LINEÁRNÍ ALGEBRA. Maticí typu m/n rozumíme skupinu m n komplexních čísel uspořádaných do m řádků a n sloupců (m,n

Rozměr: px
Začít zobrazení ze stránky:

Download "LINEÁRNÍ ALGEBRA. Maticí typu m/n rozumíme skupinu m n komplexních čísel uspořádaných do m řádků a n sloupců (m,n"

Transkript

1 LINEÁRNÍ LGER Micí p m/ romíme kpi m kompleích číel pořádých do m řádků lopců (m R ) To číl ýáme prk mice Očíme-li ij prek i-ém řádk j-ém lopci pk mici p m/ můžeme p e r: m m m Polopo mm e ýá hlí digoál Prk éo polopoi e ýjí digoálí SPECIÁLNÍ TYPY MTIC: ) Mice p m/ e ýá lopcoá ) Mice p / e ýá řádkoá ) Je-li m ýáme mici čercoo micí řád ) Čercoá mice e ýá jedokoá kdž má hlí digoále mé jedičk šde jide l Očjeme ji E

2 ) Čercoá mice řád e ýá digoálí jeliže má hlí digoále lepoň jede prek eloý oí prk jo ro le ) Mici O p m/ jejíž šech prk jo ro le ýáme loo micí ) Mice e ýá dolí rojúhelíkoá mice jeliže obhje pod hlí digoálo mé l Mice e ýá horí rojúhelíkoá mice jeliže obhje d hlí digoálo mé l 8) Sbmicí ik eme koo mici kerá ike mice echáím i-ého řádk k-ého lopce ) Trpooá mice T k mici ike mice k že měíme řádk mice lopce opk Jeliže je mice p m/ poom je mice rpooá p /m Plí ( ) T T ) Mice e ýá merická jeliže ) Mice e ýá imerická jeliže T T

3 OPERCE S MTICEMI: Nechť jo mice éhož p m/ čílo ) k R Poom: mjí-li ejé prk ejých poicích roo mic ) mice C je opě p m/ ike k že ečeme mic prk ejých poicích oče mic ) mice C k je opě p m/ ike k že kždý prek mice áobíme čílem k áobeí mice reálým čílem C kde Příkld : Vpočíeje mici ( ) T 8 8 Nechť je mice p m/ mice p /p Poom mice mic plí c ik j Poor! ij b jk i b k i b k i b k C je mice p m/p Pro oči T T T T T Plí: ( ) T T T T T ( )

4 Příkld : Vpočíeje oči mic Příkld : Vpočíeje oči mic [ ] 8

5 hodo mice Mimálí poče lieárě eáilých řádků mice p m/ eme hodoí éo mice Očjeme hod ( ) h ( ) Hodo loé mice je Řádkoými elemeárími rformcemi mice ýáme o úpr: ) Výmě do řádků ) Váobeí liboolého řádk čílem růým od l ) Přičeí k-áobk ( k R ) liboolého řádk k jiém řádk Podobě defijeme SLOUPCOVÉ ELEMENTÁRNÍ TRNSFORMCE Řekeme že mice jo ekileí le-li jed ich přeé drho koečým počem elemeárích rformcí Očjeme Dě mice keré mjí ejo hodo ýáme ekileími Pro mici p m/ plí: h( ) mi( m ) Řádkoými elemeárími rformcemi e hodo mice eměí Trpooáím e hodo mice eměí j i lopcoými elemeárími rformcemi e hodo mice eměí PRKTICKÝ VÝPOČET HODNOSTI MTICE: Pomocí elemeárích rformcí príme mici rojúhelíkoý (chodoý) r Vecháme loé řádk Poče eloých řádků éo mice je roe její hodoi Příkld : Určee hodo mic

6 C

7 Příkld : Jká může bý hodo mice pro růé hodo číl? ( ) ( ) 8 8 pro pro je ( ) hod je ( ) hod SOUVISLOST HODNOSTI MTICE S LINEÁRNÍ ZÁVISLOSTÍ VEKTORŮ: Mějme ekor ( ) ( ) b b b ( ) r c c c Užjme mici c c c b b b echť ( ) h hod Jeliže r h pk jo ekor r lieárě eáilé Jeliže r h < pk jo ekor r lieárě áilé le ich br práě h lieárě eáilých ekorů Příkld : Zjiěe d jo ekor ( ) ( ) b ( ) c ( ) 8 d lieárě áilé ř ř ř ř ( ) < hod proo jo ekor lieárě áilé kokréě c b d

8 deermi Deermi čercoé mice řád jejíž prk jo kompleí číl je kompleí čílo Zčíme de ebo VÝPOČET DETERMINNTU: : : : požijeme Srroo pridlo : Pro deermi šších řádů NEPLTÍ logie předešlými ýpoč To deermi míme počí jik Několik možoí i kážeme: možo: Lplceů rooj deermi podle i-ého řádk i i k i Di i Di i Di kde Dik ( ) ik pro k D ik eme lgebrický doplěk k prk ik Obdobě můžeme defio Lplceů rooj podle liboolého lopce Pomocí Lplceo rooje můžeme počí deermi liboolého řád možo: Deermi rojúhelíkoé mice je roe oči prků hlí digoále K úprě deermi rojúhelíkoý r požijeme řádkoé či lopcoé elemeárí úpr míme le dbá ěkeré odlišoi: Vměíme-li deermi ájem d řádk (d lopce) deermi měí méko Váobíme-li JEDEN řádek (lopec) čercoé mice reálým čílem c poom deermi iklé mice je roe c Jiými lo polečého čiiele řádk (lopce) le ko před deermi Přičeme-li c-áobek ( c ) jedoho řádk (lopce) k jiém deermi e eměí možo: podle mého áor ejlepší bereme i řádek ebo lopec deermi e príme k b ěm ůlo jedo eloé čílo bek bl l Poé proedeme Lplceů rooj podle ohoo řádk (lopce)

9 DLŠÍ VLSTNOSTI DETERMINNTŮ: Má-li deermi d řádk (lopce) ejé je roe le Obhje-li jede řádek (lopec) deermi mé l pk je deermi roe le Deermi e roá le práě ehd kdž má řádk (lopce) lieárě áilé Trpooáím e deermi eměí j T Jo-li čercoé mice éhož řád pk j deermi oči do mic e roá oči deermiů ěcho mic Příkld : Vpočíeje deermi: Příkld : Vřeše roici ( ) ( ) ( )

10 Příkld 8: Vpočíeje deermi:

11 ierí mice Čercoo mici eme reglárí jeliže je její deermi eloý Jeliže poom eme čercoo mici iglárí Příkld : Určee čílo m k b mice m bl reglárí m ř ř m ( ) ( ) m m ř ( 8m ) m m 8 8m m K iglárí mici eeije mice ierí Ierí mice k mici (pokd eije) je micí rče jedočě (Tj k jedé reglárí mici emůže eio íce ierích mic) Ierí micí k reglárí mici je reglárí mice pro kero plí E Plí ( ) Nechť jo čercoé mice -ého řád Je-li lepoň jed mic iglárí pk je oči iglárí Jo-li obě mice reglárí je oči reglárí mice plí ( ) Výpoče ierí mice e obkle eproádí podle defiice Nejčěji e požíjí o d pop:

12 ď reglárí mice Poom mice k í ierí Mici eme djgoo ke čercoé mici jeliže kždý prek ik hrdíme jeho lgebrickým doplňkem ik D ko iklo mici rpojeme: D D D D D D D D D Příkld : Určee ierí mici k mici

13 Přeedeme-li řádkoými elemeárími rformcemi mici jedokoo mici E pk éž elemeárí rformce přeedo jedokoo mici E mici ierí Příkld : Určee ierí mici k mici ( ) 8 / E Micoé roice: E E Nechť je dá micoá roice rep pro eámo mici kde mice je reglárí mice je hodého p Řešeím éo roice je mice rep

14 Příkld : Určee mici micoé roice je-li o lieárích roic So m lieárích roic o eámých pijeme e r kde ij ýáme koeficie roice ýáme eámé roice i j b ýáme pré r roice ( i m j ) b b b m m m m Jo-li šech b poom e jedá o homogeí o lieárích roic i Je-li lepoň jedo číel b i růé od l poom e jedá o ehomogeí o lieárích roic

15 MTICOVÝ ZÁPIS SOUSTVY LINEÁRNÍCH ROVNIC: b b kráceě můžeme pá m m m bm Řešeím o lieárích roic eme kždo pořádo -ici reálých číel ( ) po doeí do šech roic o o o ideick plňje kerá Liboolo o lieárích roic můžeme řeši GUSSOVOU ELIMINČNÍ METODOU: b Ze o lieárích roic eíme mici b / kero ýáme m m m bm rošířeo micí o To mici přeedeme ekileími úprmi mici rojúhelíkoém (chodoém) r Poče řešeí o jiíme rčeím hod ( ) hod ( / ) Z preé mice oříme oo o roic e keré dopočíáme jedolié eámé Ekileí úpr: Npáí roic liboolém pořdí Váobeí liboolé roice eloým čílem Přičeí liboolého áobk jedé roice k jié roici Vecháí roice kerá je áobkem jié roice Vecháí roice kerá je lieárí kombicí oích roic Frobeio ě: So m lieárích roic o eámých je řešielá (j má lepoň jedo řešeí) práě ehd kdž ( ) hod( ) hod / So je eřešielá práě ehd kdž hod ( ) hod( / ) Je-li hod ( ) hod( ) / (poče eámých) pk má o práě jedo řešeí Je-li hod ( ) hod( ) h < / pk má o ekoečě moho řešeí To řešeí jo áilá olbě h prmerů

16 Příkld : Goo elimičí meodo řeše o lieárích roic: ( ) ( ) 8 Příkld : Goo elimičí meodo řeše o lieárích roic: 8 8 Příkld : Goo elimičí meodo řeše o lieárích roic:

17 ( ) Řešeí o lieárích roic o eámých REGULÁRNÍ micí o: I Užiím ierí mice Nechť je dá o lieárích roic jejíž mice je reglárí Poom eije jedié řešeí II Crmeroo pridlo Nechť je dá o lieárích roic jejíž mice je reglárí Poom eije jedié řešeí ( ) kde k k k přičemž k je deermi mice kerá ike hreím k-ého lopce mice lopcem prých r Příkld : Užiím ierí mice řeše o lieárích roic:

18 Příkld : Užiím Crmero pridl řeše o lieárích roic: 8 ( ) ( ) 8 8 ( 8) 8 ( ) bod [ ] [ b b b ] ekor ( b b b ) ekoroá lgebr dimeioálím proor E Mějme bod [ ] [ b b b ] C [ c c c ] ekor ( ) ( ) w ( w w w ) i ( ) j ( ) k ( ) reálé čílo k Poom: eliko ekor oče ekorů ( ) rodíl ekorů ( ) k-áobek ekor k ( k k k ) opčý ekor k ekor ( ) dáleo bodů ( ) ( ) ( ) ( ) b b b

19 řed S úečk S b b b b c b c b ěžišě T rojúhelík C T c klárí oči eliko úhl eloých ekorů co ϕ ekoroý oči ( ) i j k eliko úhl eloých ekorů i ϕ obh rooběžík P obh rojúhelík C P C míšeý oči ( w) objem rooběžoě V ( w) w w w objem čřě V ( w) eloé ekor eloé ekor jo rooběžé práě ehd kdž k jo kolmé ( ) práě ehd kdž k R { } loý ekor je ekor jehož šech ořdice jo ro jedokoý ekor je ekor jehož eliko je ro Příkld 8: Vpočíeje obh rojúhelík C je-li [ ] [ ] C [ ] ( ) C C ( ) i j k ( i 8 j) i j ( ) C k j k P C ( ) 88 j

20 Příkld : Vpočíeje objem čřě CD je-li [ ] [ ] C [ ] D [ ] ( ) C C ( ) D D ( ) ( C D) 8 ( ) 8 ( C D) j V lická geomerie lieárích úrů E I lická geomerie přímk: Smbolická roice přímk přímk je dá bod ; je liboolý bod ležící přímce ( ) R pro e jedá o roici polopřímk e jedá o roici polopřímk opčé k polopřímce e jedá o roici úečk Prmerické roice přímk ) přímk je dá děm bod [ ] [ b b b ] ( b ) ( b ) ( b ) R b) přímk je dá bodem [ ] rooběžý ekorem ( ) měroým ekorem přímk což je ekor R Koický r roice přímk jádříme prmer prmerické roice přímk doeme Implicií jádřeí přímk přímk je průikem do růoběžých roi b c d b c d

21 II lická geomerie roi: Smbolická roice přímk roi je dá ým jedím bodem [ ] ( ) ( ) děm lieárě eáilými ekor keré jo rooběžé do roio ( měroé ekor roi); je liboolý bod ležící roiě R Prmerická roice roi roi je dá ým bodem [ ] děm lieárě eáilými ekor ( ) ( ) R Obecá roice roi ) roi je dá ým bodem [ ] ( ) ( ) děm lieárě eáilými ekor b) roi je dá ým bodem [ ] ormáloým ekorem ( b c) [ ] je liboolý bod roi Plí b c ( ) ( ) ( ) b( ) c ( ) b c b c kráceě píšeme kde ; b c d Úekoý r roice roi ike obecé roice roi jeliže ejpre přeedeme d drho r roice poom celo roici dělíme čílem d bchom doli pré rě čílo ; eo r le přeé ) poe roi keré eprocháejí počákem ořdicoého ém (bodem [ ] p q r kde d p d q b r d c Číl p q r rčjí úek keré oách íá roi (průečík omi)

22 ) Vájemá poloh do přímek proor mimoběžk růoběžk rooběžk oožé přímk ) Vájemá poloh přímk roi přímk je růoběžá roio přímk je rooběžá roio přímk leží roiě C) Vájemá poloh do roi růoběžé rooběžé oožé Vájemá poloh liboolých do úrů e rčje k že e jií poče polečých bodů Tj poroáme roice obo úrů mei ebo Příkld : Určee ájemo poloh přímk p : roi : ρ R R r r r r r r r dodím do roice roi do So roic má práě jedo řešeí j přímk roio mjí práě jede polečý bod [ ] P proo jo růoběžé (přímk proíá roi) Příkld : Určee ájemo poloh přímk p : roi : ρ R ( ) ( ) ( ) 8 Roice emá řešeí j přímk roio emjí žádý polečý bod proo jo rooběžé

23 merické h přímek roi E odchlk do přímek ϕ kde prí přímk má měroý ekor drhá přímk má měroý ekor co ϕ odchlk přímk od roi kde přímk je dá měroým ekorem roi ormáloým ekorem i ϕ odchlk do roi kde prí roi je dá ormáloým ekorem drhá roi je dá ormáloým ekorem coϕ dáleo bod M od roi ρ kde : b c d ρ M [ ] ( M ρ ) b b c c d dáleo do rooběžých roi ρ : b c d σ : b c d ( ρ σ ) d d b c dáleo bod M od přímk p kde M [ ] přímk p je dá bodem [ ] měroým ekorem ( ) ( M p) M dáleo do rooběžek p q je ro dáleoi liboolého bod přímk p od přímk q ( p q) ( q) dáleo do mimoběžek: přímk p je dá bodem [ ] měroým ekorem ( ); přímk q je dá bodem [ b b b ] měroým ekorem ( ) ( p q) ( )

24 Příkld : Vpočíeje odchlk přímk p : od roi : ρ R R měroé ekor roi: ( ) ( ) ormáloý ekor roi: ( ) ( ) k j i j i k j k i k j i měroý ekor přímk: ( ) p ýpoče odchlk: ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) i p p ϕ rci ϕ 8 ɺ ϕ Příkld : Určee dáleo bod [ ] od roi : ρ R prmerické roice roi oříme obeco roici roi: bď: ebo: ormáloý ekor roi ( ) (i Př ) liboolý bod ležící roiě př [ ] : d ρ ( ) : d d ρ d : ρ ( ) ρ

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na Fakultě bezpečnostního inženýrství VŠB TU Ostrava Okruhy z učiv sředoškolské memiky pro příprvu ke sudiu Fkulě ezpečosího ižeýrsví VŠB TU Osrv I Úprvy lgerických výrzů, zlomky, rozkld kvdrického rojčleu, mociy se záporým epoeem, mociy s rcioálím epoeem,

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

DUM č. 14 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 14 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla rojek GML Brno Docen DUM č. 4 dě M- Přír k mriě PZ geomerie, nlická geomerie, nlý, komlení číl 4. or Mgd Krejčoá Dm.08.0 očník mriní ročník noce DUM nlická geomerie roor - d úloh ýledk. Meriál jo rčen

Více

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků:

p = 6. k k se nazývá inverze v permutaci [ ] MATA P7 Determinanty Motivační příklad: Řešte soustavu rovnic o dvou neznámých: Permutace z n prvků: ATA P Determity otivčí příkld: Řešte soustvu rovic o dvou ezámých: x + x = b x + x = b Permutce z prvků: Je dá moži = {,,, }, kde N Kždá uspořádá -tice [ k, k, k ] vytvořeá z všech prvků možiy se zývá

Více

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33 . Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +

Více

Analytická geometrie

Analytická geometrie Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ VEKTOROVÁ LGEBR NLYTICKÁ GEOMETRIE V ROVINĚ Délk úsečk, střed úsečk,, B Délk úsečk B : B C, BC Střed úsečk : B S s, s souřdice středu: s, s Vektor Vektor = oži všech souhlsě orietových rovoěžých úseček

Více

Analytická geometrie

Analytická geometrie 7..06 Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o SOUSTAVY LINEÁRNÍCH ROVNIC Zákldí pojmy Defiice Soustv rovic m m m b b b m kde ij bi (i m; j jsou reálá čísl j jsou ezámé se zývá soustv m lieárích rovic o ezámých stručě soustv lieárích rovic Čísl ij

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Technická kybernetika. Obsah. Laplaceova transformace. Akademický rok 2017/2018. Připravil: Radim Farana

Technická kybernetika. Obsah. Laplaceova transformace. Akademický rok 2017/2018. Připravil: Radim Farana 8..8 kdemický rok 7/8 Připrvil: Rdim Fr Techická kyereik Lplceov rformce Oh Lplceov rformce Lplceov rformce Lplceov rformce L-rformce převuje velmi účiý ároj při popiu, lýze yéze pojiých lieárích yémů

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Odchylka přímek

Odchylka přímek 734 Odchylka římek Předoklady: 708, 7306 Pedagogická ozámka: Pokd chcete hladký růěh začátk hodiy, je leší dořed ozorit žáky, že do otřeoat zorec ro úhel do ektorů Př : Urči úhel, který sírají ektory (

Více

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají Teploa laky obou čásech se yroají 1 m1 1 m rooáe budou sředí kieické eergie obou druhů molekul sejé: 1 1 m m 1 1 ěžší molekuly se pohybují pomaleji ež lehčí sejé musí edy bý i objemoé kocerace: 1 když

Více

Digitální učební materiál

Digitální učební materiál Digiální učení meriál Číslo projeku CZ..7/../.8 Náev projeku Zkvlinění výuk prosřednicvím ICT Číslo náev šlon klíčové kivi III/ Inovce kvlinění výuk prosřednicvím ICT Příjemce podpor Gmnáium, Jevíčko,

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí

Více

Matematika přehled vzorců

Matematika přehled vzorců Me přehle zoů. ýz: ýáí: ) (. Mo:... :. o: 4. Ká oe: D 4 D, 5. Kopleí číl: 4 4 5 4 6... Číl opleě žeá:, Zápoý epoe: lgeý opleího číl: Gooeý opleího číl: o 6. Log log log log log log log log log log log

Více

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI

SEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI SEMESTRÁ LNÍ PRÁ CE Lceč í tudum STTISTICKÉZPRCOVÁ NÍ DT PŘ I KONTROLE Ř ÍZENÍ JKOSTI Předmě t MTEMTICKÉPRINCIPY NLÝ ZY VÍCEROZMĚ RNÝ CH DT Ú ta epemetá lí bofamace, Hadec Ká loé Ig. Mata Růžčkoá PDF byl

Více

é ž ý á ž é é ž ř ý é ž Í ř ř ů ď ř é ď áš č ó Č ř á ý ž ý áš Č á ř ť é ý á á úř Š á ď á é ř ř á ýč é ř ý ů ýč é ú á ř á ý ř ý č č ý á č ř ý á ů š ř ů

é ž ý á ž é é ž ř ý é ž Í ř ř ů ď ř é ď áš č ó Č ř á ý ž ý áš Č á ř ť é ý á á úř Š á ď á é ř ř á ýč é ř ý ů ýč é ú á ř á ý ř ý č č ý á č ř ý á ů š ř ů Ý ÚŘ Í ž š á Í Č ž á č š á č é á á ď á č Í á á á á á á žá á é á á á é Í á é žá ž á á á áš á á á á á áš č á á á Í Í č Í é č á Í é š é ž é š é š Í é š é á á é é ž ý á ž é é ž ř ý é ž Í ř ř ů ď ř é ď áš č

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pedgogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM / CIFRIK Zdáí: Vyšetřete všem probrým prostředky polyom Vyprcováí: Rcoálí kořey Podle věty: Nechť p Q je koře polyomu q

Více

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia :

asi 1,5 hodiny seznámit studenty se základními zákonitostmi křivočarého pohybu bodu Dynamika I, 3. přednáška Obsah přednášky : Doba studia : Dmk I, 3. předášk Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku Cvičeí z ieárí agebry 4 Vít Vodrák Cvičeí č Determiat a vastosti determiatů Výpočet determiat djgovaá a iverzí matice Cramerovo pravido Determiat Defiice: Nechť je reáá čtvercová matice řád Čtvercovo matici,

Více

Křivočarý pohyb bodu.

Křivočarý pohyb bodu. Křočý pohb bodu. Obsh předášk : křočý pohb bodu, smě kemckých elč - chlos chleí, přoeý, késký, cldcký sfécký souřdý ssém, pohb bodu po kužc Dob sud : s 1,5 hod Cíl předášk : seám sude se ákldím ákoosm

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A

ČTVERCOVÉ MATICE. Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det(a) značíme determinant čtvercové matice A ČTVERCOVÉ MTICE Čtvercová matice je taková matice, kde počet řádků je roven počtu jejích sloupců. det() značíme determinant čtvercové matice Regulární matice hodnost je rovna jejímu řádu determinant je

Více

7.2.4 Násobení vektoru číslem

7.2.4 Násobení vektoru číslem 7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech .. Ronoměrně zrychlený pohyb grfech Předpokldy: 009 Př. : N obrázku jou nkreleny grfy dráhy, rychloi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. Ronoměrně zrychlený pohyb: Zrychlení je

Více

á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř

á ó ší ř ě á ě ě á í í í é ří ž Í á ě Í š í í í ó í ě é í í é ř Í é í ť í ří š ě á éž ž á ž á áá á í í č ě ř č é ď Ú á é ě ě É á š ě í Ž á í íč Í É ř ě í Íč í é íž ě Č é á ť ž ší ť ř č í á í ž ř ě é ř ž á í ů é ř ě á č é é ě ř Íž á š ěí Í ší Í š Ě ří é é ž í č ý ů á í ě é ř í č ě š Ž ží á í í é í ě š č í í í í á í é é á Í ó í ž ě á íš é é č éé ť á ó

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

ř č ě ř č ř š ř ě ř ů

ř č ě ř č ř š ř ě ř ů ÚŘ Ů É ř č ě ř č ř š ř ě ř ů Č ř š ř š ó ó č Č Č ě ů Ý ě ř ř šť ř ě ň ů ě č Č ř Š ó É Í Č ě ů Č Č ě ě č ř ů ř Š ř ě ň ú ě č č ř š č ě ž ř ř ř ě š ř č ř ř ů ř ř ž ž ň ř ř ř ě ů ř š č ř š ž ů š ň ň š ř š

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 : 9. břez 08 D : 897 P P P : 0 M. M. M. :, % S : 0 : 0 : -7,5 M. P : -, : 0, Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á

ď Í óč á ě ú óí í ť ú í ý ý Ě Í ý ě í ě í ě í ě Í Í Í ó í Í í í É ó í í á ě í í ě í ó ří č ý Ýú í í í Í ě ú Ě ě Í í Í á ý ý í É í í Í Í óí Ó ě á í Í á ď Í óč á ě ú óí ť ú ý ý Ě Í ý ě ě ě ě Í Í Í ó Í É ó á ě ě ó ř č ý Ýú Í ě ú Ě ě Í Í á ý ý É Í Í óí Ó ě á Í á é ě ó É Í á Ě ř é ů ř á ú č ř ě ý á ó ď ý Ú ř ř ú ř ó Ť ó ó Íě ě ú ý ě ý é Í ě Í ů ů é á ě á

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

1.6 Singulární kvadriky

1.6 Singulární kvadriky 22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

Kinematika hmotného bodu

Kinematika hmotného bodu DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ Kinemik hmoného bodu Obsh Klsická mechnik... Vzžný sysém... Polohoý ekor... Trjekorie... Prmerické ronice rjekorie... 3 Příkld 1... 3

Více

ů ž é ů ž ů é ů ůž ž é ů ř ý ž ě é ů é š ř ž ž Ů ů ř ě é ř ú ř ů ž ř ě ý ř ů š ů ž Š š ů ž ý ě ř ě ů é é Ů ž ě ř ř é ů ě ř ě ý ž ř ě ž é ů ů ž ř ž é ř

ů ž é ů ž ů é ů ůž ž é ů ř ý ž ě é ů é š ř ž ž Ů ů ř ě é ř ú ř ů ž ř ě ý ř ů š ů ž Š š ů ž ý ě ř ě ů é é Ů ž ě ř ř é ů ě ř ě ý ž ř ě ž é ů ů ž ř ž é ř ř ý ý ř é ř é ř é ř ě ě ž ž Á ě ě é ž é ů ž é é ř ž ě ý ý ž ž é ů ř ý ž ž ž é ž ř é ý é ř é ú ěř ý é ž ú ů é ů ř ž é ěř ž Č ů é ě ř ž ž ř é ů é ě ů š é ů ěř ř ž é ů ž é ů ž ů é ů ůž ž é ů ř ý ž ě é ů é

Více

ř č é é ř ě ý ů é ě Ě ř ů ý é ř č ř é é ř é ě ý ů é é ř ú úč č é ň ř ý ě é é ě ř řé ů ý č

ř č é é ř ě ý ů é ě Ě ř ů ý é ř č ř é é ř é ě ý ů é é ř ú úč č é ň ř ý ě é é ě ř řé ů ý č ř ř é ř ě ř ř é č ř č ř é é Úč ň é ý é ů šř ý Ú ě šř ě ů Ú ě ů ř ý ř é ř ě č ř ů ý č ř Ú Úč ů ů ď é šř ř š é ř é úč š ě é ě Š š é ř Ú Ž š ě Í ě ů š ě é ř é ř š é ř é ě é ů šř Ť ú ů Ú ě Ž č ř ú č ř ú č

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í

ý Í č ší í ě í ů ý í ě á íó í í á ě í ě í š í ť é ř š ě Í é é Í á í ří í íř í íž í í í í ů ží í ý í ů í ší ěá Í á é á í í ě ě í ó ý ý í í í ť í á ší í ý Í č š ě ů ý ě á ó á ě ě š ť é ř š ě Í é é Í á ř ř ž ů ž ý ů š ěá Í á é á ě ě ó ý ý ť á š ě ž é é č Á ž á Í ř Ě ó é ř á ú Í ě ý é ě š č ý Í ě ř ů ě ú ň Í ť é ě ě š Ě ó á ř č ě ó ů ř ř á Íř ží ř ě č ě

Více

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší

Více

š í Ťí á ť ý é ý í í ů ý ů Í ú č í ě Í á í é ří š í ě é č ě í á ý ť ž á ě í á Í ů čí é é á í ů ž é é ý ě ý í íž ý í é ě ů ě í ý í ý á í ů ý ů íší í ž

š í Ťí á ť ý é ý í í ů ý ů Í ú č í ě Í á í é ří š í ě é č ě í á ý ť ž á ě í á Í ů čí é é á í ů ž é é ý ě ý í íž ý í é ě ů ě í ý í ý á í ů ý ů íší í ž š Ť á ť ý é ý ů ý ů Í ú č ě Í á é ř š ě é č ě á ý ť ž á ě á Í ů č é é á ů ž é é ý ě ý ž ý é ě ů ě ý ý á ů ý ů š ž žř ě á ž č ě é é š Í ů ž ů ž ú Ž á é Ž á ě ď š á ů é é ů ý ě á é č á ě á é ů á é á ě ž

Více

á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í

á í í Č ť ó í íď ý í í íř ý ř ě Í č ť í á š á ý é ů á í ť č Í Í é ď ž é ž ť é éř ů í š ší ý í Í é á É í ě é ř í Í í é í ř ě á ó í í ě š ě ý á ř í á í á Č ť ó ď ý ř ý ř ě Í č ť á š á ý é ů á ť č Í Í é ď ž é ž ť é éř ů š š ý Í é á É ě é ř Í é ř ě á ó ě š ě ý á ř á ě é Í Ž ý ť ó ř ý Í ů ů ů š Í ý é ý ý ů é ů š é ů ó Žá Í á Íř ě šř ó ř ě é ě é Ě š č á č

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Základní elementární funkce.

Základní elementární funkce. 6. předášk Zákldí elemetárí fukce. Defiice: Elemetárími fukcemi zveme všech fukce, které jsou vtvoře koečým počtem zákldích opercí ze zákldích elemetárích fukcí. Zákldí operce s fukcemi jsou:. Sčítáí dvou

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

Rovnoměrně zrychlený pohyb v grafech

Rovnoměrně zrychlený pohyb v grafech ..9 Ronoměrně zrychlený pohyb grfech Předpokldy: 4 Př. : N obrázku jsou nkresleny grfy dráhy, rychlosi zrychlení ronoměrně zrychleného pohybu. Přiřď grfy eličinám. s,, ronoměrně zrychlený pohyb: zrychlení

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é

é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é Á ž č é ž ě Č é ě ě ó Í č ý č č ý ú č ý ž Í ý ú ž ý š ý ý é š ó ú ó ď ý ó ý ě é š ý ě é é č ý č č ý ú č ý ě é ó Č Č é č ý č č ý ú č ý é ě Č š č ě ě ž ó é ž ó č ě š ě é é š é ž ě č ý ý ě é ž ě Í ý ě ý č

Více

Č ů ť ú ů ť ť ú ů ů ť ť ň ů Ť ť ů ó Č ú ť ů ů ů ú ó ó ť ů ů ú ú ú Á ú ť ť ó ň ů ů ň ť Ů Ů ť ň ů ů

Č ů ť ú ů ť ť ú ů ů ť ť ň ů Ť ť ů ó Č ú ť ů ů ů ú ó ó ť ů ů ú ú ú Á ú ť ť ó ň ů ů ň ť Ů Ů ť ň ů ů ň ú ú ů ů ť ú ů ů ó ů ú ň ň ú ů ů ň ň ť ň ň ů ň Ů ň ú Ů Ů ů ó ť Á Ť Č ů ť ú ů ť ť ú ů ů ť ť ň ů Ť ť ů ó Č ú ť ů ů ů ú ó ó ť ů ů ú ú ú Á ú ť ť ó ň ů ů ň ť Ů Ů ť ň ů ů Ř ů ó ť ť ů ó ů ú ÚČ ú ů ů ť ť ú ů

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchtektur počítčů Číselé soustvy Převody me soustvm, kódy Artmetcké operce České vysoké učeí techcké Fkult elektrotechcká Ver J Zděek 3 Polydcké číselé soustvy (počí) Hodot čísl v soustvě se ákldem

Více

ý č Í É Ě Í š Č č ý Ú ť š č ú š ý š ď č č ý Š Š č č Á ý ť ť Í ý ť č Ť É Ě Í š Č Č Ý ť Í ý ý č Ý É Ě Í č š ý ň č ý Í ď Í ú Ě Í č É Ě Í š č č Í ý ý úč č É Ě Í ý č ň š č ý ď ť ť ž ý č č É š Ě Í č š Ě š čď

Více

ř ě ř ř ě ř ř ř ř ž ř ř ď ě ů ř ú ů ě ř ů č ě ú ž ř ř ř ě ř ú č ň ř ř ř č ú ě ů ř ř ř ř ř ř š ě ř ř ř š ě ů č ě ř ř ě ř ů ů č č ě ěž č ř ů š ě ž ě č ě

ř ě ř ř ě ř ř ř ř ž ř ř ď ě ů ř ú ů ě ř ů č ě ú ž ř ř ř ě ř ú č ň ř ř ř č ú ě ů ř ř ř ř ř ř š ě ř ř ř š ě ů č ě ř ř ě ř ů ů č č ě ěž č ř ů š ě ž ě č ě ř ě ř Ž Č Á ř ř ř ď ďě č ř ř ě Ť ďě č ř ř č ú ř ř ě ďě č č ř ř ú ů ů ů ř ř ř úř ř ěř Ť ř š ěř ř ď ř ř úř ř ř ř Š úč ř ě ř ř ě ř ř ř ř ž ř ř ď ě ů ř ú ů ě ř ů č ě ú ž ř ř ř ě ř ú č ň ř ř ř č ú ě ů ř ř ř

Více

4. Analytická geometrie v prostoru

4. Analytická geometrie v prostoru . alcá geomee v oso V aalcé geome so geomecé obe chaaeová omocí číselých údaů. Vlasos geomecých obeů so sdová v edom e í osoů: ooměý eledovsý oso, o. E (oso), dvooměý eledovsý oso, o. E (ova), edooměý

Více

ů ů ď

ů ů ď ň ň ň ú ť É Ň ž ů ů ď ď ň ň ť ň ž Ě Í ň Ú ď ž ň ž ě ě Ú ž ž ž ď ž ž Ž ď ď ň ž É Ě ž ž Ž Š ď ď ž ě ž Ě ž ď ž ň ě ě ž Š ž ž ň Ě ž ž Ú Ú Š Ě ž ž ě Ž ě ě Í ě Ú ž ň ž ž Ť Ť ž ě ž Ž ě ě ď ž ě ě ě ď ž ž ž ž ě

Více

ó ř é ó é Ě ť é

ó ř é ó é Ě ť é ý é ř ó Č é Ř é é ÍŽ é ý ř é é é ř ó ř é ó é Ě ť é é ů ť ř š š š é š ř ť š ý š é š ř ů ú ř ý š é š é é š é š ž ú š é š é ř é ř ý Ů š é š ř š š é š ú š ý ř é š é š š é é ď š é ů ž é é ď é š ř é ř ž é é

Více

íž ě íž á ť ř ť í ž ě ě á í ň á í á í ů ů íž ď ř ť šíř é ě ě ě ř í ší íř ý ý ů éříš éš ěž ě á í á í ř é šíř ý ěží č ě š é í í ř í á í á í ž ž é ř é í

íž ě íž á ť ř ť í ž ě ě á í ň á í á í ů ů íž ď ř ť šíř é ě ě ě ř í ší íř ý ý ů éříš éš ěž ě á í á í ř é šíř ý ěží č ě š é í í ř í á í á í ž ž é ř é í Í Ý ČÁ Ú ý ší é č ý ůž í š é á é í ř š ř ů ě í í áří ě ž í á é á ě é í ž ě á á ď ří ě č é í í í í ž ě ý á ý ů č í ý ř ě ž í í í í š í í č í ěž ž ž ř é í á ř í í ě í ž í č ě ží ř ž é ř ě š ě ž á í žší é

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13). 37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým

Více

í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý

í á á ě č é úč í á á ě č é úč ý á č á íí Ž á Ž á í í í ú á č é ř í ě ě í č ý ří ů ů ů ý ří ů ý ů ě í í ě íč í č í ř ů á í í í úč ů á í ří ů ý ů ří ů ý ě ú ě ú Ž Ž ú ř ě ě ř ů ů ů ř ů ů ě ě ř ů ú ů ř ů ů ř ů ů ř ě ú ř ě ě úř ř ě ÚČ Č ě ě ř Ž Č ě ú ř ř ě Ř ř Ň É ŘÍ ň ř ň ů ř ú ř ě ř ú ů ř Ů ř ř ě Ý ř Ě É ě ř š ě ú š ě ě š ě ú ů š ě ů ň ř Ý ř ř ě Á Í ě

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

á á á š á á á š é č éš á Š šš ý č ě á š á Š šš ý č žá ů š ž á Š šš ý č žá š é Ť š ý č ý Š ě ě Ť ý ě š ě á á á é ě ě š é ě Š ě á á ě č ě ý ěž éš á á ě

á á á š á á á š é č éš á Š šš ý č ě á š á Š šš ý č žá ů š ž á Š šš ý č žá š é Ť š ý č ý Š ě ě Ť ý ě š ě á á á é ě ě š é ě Š ě á á ě č ě ý ěž éš á á ě áš ý á š ň ý á á á é á č š š é Í á é á á Ť č č č č á š á š Í ě á Ť ó ě á á š Í č č á Ž ě č č ě č č č č ě ě é Č áš ě ů š á ň š á ě á á č é á č ý ů Š Š š ě č ě Š žá Š á á á š á á á š é č éš á Š šš ý č ě

Více

í č ž ě ý č ě ží ě ý ý í ě ž í í í í ě ě ž ý í í í ř í í č é é ý ě ž ý ů í é é ří í č ě Ž ě í ě í í í Ž í é ě ř Ž í ů é ří í í ů ě é ů ě é í č í ů é í

í č ž ě ý č ě ží ě ý ý í ě ž í í í í ě ě ž ý í í í ř í í č é é ý ě ž ý ů í é é ří í č ě Ž ě í ě í í í Ž í é ě ř Ž í ů é ří í í ů ě é ů ě é í č í ů é í í č í ží í ů Ú í é ž í í ř Č č í ý ý í ř ý í í ý ž é č í ěž é é é é íř ě í ů í í č ř Ž ě é ž ě é í ě ž ý Ž ě ř í ž í ě ý Ž ý ý ě ó í ř ě ž í ě é ý ý ý í ů ý ž ý í ů í ů ý č ý í ě ý č é ě ý ý í ž ý í í

Více

é ř ř ý ž ý ž ž é Ť ř ř ý ř ř é ř é ř ř ý ý ř é é š ý ž ž é ž ň ý ň é š éž š Ř ř ň é ý é ň é ýš ý ý ň ý ň ž Č ř ř é ň é ň š é ž ň é ř ď é š ř ů ň ý Ť

é ř ř ý ž ý ž ž é Ť ř ř ý ř ř é ř é ř ř ý ý ř é é š ý ž ž é ž ň ý ň é š éž š Ř ř ň é ý é ň é ýš ý ý ň ý ň ž Č ř ř é ň é ň š é ž ň é ř ď é š ř ů ň ý Ť é Č Á ň ž Č é ďé ř ř ř ř ř ř Č Č ú Č é ý ý ř é é ž ž é é Č Č ř ú éž Á Á é ý é ž é ž ú ý ů é é š ů ý ž ž ú ž ž ý ř ý ů é ř ř ý ž ý ž ž é Ť ř ř ý ř ř é ř é ř ř ý ý ř é é š ý ž ž é ž ň ý ň é š éž š Ř ř ň

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

É č Ř ů ý ť Ň ť É ť ď ňó ř ř ó ř ř ý ó ř č ó řý ď č ů č ý ř ř ř ň ř č ř ř ř č ť ř ř ď č ř ř ř É Ý ó Ě č Ý ů ý č ó Ř ď š ý ý ý ř ý č Ň č ý ý Ú ť ř ý ů

É č Ř ů ý ť Ň ť É ť ď ňó ř ř ó ř ř ý ó ř č ó řý ď č ů č ý ř ř ř ň ř č ř ř ř č ť ř ř ď č ř ř ř É Ý ó Ě č Ý ů ý č ó Ř ď š ý ý ý ř ý č Ň č ý ý Ú ť ř ý ů č ó Ě č Ý č ý Ú č č ů č š ó ó š ť Ř ň ť Í ř č č ř ů č ý ť č Ť Í č ť č ů č č ů ó Ťř ý ř ť ř ý ý ř ň ř Ž Í ďš č ů ý Ý ř ť É řě ó ň Ě ň ň č Ě č ý ů š č č č ý ň č É č Ř ů ý ť Ň ť É ť ď ňó ř ř ó ř ř ý ó ř č

Více

ý é ě é é ž í ř ř í Ž á ř í ž í á ů íč é á ř á í é á ů á Í ří č ýý ř ů ů é ří í ťř č č í á í á ří š í í ř í í é í á í ř ší ý ý ě í ůč ě Í í ě á á š ří

ý é ě é é ž í ř ř í Ž á ř í ž í á ů íč é á ř á í é á ů á Í ří č ýý ř ů ů é ří í ťř č č í á í á ří š í í ř í í é í á í ř ší ý ý ě í ůč ě Í í ě á á š ří ďí í ž Íá ý é ří ýč í é í ě í č ý í ý á í ý ř ý á í Ž ž é á é ř ě ě íč ář š č é ý á é í ř ř Í ď ý í ří é š ú í ř é ů čí ů í í č é ěší á ží ý á í é Č é ý é Č á á áč ář á í ž ý č ý í í á á ží á é ří ž š

Více

12. MOCNINY A ODMOCNINY

12. MOCNINY A ODMOCNINY . MOCIY A ODMOCIY.. Vypoči: ( 0 8 8 6 6 0 ( 8 9 7 7 d 8 6 0 ( 0 ( 6 00 ŘEŠEÍ: ( 0 8 ( 0 8+ 6 8 7 6 6 8 ( ( 8 8 6 6 8 96 08 0 8 8 8+ 96+ 08088 6 ( 6 ( ( 6 6 0 ( 0 ( ( ( 6 00 8+ 8+ 87 6 8+ 6+ 6 0 6 ( ( 9

Více

é á á á Ž é í ě ý éší ý č éč é é é ř ř ů á ž ů ř ó ř á á í č é ě á ží ů č á š ě ří ě ě ý ř á á ý á á é š ř ř ěž í ý ř ů ří š ř í é ě ř é č č á í á á ě

é á á á Ž é í ě ý éší ý č éč é é é ř ř ů á ž ů ř ó ř á á í č é ě á ží ů č á š ě ří ě ě ý ř á á ý á á é š ř ř ěž í ý ř ů ří š ř í é ě ř é č č á í á á ě č ó ř ó ý ů ó ží í í ú í é í ý í é ř é č é í á á í š ří í ě í á í ě říč ý á ř ě š č í í ů í ů í č í ů á š Ž á í š ě á í ý í í í í Ž č é ě ě ý á á č ší Ž ť á í ý ů í í á ř ů éý ř č ř ší č ó ěší é í í ě

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž

é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž Ě Ě ů ř Ž ř Ů Ú Ě ú Ž ř ř Ž ř é úč ř ú Í ř Ž Í ř ů š ř é ů ů é é Í é ý ř ř ř ý ř ý ř Ž š č É é š ř ý ž ý ý ř ř é ů Í ý ř éč ý ř éč ř ř ý ř ů ý ř ů ý ů ý ň Ž ř ř ý ý ž é ř ů ů é ř ž ů ž ý ž č ý é Ž ů Í

Více

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019 NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 09 T á D P č P č ů ú P ů ě S á :. úor 09 : 004 : 0 M. M. M. á : 9, % ě č M.. P ů ě ž ó : 0 ž ž ó : 0 ó : -7,5 ž ó : -,8 ó : 4,4 Zopkujte si zákldí iformce ke zkoušce: Test

Více

Geometrické modelování. Diferenciáln

Geometrické modelování. Diferenciáln Geomerické modelováí Difereciál lí geomerie křivekk Křivky v očía ačové grafice Geomerická ierreace Každý krok algorimu má svůj geomerický výzam Flexibilia korola ad růběhem křivky, možos iuiiví ediace

Více

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě

ý í á á š ě é í š íž á á ě š š ě ě á ě é ř é ž čá é ž ř í ř í í á č í š á í š ř í é ě š ž í ý é ě í í í á ř é ě ě ší ž ů ý á ě š é číš ě á ú ě í á í ě Í Á Í Ý Á Ú Ř Č Í Í č ř á ý š á ý í í č í í ě í ž ě í č í á í í í í č í í á í ěž ě á í č í ěř í é ýš ý á á ě í í š ů í á í ů č í ž í ž í áš ě ě á é ě á í é š í é ř é á é á í á ě ž áž í ý č á í ž ý ě ší

Více

III.4. Fubiniova (Fubiniho) věta pro trojný integrál

III.4. Fubiniova (Fubiniho) věta pro trojný integrál E. Brožíková, M. Kittlerová, F. Mrá: Sbírk příkldů Mtemtik II ( III.. Fubiniov (Fubiniho vět pro trojný integrál Vpočítejte trojné integrál n dných množinách E : Příkld. I Řešení : I ( + d d d; {[,, E

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje

Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Projekt realoaý a SPŠ Noé Město ad Metují s fačí podporou Operačím programu Vdělááí pro kokureceschopost Králoéhradeckého kraje Modul - Techcké předměty Ig. Ja Jemelík - fukčí soustay součástí, které slouží

Více

č í ůťí í ů é ří í í č í Ů Ě Í ý ř Ž č ž í ů č í ý ě ě ě é ů š ě í í ý í ě é ž ý Ť í Ťí í í ý Ú í č í í Č ů ě Í Ú šíř č í č ě í é č í é ý ě ý ň ě ý ě

č í ůťí í ů é ří í í č í Ů Ě Í ý ř Ž č ž í ů č í ý ě ě ě é ů š ě í í ý í ě é ž ý Ť í Ťí í í ý Ú í č í í Č ů ě Í Ú šíř č í č ě í é č í é ý ě ý ň ě ý ě í ý ř ý ý ř ř č ý č š š č ř š Ú é ř Í í ý ř ý ý ř ř č ý č č ří š ý í Ť č í é ř ě ě ě ý í í ů č ý ý ř ě ě ž č ě ý ů ů ě é ě ě é ě ě ší ř ů č í ř ě ě ší ř ů í ř ž í ý í č í í č ě Č ý é ý Č ň č ň ý ý ř ě

Více

í ů í ě ží í ů ý í ý íž úč ě žíí í ř ř í ě ý ř é ý ří č č č č ě ř č ž č ě é ř ů í í č ó ú í ř ž ě ÚČ Á úč ží í í ý í ř í ů ě í í ě í í í ů ů ý úč í ř

í ů í ě ží í ů ý í ý íž úč ě žíí í ř ř í ě ý ř é ý ří č č č č ě ř č ž č ě é ř ů í í č ó ú í ř ž ě ÚČ Á úč ží í í ý í ř í ů ě í í ě í í í ů ů ý úč í ř Č ř í úř ř í úř ří ý č í í úř ě í í í ř ě ří ý úč ý í č íúř í Č í í ě í ě í ř ů í í ří í Ž í ř Ž ř ř Ž ř ě č í í í č ě í ě ú í ř ž úč í ř ě ří č í ř ě í ě í ř ů í řď í ž í č ú ř ž ží ř ě ří úč ě ž úč í

Více

č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ Ř Ř Ř š ě č č Ř š ě š

č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ Ř Ř Ř š ě č č Ř š ě š Ý Í Í Í Í č č ě Í č č č č č č č Š ě ě Š ě č č účí Í č č ě ě ě č ě Ř č úč ě č Ř Ě ů č ě ě ě ě č š ě Ž č úč úč ě č ú Š č ě š č Ž č Š ě š č ů úč Í Š ě ě Í Ú č č ě ú č č ě Á Ř Ř Ž Ý Ř Ř Í Ú Ž Ý č Ř Í Ř É ÍÚ

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Metoda datových obalů DEA

Metoda datových obalů DEA Metoda datoých obalů DEA Model datoých obalů složí ro hodoceí techické efektiit rodkčích jedotek ssté a základě elosti stů a ýstů. Protože stů a ýstů ůže být íce drhů, řadí se DEA ezi etod icekriteriálího

Více

Í é ř ě ž ě ř ě Ě ó ó ť ť é ě ř ř ž é ř ď Í ží é é Í Í ó ž ě šť š ě ěí é ř ž é Í é Í ě ě ř č é ď ř ž Í é é š ě ž ř Í č é é Á ě é ě ý ď Í š Í ř ěž ť é

Í é ř ě ž ě ř ě Ě ó ó ť ť é ě ř ř ž é ř ď Í ží é é Í Í ó ž ě šť š ě ěí é ř ž é Í é Í ě ě ř č é ď ř ž Í é é š ě ž ř Í č é é Á ě é ě ý ď Í š Í ř ěž ť é ý é é š é ý ě ř ě ě š é Í ó é ě é ě é ý ťé Ě ší Í ý ř č ě ě ž ř Í é Í ý Í ž č ý ě ý ě é Í ěť ě š ě ů é ě ó ř ť ž é ť ť ť ž ě ě ěů ř š ě ě ž Í š ů ž ě ě é ě ť É ž ž ý ř é ť ď ž Í Í é é ůž ý ý ě ř Í ří ý

Více

Č š ú í š í š í í č ň é é š š ž í ř Í ů é š ň ř ř ř ř ú í í í í í í ří í č é ú í ří í í í ž í í č í ů í é í í é ří é í ř í í í úř í í Í úř í í í í í ú

Č š ú í š í š í í č ň é é š š ž í ř Í ů é š ň ř ř ř ř ú í í í í í í ří í č é ú í ří í í í ž í í č í ů í é í í é ří é í ř í í í úř í í Í úř í í í í í ú Ě ÚŘ Ě ří í ó Č ř ří í ó ů í Í č úř í úř ří š í č ú í í í ř í í ší ř ů í č é ú í í Í Í ž ž í ž í í í í í ří í é í ř í í š č ší ú ú í Íí í ř í ú í ř í í í í í š č í í í í ř í í ří í ú č ří í í ú í í š čí

Více

Obvykle se používá stejná transformační matice pro napětí a proud.

Obvykle se používá stejná transformační matice pro napětí a proud. Trnsformce do složkových sousv náhrd fázorů fyzikálních veličin složkmi V rojfázové sousvě plí I I I c Ic b bc b bc V rnsformovné sousvě plí o I o I I n In m omn m omn Definičně určíme pro npěí 1 bc u

Více

1.1.11 Rovnoměrný pohyb VI

1.1.11 Rovnoměrný pohyb VI 1.1.11 onoměrný pohyb VI ředpokldy: 11 edgogická poznámk: Náledující příkld je dokončení z minulé hodiny. Sudeni by měli mí grf polohy nkrelený z minulé hodiny nebo z domo. ř. 1: er yjede edm hodin ráno

Více

é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý ěř ě ú ř é ú č č Ž ě ř ě ř č ř ř ď čč ř ě č ýš é ř ěž č ř é ě š Ú ř š ě

é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý ěř ě ú ř é ú č č Ž ě ř ě ř č ř ř ď čč ř ě č ýš é ř ěž č ř é ě š Ú ř š ě č ř é řš ř řš č ř ě Š é č ěř é ý š ř ř ý ěř é š ř č ěř é é č ý ěř č ý ěř Í ě ř řš ř č ř č é ě ě č ř ý é é é č řš é é ě ě Ž é é ý ě č š é ď ě ď é ř ř é ť č řš řš ě č ě ý ěř č ý ěř ě ú ř ě č ě č ď ěř č ý

Více

Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd.

Posloupnost v matematice je řada čísel. Je přesně určeno pořadí čísel, je tedy dáno, které číslo je první, druhé atd. Poloupoti Poloupot v mtemtice je ř číel. Je přeě určeo poří číel, je tey áo, které čílo je prví, ruhé t. V řě číel může le emuí být ějký ytém. Poloupot můžeme určit ěkolik růzými způoby:. Výčet prvků:

Více

í á Č é ě á í Ž ý ů ě ú á č ž Č ží á ý á ě ý ý ý á ů ý ě á š š ď í ě í ž í í ří šč ě ý ý š é í é í ý ý ř ů ý ý áží ů í ý ě ší íš ž Č ý í á ý í ř í ě é

í á Č é ě á í Ž ý ů ě ú á č ž Č ží á ý á ě ý ý ý á ů ý ě á š š ď í ě í ž í í ří šč ě ý ý š é í é í ý ý ř ů ý ý áží ů í ý ě ší íš ž Č ý í á ý í ř í ě é í á Č ý á á á č í ů ř íč ří á á ý ó š á á ž á í á ý ó ší č í é í í é ě í á ř á á á ě ó í ě ě ž ů ý ž ů ř í ů ř ž é í ř í ž č ě ó ř ž ř ě ší í í ý í ě ý á í í ř í í í š é á í á ří í š í ř ž ř í ů ě í í

Více