácí ročí r procetí úrok počítaý složeým úrokováím při počítáí vždy vyjádříme r jako desetié číslo, apř místo 5%). To zameá, že a koci prvího roku bude áš kapitál čiit P + r), a koci druhého roku P + r) 2, a tak až po t letech budeme mít a kotě P + r) t. Když ozačíme toto možství jako S, dostaeme:.) S = P + r) t. Tato formule je základem prakticky všech fiačích kalkulací, ať už se jedá o bakoví kota, půjčky, hypotéky či auity pravidelá splátka dluhu). Některé baky však počítají úroky e jedou, ale ěkolikrát za rok. Jak ale vypočítat úroky pro část roku? Již Tartaglia ) se zabýval tímto problémem a ve svém hlavím matematickém díle Geeral Trattato di ameri et misure z roku 556 pojedává o této úloze: Vložíme 00 a koto s 20% úrokem. Jaký kapitál budeme mít a kotě za 2 2 roku, když počítáme i úroky z úroků? Tartaglia se shoduje s Cardaem a jiými v tom, že kapitál aroste za půl roku a 0 vezmeme poloviu ročího úrokového podílu a použijeme ji jako sazbu za toto období), za rok a 20, za dva roky a 44, za tři a Tartaglia počítá kapitál x po 2 2 roce ze vztahu 00 : 0 = 44 : x a dojde k výsledku x = , zatímco Cardao používá vztah 0 : 00 = : x a dojde k 57. Důvod eshody se dá sado 3

8 objevit. Když ze základu 00 budeme mít za 2 roku 0, pak musíme tuto částku vzít za ový základ a po roce budeme mít kapitál 2, a e 20. Stejě tak to platí i při dalším rozděleí. Hodoty 44 po dvou letech a po třech letech se pro takový výpočet tedy edají použít. Vezměme si ještě jede příklad; a ěm si ukážeme, o kolik se liší hodoty kapitálu, když úroky počítáme ročě a půlročě. Na koto s 5% ročím úrokovým podílem vložíme částku $00. Když budeme úroky počítat ročě, budeme mít po roce částku $05. Při půlročím úrokováí použijeme jedu poloviu ročího úrokového podílu, t.j. základ $00 úroková dvakrát, pokaždé s úrokem 2.5%. Kapitál a koci prvího roku bude čiit $ eboli $ , kolem 6 seti více ež by vyesl základ úrokovaý ročě. V bakovím průmyslu lze ajít všechy druhy úrokovacích schémat ročí, půlročí, čtvrtletí, týdeí i deí. Předpokládejme, že úrokováí probíhá krát ročě. Pro každé poměré období, v bakovictví azývaé úrokovací období), baka používá ročí úrokový podíl vyděleý číslem, tj. r/. Protože za t let máme t) úrokovacích období, základ P se po t letech zvede a.2) S = P + r/) t. Samozřejmě rovost.) je zvláštím případem rovosti.2) vezmeme =. Bylo by zajímavé srovat částky peěz získaé ze stejého základu po jedom roce pro růzá úrokovací období, předpokládáme-li stejý ročí úrokový podíl. K tomuto účelu použijeme výše uvedeý příklad částka P = $00 a kotě s r = 5% = 0.05 ročím úrokovým podílem. Budeme dosazovat do vztahu.2) a pro růzá úrokovací období zapisovat výsledky do tabulky. úrokovací období r/ S ročí 0.05 $05.00 půlročí $05.06 kvartálí $05.09 měsíčí $05.2 týdeí $05.2 deí $05.3 Tab. Je docela překvapující, že částka $00 úrokovaá deě vyáší právě o 3 seti více ež úrokovaá ročě, a asi o jedu setiu více ež úrokovaá měsíčě ebo týdě. Nejsou to žádé velké rozdíly. Ale pozor záleží a tom, jak velký byl základ: ivestujeme-li $ , je rozdíl mezi ročím a deím úrokováím $267.50, a to už je lepší. Tak jsme si připravili půdu pro to, abychom se koečě dostali k jádru věci jmeovitě k číslu e, které je hlavím tématem této kihy. Uvažujme 4

9 tedy speciálí případ rovosti.2), případ, kdy r =. Zameá to ročí úrokový podíl 00%, a bezpochyby s tak štědrou abídkou se evyoří žádá baka. Nicméě to, co my máme a mysli, se etýká aktuálí situace, ale je to hypotetický případ, který má dalekosáhlé matematické důsledky. Pro další zjedodušeí předpokládejme, že P = $ a t = rok. Rovost.2) přejde v.3) S = + /) a ašim cílem je prozkoumat chováí tohoto výrazu pro rostoucí hodoty. Výsledky jsou zapsáy v tabulce. + /) Tab. 2 Vypadá to, že jakýkoli další vzrůst stěží ovliví výsledek změy astávají a stále méě výzamých desetiých místech. Ale bude teto model pokračovat? Je možé, že ezáleží a tom, jak je velké, a hodoty + /) se ustálí ěkde okolo čísla ? Tato doměka se dá pečlivě dokázat pomocí matematické aalýzy. Tímto problémem se budeme blíže zabývat ve třetí kapitole. Neí zámo, kdo si jako prví všiml zvláštího chováí výrazu +/) pro rostoucí do ekoeča. Je pravděpodobé, že to bylo počátkem 7. století, kolem období, kdy si aglický matematik Joh Napier vymyslel své logaritmy. Ve druhém vydáí Edward Wrightova překladu Napierova díla Descriptio [68] se totiž achází epřímý odkaz a číslo, které je limití hodotou ašeho výrazu číslo e. Období počátku 7. století bylo pozameáo esmírým růstem v meziárodím obchodu a fiačí trasakce všech druhů se bohatě rozvíjely. Moho pozorosti bylo věováo pravidlům složeého úrokováí a je možé, že číslo e se dočkalo svého prvího uzáí právě v této souvislosti. Nicméě dále uvidíme, že i otázky, které esouvisejí se složeým úrokováím, také vedou ke stejému číslu a dá se říci, že v přibližě stejém období. Ale o tom se zmííme až později, ejdříve se podíváme blíže a matematický proces, který je původcem e : proces limití. 5

10 Kapitola 2. K limitě, pokud existuje V předchozí kapitole jsme se zabývali zkoumáím výrazu + /) pro velké hodoty. Jistě ás muselo zarazit zvláští chováí tohoto výrazu. Jak je možé, že se jeho hodota ustálí právě ěkde kolem čísla ? Proveďme ásledující úvahu: zaměříme se pouze a výraz uvitř závorek, + /. Když roste, hodota / klesá k 0 a tím se výraz + / blíží k, ačkoli jedičky ikdy edosáhe. Mohlo by ás to tedy svádět k úsudku, že pro skutečě velké může být + / ahrazeo. Ale umocěa a jakékoliv číslo je vždy rova, takže to vypadá, že hodota výrazu + /) se pro velké bude blížit. Tímto bychom mohli aše úvahy ukočit. Předpokládejme však, že půjdeme jiou cestou. Víme, že když číslo větší ež umocňujeme a zvětšující se mociu, výsledek je stále větší a větší. Protože +/ je vždy větší ež, můžeme z toho vyvodit, že +/), pro velké hodoty, bude bezmezě růst, tj. bude se blížit ekoeču. Zovu by to mohl být koec příběhu. Skutečost, že áš úsudek je chybý, vyplývá už z toho, že v závislosti a tom, jaký jsme zvolili postup, jsme se dostali ke dvěma odlišým výsledkům: v prvím případě a ekoečo v případě druhém. V matematice musí být koečý výsledek jakýchkoli platých číselých operací, edbaje toho, jak jsme postupovali, vždy stejý. Například můžeme vyhodotit výraz ) tak, že buď ejdříve sečteme 3 a 4, dostaeme 7, a pak teto výsledek vyásobíme dvojkou, aebo ejdříve vyásobíme dvojkou 3 i 4 a pak sečteme výsledky. V obou případech dostaeme 4. Proč jsme tedy dostali dva odlišé výsledky pro + /)? Odpověď je postavea a slovíčku platý. Když počítáme hodotu výrazu ) druhou metodou, tiše používáme jede ze základích zákoů aritmetiky, záko distributiví, který říká, že pro jakákoli tři čísla x, y a z vždy platí rovost x y + z) = x y + x z. Přechod mezi levou a pravou straou je platá operace. Příklad eplaté operace je, když apíšeme 9 + 6) = = 7, chyba, kterou často dělají začíající studeti algebry. Příčia je v tom, že druhá odmocia eí distributiví operace, a vskutku jediá správá cesta ve vyhodocováí 9 + 6) je ejprve sečíst čísla pod odmociou a potom odmocit: 9 + 6) = 25 = 5. Naše maipulace s výrazem + /) byla stejě tak eplatá, protože jsme si mylě zahrávali s jedím z ejzákladějších pojmů matematické aalýzy: pojmem limita. Když říkáme, že posloupost čísel a, a 2, a 3,..., a,... má limitu L, pro jdoucí do ekoeča, máme a mysli to, že pokud roste, čley poslouposti se stále více blíží k číslu L. Řečeo jiak, můžeme dosáhout toho, aby rozdíl mezi a a L v absolutí hodotě) byl meší ež ějaké pevě zvoleé kladé číslo, ať už je jakkoli malé; stačí, když zvolíme dostatečě velké. Vezměme apř. posloupost, /2, /3, /4,..., jejíž obecý čle je a = /. Když roste, čley se stále více blíží 0. To zameá, že pokud 6

11 zvolíme dosti velké, můžeme rozdíl mezi / a limitou 0 udělat tak malý, jak si přejeme. Řekěme, že chceme, aby / bylo meší ež /000; vše, co je potřeba udělat, je zvolit větší ež 000. Když potřebujeme / meší ež / , jedoduše zvolíme ějaké větší ež , atd. Abychom tuto situaci vyjádřili slovy, řekeme, že / se blíží 0, když roste eomezeě, a píšeme / 0 pro. Velice často používáme zkráceý zápis: lim = 0. Měli bychom si uvědomit, že teto zápis pouze vyjadřuje fakt, že se hodota výrazu blíží k 0, ale eříká ic o tom, že by samo / bylo ěkdy rovo 0 ve skutečosti ikdy ebude. Zde je tedy podstata pojmu limita: čley poslouposti se mohou přiblížit limitě tak, jak si přejeme, ale skutečě ji ikdy edosáhou. Pro posloupost / je výsledek limitího procesu docela předvídatelý. Nicméě v moha případech emusí být ihed jasé, jaká bude limití hodota ebo zdali limita vůbec existuje. Například posloupost a = 2 + )/3 + 4), jejíž čley pro =, 2, 3,... jsou 3/7, 5/0, 7/3,..., se blíží limitě 2/3 pro. Jak dojdeme k tomuto výsledku? Čitatel i jmeovatel podělíme číslem, dostaeme tak ekvivaletí výraz a = 2 + /)/3 + 4/). Když, obojí / i 4/ se blíží k 0, tedy hodota výrazu se blíží 2/3. Jiým příkladem může být posloupost a = )/3 + 4), jejímiž čley jsou 3/7, 9/0, 9/3,..., a ty rostou eomezeě pro. Příčiou toho je přítomost 2, díky ěmuž čitatel roste rychleji ež jmeovatel. Výsledek zapisujeme ve tvaru lim a =, ačkoli striktě řečeo tato posloupost emá limitu. Limita pokud existuje musí být určité reálé číslo, a ekoečo eí reálé číslo. Pojem ekoeča mátl matematiky a filozofy po staletí. Existuje číslo, které je větší ež všecha ostatí čísla? Když ao, jak velké je toto číslo? Platí pro ě stejá pravidla pro počítáí jako pro běžá čísla? A aopak v malém měřítku, můžeme dělit kvatitu řekěme číslo ebo úsečku zovu a zovu a malé části, ebo se evetuálě dostaeme k edělitelé části, matematickému atomu, který emůže být dále děle? Otázky, jako je tato, zepokojovaly filozofy starobylého Řecka více ež dva tisíce let tomu, a zepokojují ás dodes svědčí o tom ikdy ekočící hledáí elemetárích částic, těch stavebích kvádříků, ze kterých je sad hmota sestavea. Z příkladů uvedeých výše je vidět, že se symbolem pro ekoečo elze počítat jako s obyčejým číslem. Když apř. položíme = ve výrazu 2 + )/3 + 4), budeme mít 2 + )/3 + 4). Nyí si musíme uvědomit, že ásobek je, a pokud k přičteme ějaké číslo, dostaeme opět. Takže áš výraz se zredukuje a /. Kdyby patřilo mezi běžá čísla, pak by byl výraz vzhledem k obvyklým pravidlům aritmetiky jedoduše rove. Ale o eí rove, ale jak jsme viděli 2/3. Podobá situace astává, když chceme spočítat. Svádí ás to k tomu, abychom si řekli, že odečítáme od sebe dvě stejá čísla, dostaeme tedy 0. O tom, že 7

12 to emusí být pravda, svědčí výraz /x 2 [cos x)/x] 2, Když x 0, oba čley se blíží ekoeču. A přece s malou zalostí trigoometrie lze ukázat, že celkový výraz se blíží limitě. Výrazy jako / ebo jsou zámy pod ázvem eurčité formy. Nemají určitou hodotu; ta může být odhaduta pouze pomocí limitího procesu. Volě řečeo, v každé eurčité formě se střetávají dvě kvatity, jeda má sklo výraz zvětšovat, ta druhá aopak zmešovat. Koečý výsledek závisí a obsažeém limitím procesu. Běžě se v matematice setkáváme s těmito eurčitými formami: 0/0, /, 0,, 0 0, 0, a. K té posledí patří i výraz + /). Samoté algebraické úpravy eurčitého výrazu emusí vždy stačit k určeí koečého výsledku limitího procesu. Samozřejmě my dokážeme pomocí počítače ebo kalkulátoru spočítat výraz pro obrovské hodoty, řekěme milio ebo miliardu. Ale takový výpočet může pouze avrhout limití hodotu. Nemáme záruku, že tato hodota bude opravdu vyhovovat pro stále větší. V tom je také základí rozdíl mezi matematikou a vědami, které jsou založey a experimetech a pozorováích, jako je fyzika ebo astroomie. V těchto vědách se může stát, že určitý výsledek, řekěme číselý vztah mezi teplotou daého možství plyu a jeho tlakem, který je podporová velkým možstvím experimetů, bude považová za přírodí záko. Neexistuje však cesta, jak teto záko dokázat matematicky. Matematický důkaz je řetězec logických dedukcí, všechy se opírají o malé možství počátečích předpokladů axiomů ) a podrobují se striktím pravidlům matematické logiky. Platost matematického zákoa věty dokážou potvrdit pouze ěkteré řetězce dedukcí. Samozřejmě můžeme udělat hypotézu, vykreslit z í všechy prozatímí výsledky, ale matematik by z toho ikdy evyvozoval defiitiví závěry. Jak jsme viděli v předchozí kapitole, výraz + /) by se mohl pro velmi velké hodoty blížit číslu jako limitě. Abychom však tuto limitu určili s jistotou, ebo ejdříve dokázali, že tato limita existuje, musíme použít jiou metodu, ež je počítáí jedotlivých hodot. Mimo to, počítáí výrazu pro velké je stále obtížější, k provedeí umocňováí je uto použít logaritmy.) Naštěstí máme k dispozici takovou metodu. Vyžaduje však použití biomické věty. Biom dvojčle) je jakýkoli výraz sestávající ze součtu dvou čleů; můžeme jej zapsat ve tvaru a + b. Jedím z prvích problémů, které řeší elemetárí algebra, je alezeí moci dvojčleu, čili jak se dá rozložit výraz a + b) pro = 0,, 2,.... Tady jsou výsledky ěkolik prvích : a + b) 0 = a + b) = a + b a + b) 2 = a 2 + 2ab + b 2 a + b) 3 = a 3 + 3a 2 b + 3ab 2 + b 3 a + b) 4 = a 4 + 4a 3 b + 6a 2 b 2 + 4ab 3 + b 4 Z těchto ěkolika málo příkladů lze jedoduše usoudit a obecý vzorec: rozvoj a + b) se skládá z + čleů, každý má tvar a k b k, kde k = 8

13 , 2, 3,...,. Proto když jdeme zleva doprava, expoet u a klesá od do 0 posledí čle můžeme zapsat jako a 0 b ), zatímco u b roste od 0 do. Koeficiety u růzých čleů, zámé jako biomické koeficiety, tvoří trojúhelíkové schéma: Toto schéma dostalo jméo po fracouzském filozofovi a matematikovi Blaise Pascalovi ), který jej použil ve své teorii pravděpodobosti samoté schéma bylo zámo ještě mohem dříve). Říká se mu Pascalův trojúhelík. V tomto trojúhelíku je každé číslo součtem dvou čísel, která se ve schématu acházejí o řádek výše ež daé číslo a leží bezprostředě apravo a alevo od ěj. Například čísla v pátém řádku,, 4, 6, 4,, získáme z těch ve čtvrtém ásledově: Všiměme si, že koeficiety jsou stejé, ať je čteme zleva ebo zprava.) Při použití Pascalova trojúhelíku máme jedu evýhodu v hledáí biomických koeficietů: musíme spočítat všechy řádky až po te, který ás zajímá. Když roste, je postup stále časově áročější. Naštěstí je tady vztah, který ám umoží alézt tyto koeficiety, aiž bychom potřebovali Pascalův trojúhelík. Když si ozačíme koeficiet u čleu a k b k jako C k, potom 2.) C k =! k! k)!. Symbol! čteme faktoriál, ) představuje souči ; a ukázku zde uvádím prvích pár hodot! je! =, 2! = 2 = 2, 3! = 2 3 = 6, a 4! = = 24. Je také defiováo 0! =. Demostrujme použití tohoto vzorce a příkladu mociy a + b) 4. Obdržíme koeficiety 4 C 0 = 4!/0! 4!) =, 4 C = 4!/! 3!) = 2 3 4/ 2 3) = 4, 4 C 2 = 4!/2! 2!) = 6, 4 C 3 = 4!/3!!) = 4, a 4 C 4 = 4!/4! 0!) = jsou to ta stejá čísla, jaká se objevila v pátém řádku Pascalova trojúhelíku. Biomická věta se dá jedoduše dokázat pro všecha celá kladá, a to pomocí matematické idukce: stačí ukázat, že když věta platí pro všechy hodoty až po řekěme m, pak musí platit i pro = m+ věta samozřejmě platí pro =, protože a + b) = a + b). Všiměme si, že mocia a + b) má právě + čleů. O rozšířeí platosti této věty pro případ, že je celé 9

14 záporé číslo ebo zlomek, se zasloužil Isaac Newto. V těchto případech bude suma obsahovat ekoečé možství čleů. Vímavý pohled a rovici 2.) ukáže, že ji můžeme přepsat do tvaru: 2.2) C k = ) 2)... k + ). k! Stačí si uvědomit, že! = , zatímco k)! = k), tedy všechy čiitele od do k) v čitateli rovice 2.) můžeme pokrátit s těmi ve jmeovateli, a a zůstae tam pouze ) 2)... k+). Když budeme mít a paměti rovici 2.2), můžeme aplikovat biomickou větu a výraz + /). Máme a = a b = /, tedy + ) = + ) + + ) 2! ) 2 ) 2) 3! Po jedoduchých úpravách dostaeme + ) = + + ) + ) 2 ) 2! 3! ) ). Protože my hledáme limitu výrazu + /) pro, musíme dovolit, aby rostlo eomezeě. Se zvětšujícím se je v rozvoji stále více čleů. Dalším důsledkem je, že pro velké hodoty se budou výrazy v závorkách blížit, protože limity /, 2/,... pro jsou všechy 0. Dostaeme tedy ekoečý součet lim + ) = + + 2! + 3! +... Musíme dodat, že toto odvozeí eí vhodé k důkazu, že hledaá limita skutečě existuje. Kompletí důkaz alezete v ásledující kapitole. Ale yí berme existeci této limity jako fakt. Ozačíme-li ji písmeem e více o volbě tohoto písmee později), budeme mít e = 2 + 2! + 3! + 4! +... V příští kapitole rověž oceíme pohodlost tohoto postupu při počítáí e. Součet uvedeé ekoečé řady se totiž mohem rychleji blíží limití hodotě, ež kdybychom počítali přímo +/). Prvích sedm částečých součtů této řady je: 2 = /2 = /2 + /6 = /2 + /6 + /24 = /2 + /6 + /24 + /20 = /2 + /6 + /24 + /20 + /720 = /2 + /6 + /24 + /20 + /720 + /5040 =

15 Už z této krátké ukázky můžeme usoudit, že řada koverguje velmi rychle. Je to proto, že roste velmi rychle k! ve jmeovateli každého čleu, a tím přidávaé zlomky měí hodotu výrazu a stále měě výzamých desetiých místech. Navíc protože jsou všechy čley kladé, kovergece je mootóí : každý dodaý čle ás přiblíží k limitě; eí to tak u řad s alterujícími střídavými) zaméky. Teto fakt hraje roli v důkazu existece lim + /). Tím se však budeme zabývat v ásledující kapitole.

16 Kapitola 3. Existece limity Jak už víme, číslem e azýváme v matematice limitu lim +. ) Než se však pustíme do důkazu existece této limity, odvodíme, resp. připomeeme si ěkteré pozatky, které budeme dále potřebovat. Měli bychom si uvědomit, že při hledáí lim + ) hledáme vlastě limitu poslouposti, jejíž tý čle má tvar + ). Připomeňme si tedy ěkteré základí zalosti o posloupostech. Nechť je dáa posloupost: 3.) a, a 2, a 3,.... Možiu všech čísel, jež jsou čley této poslouposti, azveme možiu všech čleů poslouposti 3.), a a okamžik ji ozačíme písmeem M. Číslo x je tedy prvkem možiy M právě tehdy, když existuje alespoň jedo přirozeé číslo takové, že je a = x. Například u aší zkoumaé poslouposti se možia M skládá ze všech čísel tvaru + ), ěkolik jejich čleů alezete v Tabulce 2 Kapitola.). Je-li možia M shora omezeá, tj. existuje-li číslo k tak, že pro všecha je a k, budeme říkat, že posloupost 3.) je shora omezeá. A právě s omezeými posloupostmi se budeme setkávat, ukažme si tedy jedu velmi důležitou větu, která se jich týká. 3.. Věta. Nechť je dáa eklesající posloupost a, a 2, a 3,.... Je-li tato posloupost shora omezeá, má vlastí limitu lim a = sup a. =,2, Pozámka. Mozí z vás se asi pozastavili ad zápisem sup =,2,.... Je to pojem, se kterým se setkáte a vysoké škole, my jej ovšem potřebujeme k důkazu věty, proto si jej trochu přiblížíme. Předpokládejme, že máme eprázdou shora omezeou číselou možiu M. Pak tvrdím, že existuje právě jedo číslo G, které má tyto vlastosti:. Žádé číslo možiy M eí větší ež G. 2. Je-li G libovolé číslo meší ež G, existuje aspoň jedo číslo možiy M, jež je větší ež G. Tomuto číslu G říkáme supremum možiy M začka sup M) ebo též horí hraice M. Laicky řečeo, supremum možiy je ejmeší číslo, které je větší miimálě rovo) ež všecha čísla možiy. Stejě tak pro zdola omezeé možiy existuje ifimum, tj. ejvětší číslo, které je meší maximálě rovo) ež všecha čísla možiy. 2

17 Důkaz existece suprema zde ebudeme provádět, je to předmětem studia a vysoké škole. Pro zájemce o samostaté studium doporučuji: V. Jarík, Difereciálí počet I [D]). Důkaz. Vraťme se yí k důkazu Věty 3.. Výše jsme ozačili jako M možiu všech čleů poslouposti a, a 2, a 3,.... Podle předpokladu je tato možia shora omezeá, existuje tedy supremum G = sup =,2,... a. Především je a G pro všecha. Za druhé: když zvolíme číslo ε > 0, existuje v poslouposti aspoň jede čle větší ež G ε, to zameá, že existuje přirozeé číslo 0 takové, že a 0 > G ε. Protože uvažujeme posloupost eklesající, je a a 0 pro > 0 a platí G ε < a G < G + ε, tj. a G < ε. Našli jsme tedy takové číslo, že vždy můžeme udělat rozdíl mezí ím a čleem poslouposti meší ež ějaké pevě zvoleé kladé číslo ε. A jak jsme viděli v předchozí kapitole, je toto číslo limitou poslouposti, tudíž lim a = G = sup =,2,... a. Pro erostoucí zdola omezeou posloupost platí obdobá věta; limita této poslouposti je pak: lim a = if =,2,... a ifimum možiy). Důkaz se provádí stejým způsobem, a proto jej poechávám a čteáři. Následující pomocá věta se týká erovostí mezi reálými čísly. Jedá se o zámý vztah mezi geometrickým průměrem x x 2... x a aritmetickým průměrem x +x 2 + +x ezáporých reálých čísel x, x 2,..., x. Uvedeme ji i s důkazem vzhledem k jeho jedoduchosti Lemma. Nechť je N a echť x k k =, 2,..., ) jsou ezáporá reálá čísla. Potom platí : 3.2) x x 2... x x + x x, přičemž rovost astává právě tehdy, když x = x 2 = = x. Důkaz. Rovost 3.2) se dá apsat: ) x + x x 3.3) x x 2... x, a v tomto tvaru ji budeme dokazovat. Pro áš důkaz je podstaté, že tuto rovost umíme dokázat tak jedoduchým prostředkem, jako je matematická idukce. Nerovost 3.3) pro = platí triviálě. Zdůvoděí pro = 2 je rověž jedoduché, protože erovost lehce vyplývá z platého vztahu x + x 2 x x x x 2 ) 2. ) 2 3

18 Idukci lze provádět více způsoby, možá se s ějakým z ich setkáte apř. a vysoké škole, my použijeme způsob e tak běžý, ale zato jedoduchý. Nejprve si povšimeme, že tvrzeí zřejmě platí v případě, že alespoň jedo z čísel x k, k =, 2,...,, je 0 protože pak je geometrický průměr rove 0), ebo platí-li x = x 2 = = x pak astává rovost). Abychom si ještě zjedodušili postup, uděláme takový trik: Nechť A je kladé reálé číslo, ahradíme v 3.3) všecha x k ásobky Ax k, a dostaeme: ) 3.4) A x x 2... x A x + x x. Nerovice 3.4) je splěa právě tehdy, když platí erovice 3.3). Můžeme proto předpokládat, že x + x x =, a provést důkaz pouze pro teto případ. S ohledem a komutativitu sčítáí a ásobeí a předem vyloučeé případy stačí v uvažovaém případě ukázat, že platí x x 2... x <. Pro = 2 jsme tvrzeí již dokázali, udělejme to ale ještě jedou. Čísla x, x 2 můžeme po evetuálí vzájemé výměě apsat jako x = ε, x 2 = + ε, pro 0 < ε <, a platí ) 2 + ε) + ε) x x 2 = ε 2 < =. 2 Nechť tedy tvrzeí platí pro jisté N; ukážeme, že pak platí i pro + ), čímž bude důkaz idukcí dokoče. Předpokládejme, že platí x + x x + x + = +, přičemž budeme mít sčítace, kteří ejsou vesměs rovy. S ohledem a komutativitu můžeme předpokládat, že x + = ε <, x = + η > pro 0 < ε <, 0 < η. Nyí zavedeme x = x + x + = + η ε, platí tedy x +x 2 + +x =, a podle idukčího předpokladu x x 2... x. Dále si všimeme, že platí tedy x x + = + η) ε) = + η ε) ηε < x, x x 2... x + < x x 2... x a idukčí krok je tak dokoče. Rovost emůže astat v jiém případě, ež který jsme předem vyloučili, tj. x = x 2 = = x. Důkaz je tedy hotov. 4

19 Nyí už máme veškerý matematický aparát potřebý k tomu, abychom mohli řešit problém existece limity + /) pro. Nejprve si všimeme mootoie v chováí tohoto výrazu Věta. Položme: a = + ), b = + ) + =, 2,.... Pak je posloupost {a } = rostoucí a posloupost {b } = klesající. Důkaz. Posloupost {a } = je rostoucí právě tehdy, když pro každé je a < a +. Důkaz provedeme pomocí AG-erovosti Lemma 3.3)), kterou použijeme a souči čiitelů + /) a. Budeme mít + x x 2... x + = + + ) a dále x + + x + + = + ) + + = ) = + +. = + ) Na základě lemmatu 3.3) platí + < + +, platí ostrá erovost, protože čiitelé si ejsou vesměs rovi); odtud umocěím obou stra erovosti a + dostaeme: a = + ) < + ) + = a + =, 2,... ). + Tedy {a } = je rostoucí posloupost. Pro druhou část důkazu položme x = x 2 = = x = + +, x + = 2 + +). Potom 3.5) + x x 2... x + = + + ) + ) 2 = + + = + + ) +2 + a x + + x + + = ) oz. = M + 5

20 Po jedoduché úpravě dostaeme: M + = + )3 + + ) ) + + ) 3 = [ ] = ) ) + ) 3 [ ] ) ) ) k +... = + } {{ } geometrická řada s kvocietem + ) +2 Z 3.5) a 3.6) a základě lemmatu 3.3 vyplývá < +, odtud umocěím obou stra erovosti a + dostaeme: b + = + + ) +2 < + ) + = b =, 2,... ) Tedy {b } = je klesající posloupost. Tímto je důkaz věty hotov. Zřejmě pro každé N platí a = + ) < + + ) = b, a proto je pro každé N a < b b = 4. Posloupost {a } = je tedy shora omezeá a podle předchozí věty také rostoucí. Už víme a základě věty 3.)), že posloupost s takovými vlastostmi má koečou limitu lim a = lim + ), kterou jsme již dříve ozačili e. Dále si všiměme, že lim b = lim + + = ) = lim + ) lim + ) } {{ } Tedy } {{ } a = lim a e = lim + = lim + ) ) + a vzhledem k tomu, že {a } = {b } =) je rostoucí klesající) posloupost, platí: 3.7) a = + ) < e < + ) + = b =, 2,... ) Nerovosti 3.7) poskytují možost určit přibližě hodotu čísla e, apř. pro = dostaeme 2 < e < 4, pro = 2 zase 9 4 < e < 27 8 atd. Ale my už víme, že to eí zrova ejvhodější postup pro výpočet čísla e. V ásledující kapitole si řekeme ěco o postupu pohodlějším, jakým je počítáí e pomocí ekoečé řady. 6

21 Kapitola 4. Pohodlý postup pro výpočet e V Kapitole 2. ašeho povídáí jsme si ukázali, jak se dá elegatě spočítat lim + ) pomocí ekoečé řady k=0 k!. Využijeme tohoto pozatku a ukážeme si, jak se dá ještě jiým způsobem dopracovat k existeci limity + ) a jaké z toho plyou důsledky. Nejprve ukážeme, že posloupost 4.) s = +! + 2! + +, =, 2, 3,...! koverguje má limitu), když roste ade všechy meze. Součet k=0 k! se dá apsat jako 0! ) roste s každým přidaým čleem, máme tedy s < s + pro každé ; t.j. posloupost s je mootóě rostoucí. Počíaje = 3 platí také! = > = 2, proto 4.2) s < pro = 3, 4, 5,.... V tomto součtu čley počíaje druhým v pořadí tvoří čley geometrické řady s kvocietem /2. Součet této řady je /2 )/ /2) = 2 /2 ) < 2. Máme proto s < + 2 = 3, což ukazuje, že posloupost s je shora omezea trojkou t.j. hodoty s ikdy epřevýší 3). Nyí použijeme zámé tvrzeí z aalýzy viz věta )): Každá omezeá mootóě rostoucí posloupost má limitu pro. Tedy s koverguje blíží se) k limitě S. Z 4.) a 4.2) je ihed vidět, že S leží mezi 2 a 3. Nyí uvažujme posloupost a = + /). Ukážeme, že tato posloupost koverguje ke stejé limitě jako s. Podobě jak jsme to udělali v Kapitole 2. použijeme a výraz + ) biomickou větu: a = +. ) +. ) 2) ! 2! = + + ). 2! + + ) 2 )... ).! Protože hodoty výrazů v závorkách jsou vždy meší ež, máme a s ve skutečosti a < s počíaje = 2). Proto posloupost a je rověž shora omezeá. Navíc a roste mootóě, jak jsme již ukázali v jedé z předchozích kapitol. Tedy a má limitu pro. Ozačíme ji písmeem A. Nyí ukážeme, že S = A. Protože s a pro všecha N, máme S A. Teď ukážeme, že stejě tak platí i S A. Nechť m < je pevě zvoleé přirozeé číslo. Vezmeme prvích m + čleů poslouposti a + + ). 2! + + ) 2 )... m ). m! 7

22 Protože m < a všechy čley jsou kladé, je posledí součet meší ež a. Když teď echáme eomezeě růst a m podržíme pevé, bude se součet blížit s m, zatímco a se bude blížit A. Máme tedy s m A, a tudíž S A. Protože platí zároveň S A a S A, vyplývá z toho S = A, což jsme chtěli dokázat. Limitu A jsme již předem ozačili e. Je tedy e = lim +! + 2! + +! Je a čase, abychom si ukázali, v čem tkví výhoda počítáí e z této ekoečé řady. Z tohoto důvodu vezměme v úvahu s z 4.) a avíc položme s k = +! + 2! + + k!. Pro > k vziká s k z s tím, že ve výrazu pro s poecháme vpravo z + sčítaců pouze prvích k + sčítaců, takže Můžeme tedy apsat s > s k pro > k. 4.3) s = s k + r k,, kde r k, = ) k! k + ) + k + )k + 2) + +. k + )k + 2)... ) Teto zbytek odhademe shora a to tak, že všechy výrazy v závorkách ahradíme k +, je totiž k+2 k+, atd. Dostaeme Položíme-li k+ = q, je r k, k! r k, k! k m= k m= k + ) m. ) q m = k! q + q2 + + q k ) = } {{ } čley geometrické posl. = q q k ) < q k! q k! q. Dosadíme zpátky za q a po jedoduché úpravě dostaeme r k, < k.k!. Podle 4.3) je tedy s s k + k.k!. Vtip je v tom, že pro všecha čísla s od k + )-vého počíaje, tj. pro s k+, s k+2, s k+3,..., dostáváme tutéž erovost, eboť pravá straa ezávisí a. A proto také e s k + k.k!. Pro každé celé k 3 je tedy s k e s k + k.k!, tj. 0 e +! + 2! + + ) k! k.k!. Ježto pro větší hodoty k je k.k! velmi blízko ule, lze takto číslo e velmi pohodlě počítat. Např. 0.0! < 3 0 ; odtud vypočteme e s chybou meší 8 ež 0 7 je tedy e < 0 7 ). Pro k = 4 dostáváme číslo e s chybou meší ež 0 2 ; zkuste to propočítat, vyjde pro e přibližá hodota

23 Kapitola 5. Ještě ěco avíc pro áročé Komu áhodou estačí dvě vyjádřeí čísla e, emusí zoufat, protože příběh e zdaleka ekočí. Vzpomeeme ještě dílo Leoharda Eulera ), jehož jméo je těsě spjato s pojmeováím čísla e Eulerovo číslo. O tom, že toto pojmeováí eí áhodé a je zcela zasloužeé, se zmííme v dalších částech čláku. Nyí se zaměříme a Eulerovo dílo Itroductio, v ěmž autor pojedává o jiém druhu ekoečého procesu, ež s jakým jsme se doposud setkali, a jmeovitě o ekoečých řetězových zlomcích. Vezměme apříklad zlomek 3/8. Můžeme jej apsat jako + 5/8 = + /8/5) = +/+3/5), a v tomto procesu bychom mohli dále pokračovat. Máme tedy: 3 8 = Euler dokázal, že každé racioálí číslo se dá zapsat jako koečý řetězový zlomek, zatímco iracioálí číslo se dá zázorit pomocí ekoečého řetězového zlomku, tj. kde řetěz zlomků ikdy ekočí. Například pro iracioálí číslo 2 máme: 2 = Euler také ukázal způsob, jak zapsat ekoečé řady ve formě ekoečých řetězových zlomků, a obráceě. Pro číslo e použil vyjádřeí pomocí ekoečé řady +! + 2! +..., a ašel tak ejeom zápis e pomocí řetězového zlomku, ale také moho dalších, které s tímto číslem souvisejí. Pro ukázku uvádíme dvě z ich: e =

24 e = Všiměme si ápadé pravidelosti ve vyjádřeí čísla e ve formě řetězového zlomku. Mohlo by to svádět k doměí, že tak je tomu vždycky. Ale eí to bohužel pravda, číslo e patří spíše mezi výjimky stejě jako výše uvedeá 2). Komu by se elíbilo, že u vyjádřeí e se v čitatelích zlomků vyskytují i jiá čísla ež, abízím ještě jedo řešeí. e = Pozámka. Možá se ěkdy setkáte s jiým zápisem řetězového zlomku. Je to právě pro případ, že jsou v čitatelích samé jedičky, takže se v zápise používají pouze čísla, která se přičítají ke zlomkům. V ašem případě e = [2;, 2,,, 4,,, 6,,,... ]. Můžeme použít i obecý zápis e = [2; a, a 2,..., a k,... ] kde a 3m = a 3m 2 =, a 3m = 2m m =, 2,... ). 20

25 Kapitola 6. Kvadratura hyperboly V prví kapitole ašeho povídáí jsme si ukázali, jak mohou fiačí záležitosti přispět k rozvoji matematiky. Pomocí ich jsme alezli číslo e, které, jak ještě dále uvidíme, má zajímavé vlastosti a především má obrovský výzam pro matematiku. Tato kapitola by ás měla přesvědčit, že i záležitosti, které zdaleka esouvisejí s tím, co už tady bylo řečeo, mohou vést ke stejému číslu. Zabruslíme tak trochu do geometrie. Sad všichi zaregistrovali, že kapitola má ázev Kvadratura hyperboly, ale asi málokterý z Vás zá výzam obou těchto slov. Takže a začátku by bylo vhodé si k tomu ěco říci. Kvadraturou azýváme alezeí plošého obsahu uzavřeého roviého útvaru. Slovo se vztahuje přímo k charakteru problému: vyjádřit plochu v jedotkách plochy, tj. ve čtvercích kvadrátech). Řekové chápali teto úkol tak, že daý x útvar má být přetvoře a ějaký ekvivaletí, jehož plochu lze ajít pomocí základích pravidel. Uvedeme jedoduchý příklad: předpokládejme, že chceme ajít obsah obdélíku se straami a a b. Pokusíme seajej přetvořit a čtverec stejého obsahu, musí tedy platit x 2 = ab ebo x = b ab. Sestrojit úsečku této délky eí pro ás žádý problém. Stačí si vzpomeout a Eukleidovu větu o výšce v 2 = c a c b ) a pak již pomocí pravítka a kružítka provedeme jedoduchou kostrukci, jak je ukázáo a obr.. Obr. Umíme tedy udělat kvadraturu jakéhokoli obdélíku, a tudíž i jakéhokoli rovoběžíku a trojúhelíku, protože z těchto útvarů lze získat obdélík jedoduchou kostrukcí viz obr. 2). Plye z toho i kvadratura libovolého mohoúhelíku, protože každý mohoúhelík se dá rozdělit a koečý počet trojúhelíků. Obr. 2a Obr. 2b Obr. 2c S průběhem času k vyřešeí ěkterých problémů estačil pouze teto ryze geometrický pohled, ale začalo se směřovat k odhadům. Ovšem sestrojováí ekvivaletích útvarů se bralo v úvahu až tehdy, když se ukázalo, že při sestrojováí byly použity pouze základí kostrukce. Vhodým příkladem toho, kdy tomu tak ebylo, je apříklad Archimedova exhaustí metoda. Zřejmě jste se s tímto pojmem ještě esetkali, řekěme si tedy alespoň, že to byla metoda, která zahrovala ekoečě moho kroků. Hezkým příkladem může být počítáí obsahu kruhu, kdy se kruh rozdělí a výseče, které se ahradí trojúhelíky, jejichž jede vrchol je ve středu kruhu a ostatí dva jsou body zvoleé a jeho obvodu. Tyto trojúhelíky se pak vhodým způsobem poskládají viz obr. 3), a v limitím případě, kdy kruh rozdělíme a ekoečě moho stejých trojúhelíků, dostaeme obdélík, jehož obsah 2

26 už umíme spočítat. r... } {{ } 2 o Obr. 3 Tato metoda ale z výše uvedeých důvodů emohla projít zahrovala totiž ekoečě moho kroků a ebylo jí možo dosáhout pomocí ryze geometrických prostředků. Od tohoto omezeí bylo upuštěo až kolem roku 600, kdy do matematiky vstoupily ifiitezimálí procesy, tj. procesy souvisící s ekoečě malými veličiami. Mezi útvary, které tvrdohlavě vzdorovaly všem pokusům o kvadraturu, patří bezpochyby hyperbola. Možá jste ěkdy slyšeli defiici, že je to možia bodů, které mají stejý rozdíl vzdáleostí od dvou pevě daých bodů tzv. ohisek). Taky jste se mohli setkat s tvrzeím, že grafem epřímé úměrosti je právě hyperbola. Z ryze geometrického hlediska je hyperbola křivka získaá tak, že kužel proteme roviou, která svírá s jeho základou úhel větší ež jeho straa odtud předpoa hyper, což zameá více ež). Kužel si možá mozí z Vás představují jako zmrzliový korout, my však a rozdíl od ěj uvažujeme kužel, který se skládá ze dvou částí, jež mají společou osu viz obr. 4). Proto má hyperbola dvě odděleé větve, které jsou symetrické. Navíc k hyperbole lze ajít dvojici přímek s í spojeých, jmeovitě jsou to dvě tečy k této křivce s bodem dotyku v ekoeču. Když se pohybujeme po větvích směrem od středu, blížíme se stále více k jedé z těchto přímek, ale ve skutečosti ji ikdy edosáheme. Těmto přímkám se říká asymptoty hyperboly v řečtiě toto slovo zameá esetkat se ). Obr. 4 Řekové studovali řezy kužele pouze z geometrického hlediska. V sedmáctém století však došlo k objeveí aalytické geometrie, a studium geometrických útvarů, zvláště křivek, se stalo součástí algebry. Místo křivek samotých se zavedly rovice spojeé s x ovou a y ovou souřadicí bodů a křivce. Ukázalo se, že každý řez a kuželi průik roviy s kuželovou plochou) lze vyjádřit pomocí kvadratické rovice o dvou proměých, jejíž obecý tvar je Ax 2 + By 2 + Cxy + Dx + Ey = F. Můžeme takto apsat apř. rovici kružice, elipsy, hyperboly, paraboly ebo dvojice růzoběžých přímek. Pro ilustraci vezmeme A = B = F = a C = D = E = 0 a dostaeme rovici x 2 + y 2 =, jejímž grafem je kružice se středem v počátku a poloměrem jedotková kružice). Hyperbola a obr. 5 odpovídá případu A = B = D = E = 0 a C = F = ; její rovice je xy = ebo y = /x), a její asymptoty jsou osa x a osa y. Jelikož jsou její asymptoty a sebe kolmé, dostala pojmeováí rovoosá hyperbola. 22

27 0 x Obr. 5 y y = x Již Archimedes se pokoušel o kvadraturu hyperboly, ovšem bezúspěšě. Když a počátku 7. století byla objevea metoda ifiitesimálího počtu, matematikové obovili pokusy o dosažeí tohoto cíle. Vzhledem k tomu, že hyperbola je a rozdíl od kružice či elipsy křivka, která utíká do ekoeča, musíme si vyjasit, co mííme v tomto případě kvadraturou. Na obr. 6 je zázorěa jeda větev hyperboly 0 xy = ; a x ové t x ose jsme vyzačili jede pevý bod x = a libovolý bod x = t. Obr. 6 Plochou pod hyperbolou budeme rozumět plochu ohraičeou grafem fukce xy =, osou x, a svislými přímkami úsečkami) x = a x = t. Samozřejmě číselá hodota této plochy bude záviset a volbě t, a tudíž plocha bude fukcí t. Ozačme ji jako At). Měli bychom tedy alézt tuto fukci. Zvolíme cestu historickou a podíváme se, jak se s průběhem času vypořádali s tímto problémem matematikové. 23

28 Kapitola 7. Reé Descartes a Pierre de Fermat Kolem počátku 7. století se ěkolik matematiků pokoušelo ezávisle a sobě řešit problém kvadratury hyperboly. Byli mezi imi Pierre de Fermat ) a Reé Descartes ), kteří spolu s Blaise Pascalem ) vytvořili tzv. velký fracouzský triumvirát matematiků v letech ještě před vzikem aalýzy. Stejě jako Bach a Hädel v hudbě jsou Descartes a Fermat zmiňovái dohromady a považovái za jakási matematická dvojčata. Nicméě ehledě a to, že oba byli Fracouzi a téměř současíci, těžko by ěkdo hledal dva lidi sobě méě podobé. Descartes začal svůj profesioálí život jako voják pozorujíc akce v moha regioálích válkách, které touto dobou zuřily v Evropě. Často měil své ázory a prohlášeí v závislosti a tom, co zrova vyžadovala služba. Jedou v oci měl podivý se vizi, že mu Bůh svěřil klíč od tajemství vesmíru. A tak se Descartes ještě v době vojeské služby obrátil k filozofii a brzy se stal výzamým filozofem v Evropě. Jeho motto: y Myslím, tedy jsem. vyjadřuje jeho víru v racioálí svět ovládaý rozumem a matematickým vzorem. Matematika byla tedy hed po filozofii jeho druhým ejdůležitějším zájmem. Publikoval pouze jedu výzamou matematickou práci, ale stačilo to k tomu, aby ovlivil směr vývoje matematiky. Vx jeho díle P x, Lay) Géométrie, publikovaém v roce 637, představil světu aalytickou geometrii. Klíčovou myšlekou aalytické geometrie apadla Descarta, y když jedo ráo ležel v posteli a pozoroval mouchu lezoucí po stropě, je popsat každý bod v roviě dvěma čísly, jež vyjadřují vzdáleosti 0 tohoto bodu x od dvou přímek souřadých os obr. 7). Obr. 7 Tato čísla, tzv. souřadice bodu, umožila Descartovi zapsat geometrické vztahy ve tvaru algebraických rovic. Souřadice bodů apř. a křivce považujeme za proměé a všechy obecé vlastosti křivek vyjádříme pomocí rovic právě s těmito proměými. Uvedeme jedoduchý příklad: jedotková kružice je možia bodů v roviě), které jsou vzdáleé od středu právě o jedu jedotku. Když zvolíme střed kružice za počátek souřadého systému a použijeme Pythagorovu větu, dostaeme rovici jedotkové kružice x 2 + y 2 =. Descartes to ovšem eměl tak jedoduché jako my v deší době, protože jeho souřadý systém ebyl pravoúhlý, ale šikmý, a avíc uvažoval pouze kladé souřadice, tj. body v prvím kvadratu. La Géométrie měla ohromý vliv a ásledující geerace matematiků, mezi imi byl i mladý Isaak Newto, který studoval latiský překlad tohoto díla. Descartova práce se v mohém blížila klasické řecké geometrii, jejíž podstatou byly geometrické kostrukce a důkazy. Tímto se geometrie odlišovala od algebry a později i od aalýzy. Pierre de Fermat byl Descartův pravý opak. Zatímco Descartes stále měil místo pobytu, svou oddaost vůči ěčemu a své zaměstáí, Fermat je příkladem stability; právě proto, že měl tak eměý život, existovalo o ěm 24

29 málo historek. Začal budovat svoji kariéru jako veřejý sluha a v roce 63 se stal čleem parlemetu správí rady) města Toulouse. A a tomto místě zůstal do koce života. Ve svých volých chvílích studoval jazyky, filozofii, literaturu a poezii, ale jeho ejvětší oddaost patřila matematice, kterou považoval za jistý druh itelektuálí relaxace. I když mozí matematici jeho doby bylo zároveň fyziky ebo astroomy, Fermat byl ztělesěím ryzí matematiky. Zabýval se hlavě teorií čísel, ejryzejší ze všech větví matematiky. K jeho ejdůležitějším příspěvkům do matematiky patří bezpochyby tvrzeí, že rovice x + y = z emá řešeí v celých kladých číslech mimo případ, kdy = ebo = 2. Případ pro = 2 zali už Řekové, a to ve spojeí s Pythagorovou větou. Věděli, že existují jisté pravoúhlé trojúhelíky s celočíselými straami, zali apř. trojúhelíky se straami 3, 4, 5 ebo 5, 2, 3 vskutku = 5 2 a = 3 2 ). Bylo tedy přirozeé položit si otázku, zda může mít podobá rovice pro vyšší mociy x, y, a z také celočíselé řešeí vyloučíme triviálí případy 0, 0, 0 a, 0, ). Fermatova odpověď zěla: e. Na okraji Diofatova díla Arithmetica, klasické práce z teorie čísel apsaé v Alexadrii v třetím století.l. a přeložeé do latiy v 62, kihy, kterou Fermat vlastil, se alezly Fermatovy pozámky. Stálo tam: Rozdělit třetí mociu a dvě jié třetí mociy, čtvrtou mociu, aebo obecě jakoukoli mociu a dvě mociy se stejým mocitelem větším ež 2 je emožé. Našel jsem skvělý důkaz tohoto tvrzeí, ale okraj je příliš úzký, ež aby to obsáhl. Důkaz se ovšem ealezl ai ikde jide, a tak tvrzeí, zámé jako Velká Fermatova věta zůstalo bez důkazu až do edávé doby. Vraťme se ale yí k ašemu problému, ke kvadratuře. Fermat se zajímal o kvadraturu křivek, jejichž obecá rovice je y = x, kde začí celé kladé číslo. Křivky s touto rovicí jsou yčasto azýváy obecé paraboly parabola samotá je pro případ = 2). Fermat aproximoval plochu pod křivkou řadou obdélíků, jejichž základy tvoří geometrickou posloupost. Tato metoda se velmi podobá Archimedově exhaustí metodě, ale a rozdíl od svého předchůdce se Fermat ezarazil u součtu ekoečé řady. Na obr. 8 vidíme část křivky o rovici y = x, jmeovitě mezi body x = 0 a x = a a ose x. Nyí iterval 0, a) rozdělíme a ekoečě moho itervalů body, které ozačíme... K, L, M, N, a to tak, že když postupujeme zprava dostaeme klesající posloupost itervalů: 0N = a, 0 0M. =.. K ar, L 0L M = ar N 2, x atd, a r je kladé číslo meší ež. Fukčí hodoty v těchto a bodech jsou pak: a, ar), ar 2 ),.... Z toho už je jedoduché spočítat obsah každého obdélíku, a pak sečíst tyto obsahy pomocí vztahuarpro součet geometrické řady s = a / q)). Výsledkem je: ar 2 7.) A r = a+ r) ar r +, 3 kde idex r u A zameá, že plocha závisí a volbě r. Obr. 8 Dále Fermat usoudil, že pro lepší shodu mezi obsahy obdélíků a plochou pod křivkou bude muset zmešit šířku každého obdélíku obr. 9). Abychom 25

30 toho dosáhli, přiblížíme r k čím blíže se 0 bude r acházet, tím lépe x bude plocha pod křivkou aproximováa. Obr. 9 Ale pozor, když r, rovice se blíží edefiovaému výrazu 0/0. Ovšem Fermat byl schope obejít tuto obtížost, protože si všiml, že jmeovatel rovice 7.), r +, se dá rozložit a souči r) + r + r r ). Když teď zkrátíme r) v čitateli a jmeovateli zlomku, rovice 7.) přejde v a + A r = + r + r r. Když echáme r, aby se blížilo, pak se každý čle ve jmeovateli zlomku blíží, takže dostaeme vztah 7.2) A = a+ +. Každý studet aalýzy by si teď měl všimout, že jsme se yí dopracovali ke zámému itegračímu vztahu a 0 x dx = a + /+). Nicméě musíme pamatovat, že Fermatova práce byla apsáa kolem roku 640, tj. asi 30 let předtím, ež Newto a Leibiz zavedli teto vztah jako součást jejich itegrálí aalýzy. Fermatova práce byla výrazým zlomem v tehdejší matematice, protože eřešila problém kvadratury pouze pro jedu křivku, ale pro celou rodiu křivek, jejichž obecá rovice je y = x pro celé kladé hodoty. Dále epatrou změou postupu Fermat ukázal, že rovice 7.2) zůstává platá, i když je záporé celé číslo. Uvažujme plochu pod křivkou od x = a kde a > 0) do ekoeča. Když je záporé celé číslo, řekěme = m kde m je kladé), dostaeme opět rodiu křivek s obecou rovicí y = x m = /x m, které často azýváme zobecěé hyperboly. Jak vidíme Fermatův vztah fuguje, i když v tomto případě je to spíše pozoruhodé, protože rovosti y = x m a y = x m, avzdory jejich ápadé podobosti, představují docela odlišé typy křivek; prví z ich jsou všude spojité, kdežto ty druhé v bodě x = 0 ubíhají do ekoeča a v důsledku toho tam vziká zlom. Asi si dokážete představit Fermatovu radost z toho, že alezeý vztah eplatí pouze pro kladé hodoty. O to větší bylo zklamáí, když zjistil, že je tady jeda překážka, jmeovitě Fermatův vztah efuguje pro jede důležitý případ, a to pro hyperbolu y = /x = x. Je to proto, že pro = je jmeovatel v rovici 7.2) rove 0. Ovšem Fermat a sobě edal zát zklamáí, a svůj objev sdělil světu slovy: Říkám, že všechy plochy pod hyperbolami mimo jedu Apolloiovu y = /x) můžeme spočítat metodou geometrických posloupostí díky jejich podobému tvaru a obecému postupu. Řešeí tohoto zvláštího případu alezl jede z méě zámých Fermatových vrstevíků, Grégoire de Sait-Vicet ), belgický Jezuita, který věoval velký kus ze svého života řešeí problémů týkajících se kvadratury, především se věoval kružici ukázalo se však, že zrova tato 26

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu

ÚROKVÁ SAZBA A VÝPOČET BUDOUCÍ HODNOTY. Závislost úroku na době splatnosti kapitálu ÚROKVÁ SAZBA A VÝPOČET BUDOUÍ HODNOTY. Typy a druhy úročeí, budoucí hodota ivestice Úrok - odměa za získáí úvěru (cea za službu peěz) Ročí úroková sazba (míra)(i) úrok v % z hodoty kapitálu za časové období

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

AMC/IEM J - HMOTNOST A VYVÁŽENÍ

AMC/IEM J - HMOTNOST A VYVÁŽENÍ ČÁST JAR-OPS 3 AMC/IEM J - HMOTNOST A VYVÁŽENÍ ACJ OPS 3.605 Hodoty hmotostí Viz JAR-OPS 3.605 V souladu s ICAO Ae 5 a s meziárodí soustavou jedotek SI, skutečé a omezující hmotosti vrtulíků, užitečé zatížeí

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

STATISTIKA PRO EKONOMY

STATISTIKA PRO EKONOMY EDICE UČEBNÍCH TEXTŮ STATISTIKA PRO EKONOMY EDUARD SOUČEK V Y S O K Á Š K O L A E K O N O M I E A M A N A G E M E N T U Eduard Souček Statistika pro ekoomy UČEBNÍ TEXT VYSOKÁ ŠKOLA EKONOMIE A MANAGEMENTU

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Carl Friedrich Gauss

Carl Friedrich Gauss Carl Friedrich Gauss F. KOUTNÝ, Zlí (. 4. 777.. 855) Každé vyprávěí o ěkom, kdo žil dávo, je utě je kompilací prameů a odkazů, které v ejlepším případě pocházejí od jeho pamětíků. Rámec tohoto textu tvoří

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko

dálniced3 a rychlostní silnice Praha x Tábor x České Budějovice x Rakousko dáliced3 a rychlostí silice R3 Praha Tábor České Budějovice Rakousko w w obsah základí iformace 3 dálice D3 a rychlostí silice R3 PrahaTáborČeské BudějoviceRakousko 3 > základí iformace 4 > čleěí dálice

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

8 Průzkumová analýza dat

8 Průzkumová analýza dat 8 Průzkumová aalýza dat Cílem průzkumové aalýzy dat (také zámé pod zkratkou EDA - z aglického ázvu exploratory data aalysis) je alezeí zvláštostí statistického chováí dat a ověřeí jejich předpokladů pro

Více

Metodika implementace Průřezového tématu Environmentální výchova I

Metodika implementace Průřezového tématu Environmentální výchova I Elektroická publikace Metodika implemetace Průřezového tématu Evirometálí výchova I Zpracovaly: Bc. Jaroslava Rozprýmová a Mgr. Milica Sedláčková Témata: 1. Zemědělství a životí prostředí 2. Ekologické

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

Využití Markovových řetězců pro predikování pohybu cen akcií

Využití Markovových řetězců pro predikování pohybu cen akcií Využití Markovových řetězců pro predikováí pohybu ce akcií Mila Svoboda Tredy v podikáí, 4(2) 63-70 The Author(s) 2014 ISSN 1805-0603 Publisher: UWB i Pilse http://www.fek.zcu.cz/tvp/ Úvod K vybudováí

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu.

KVALIMETRIE. 16. Statistické metody v metrologii a analytické chemii. Miloslav Suchánek. Řešené příklady na CD-ROM v Excelu. KVALIMETRIE Miloslav Sucháek 16. Statistické metody v metrologii a aalytické chemii Řešeé příklady a CD-ROM v Excelu Eurachem ZAOSTŘENO NA ANALYTICKOU CHEMII V EVROPĚ Kvalimetrie 16 je zatím posledí z

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika

Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Jan Zahradník, Pedagogická fakulta Jihočeské univerzity v Českých Budějovicích

Jan Zahradník, Pedagogická fakulta Jihočeské univerzity v Českých Budějovicích Pohled do historie fiačí matematiky Ja Zahradík, Pedagogická fakulta Jihočeské uiverzity v Českých Budějovicích Úvod Častým tématem diskusí současých ekoomů je ízká úroveň fiačí gramotosti ašich občaů.

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty)

(varianta s odděleným hodnocením investičních nákladů vynaložených na jednotlivé privatizované objekty) (variata s odděleým hodoceím ivestičích ákladů vyaložeých a jedotlivé privatizovaé objekty) Vypracoval: YBN CONSULT - Zalecký ústav s.r.o. Ig. Bedřich Malý Ig. Yvetta Fialová, CSc. Václavské áměstí 1 110

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK)

Systém intralaboratorní kontroly kvality v klinické laboratoři (SIKK) Systém itralaboratorí kotroly kvality v kliické laboratoři (SIKK) Doporučeí výboru České společosti kliické biochemie ČLS JEP Obsah: 1. Volba systému... 2 2. Prováděí kotroly... 3 3. Dokumetace výsledků

Více

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu

5. Výpočty s využitím vztahů mezi stavovými veličinami ideálního plynu . ýpočty s využití vztahů ezi stavovýi veličiai ideálího plyu Ze zkušeosti víe, že obje plyu - a rozdíl od objeu pevé látky ebo kapaliy - je vyeze prostore, v ěž je ply uzavře. Přítoost plyu v ádobě se

Více

Neparametrické metody

Neparametrické metody I. ÚVOD Neparametrické metody EuroMISE Cetrum v Neparametrické testy jsou založey a pořadových skórech, které reprezetují původí data v Data emusí utě splňovat určité předpoklady vyžadovaé u parametrických

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY

Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF

Více

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie

Veterinární a farmaceutická univerzita Brno. Základy statistiky. pro studující veterinární medicíny a farmacie Veteriárí a farmaceutická uiverzita Bro Základy statistiky pro studující veteriárí medicíy a farmacie Doc. RNDr. Iveta Bedáňová, Ph.D. Prof. MVDr. Vladimír Večerek, CSc. Bro, 007 Obsah Úvod.... 5 1 Základí

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost

9. Měření závislostí ve statistice. 9.1. Pevná a volná závislost Dráha [m] 9. Měřeí závslostí ve statstce Měřeí závslostí ve statstce se zývá především zkoumáím vzájemé závslost statstckých zaků vícerozměrých souborů. Závslost přtom mohou být apříklad pevé, volé, jedostraé,

Více

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne

Klonování, embryonální kmenové buňky, aj. proč ano a proč ne Kloováí, embryoálí kmeové buňky, aj. proč ao a proč e Doc. MUDr. Petr Hach, Csc., Em. předosta ústavu pro histologii a embryologii 1. lékařské fakulty Uiversity Karlovy v Praze Neí určeo k dalšímu šířeí

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Matematika stavebního spoření

Matematika stavebního spoření Matematika stavebního spoření Výpočet salda ve stacionárním stavu a SKLV Petr Kielar Stavební spořitelny se od klasických bank odlišují tím, že úvěry ze stavebního spoření poskytují zásadně z primárních

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR

10.2 VÁŽENÝ ARITMETICKÝ PRŮMĚR Středí hodoty Artmetcý průměr vážeý ze tříděí Aleš Drobí straa 0 VÁŽENÝ ARITMETICKÝ PRŮMĚR Výzam a užtí vážeého artmetcého průměru uážeme a ásledujících příladech Přílad 0 Ve frmě Gama Blatá máme soubor

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

ZÁKLADNÍ ICHTYOLOGICKÉ METODY

ZÁKLADNÍ ICHTYOLOGICKÉ METODY ZÁKLADNÍ ICHTYOLOGICKÉ METODY Určováí věku a staoveí růstu ryb Ryby jsou poikilotermí obratlovci, u ichž jsou všechy biologické fukce zásadím způsobem ovlivňováy teplotou vody. To platí v plém rozsahu

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

Expertní Systémy. Tvorba aplikace

Expertní Systémy. Tvorba aplikace Tvorba aplikace Typ systému malý velký velmi velký Počet pravidel 50-350 500-3000 10000 Počet člověkoroků 0.3-0.5 1-2 3-5 Cea projektu (v tis.$) 40-60 500-1000 2000-5000 Harmo, Kig (1985) Vytvořeí expertího

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná

Výroční zpráva fondů společnosti Pioneer investiční společnost, a.s. - neauditovaná Výročí zpráva fodů společosti Pioeer ivestičí společost, a.s. - eauditovaá Obsah 1. Účetí závěrka: Pioeer Sporokoto, Pioeer obligačí fod, Pioeer růstový fod, Pioeer dyamický fod, Pioeer akciový fod, BALANCOVANÝ

Více