Vliv lidské činnosti na vodní prostředí II.
|
|
- Luboš Fišer
- před 2 lety
- Počet zobrazení:
Transkript
1 Vliv lidské činnosti na vodní prostředí II.
2 Znečišťování vod Znečištění Jako znečištění lze z praktického hlediska chápat každou změnu přirozených fyzikálních a chemických vlastností vody, která snižuje jejich kvalitu se zřetelem k použitelnosti. globální znečištění acidifikace vodních ekosystémů eutrofizace vodních ekosystémů globální oteplování UV záření globální znečišťující látky a radionuklidy lokální bodové a liniové znečištění tepelné znečištění
3 Polutanty radionuklidy pesticidy organické toxické odpady (např. formaldehyd, fenoly) živiny (zejména fosfáty a dusičnany) oleje a olejové disperzanty patogeny PCB, PAU těžké kovy (např. Cd, Zn, Pb, Hg) oteplené vody plyny (např. chlor, amoniak) potravinářské odpadní vody splašky a zemědělská hnojiva detergenty anionty (např. sulfidy, sulfáty, kyanidy) kyseliny a zásady
4 Suspendované látky - stavebnictví, sklárny, metalurgický průmysl 1. Zvýšení turbidity, snížení fotosyntézy, ovlivnění reaerace toku 2. Vypadávání z roztoku, změna charakteru dna 3. Poškození žaber ryb, zanášení povrchu těla a dýchacích orgánů bezobratlých Vliv Vlivy suspendovaných látek na rybářství Suspendované látky (mg.l -1 ) > velmi chudé nebo neexistující rybářství nepravděpodobné dobré rybářství možná redukce výtěžku < 25 - žádný škodlivý vliv
5 Organické znečištění nejstarší a dosud nejrozšířenější typ znečištění lehce odbouratelné látky (nikoliv perzistentní organické polutanty) zdroje - komunální splaškové vody, zemědělství, potravinářský průmysl (např. cukrovary) papírenský a textilní průmysl Rozklad organických látek spotřeba kyslíku, až anaerobní stavy saprobní (hnilobné procesy) Saprobita katarobita (podzemní vody, prameny) limnosaprobita (v povrchových vodách) xenosaprobita - velmi čistá voda oligosaprobita betamezosaprobita alfamezosaprobita polysaprobita voda - velmi silně znečištěná eusaprobita (odpadní vody) Indikace: BSK 5 biologická spotřeba kyslíku Bioindikace saprobiologické hodnocení, saprobní indexy Procesy samoznečištění a samočištění ve vodách
6 Eutrofizace Zvyšování úživnosti ekosystémů
7 INDUKOVANÁ (ANTROPOGENNÍ) EUTROFIZACE Eutrofizace je definována jako proces zvyšování produkce organické hmoty ve vodě, ke které dochází především na základě zvýšeného přísunu živin (OECD 1982) S postupným nárůstem frekvence lokalit se zjevnou nadprodukcí (tzv. hypertrofie) přechází definice v devadesátých letech do podoby eutrofizace - narušení ekologických procesů následkem přebytku živin v prostředí
8 Trofie (úživnost) vody Procesy ve vodách související s biodostupností forem dusíku a fosforu trofizace (eu-, hyper-) Projevy: vegetační zákal drobné planktonní řasy (zdroj potravy!) vodní květ větší koloniální nebo vláknité sinice (nebo i řasy), toxiny bentické sinice a rozsivky na povrchu sedimentů, posléze natantní (hladinové koberce ovlivňují výměnu plynů) zelené vláknité řasy (ne toxiny, ale alelopatické látky) vyšší vodní vegetace Omezování: zabránit přísunu živin zpomalit koloběh živin odstranění živin, odstranění biomasy Indikace podle koncentrace N a P ve vodě podle růstové odezvy in vitro podle in situ realizované zvýšené koncentrace biomasy fototrofů hodnocení podle změn v druhovém složení fytoplankton, fytobentos, makrofyta
9 Zdroje živin Autochtonní rozklad organické hmoty vyluhování sedimentů a hornin biogenní fixace dusíku bakterie a cyanobakterie Alochtonní eroze půdy povrchový odtok znečištění atmosféry NOx odpadní vody odtoky z ČOV bez terciálního čištění
10 Příčiny indukované eutrofizace splachy anorganických hnojiv (nitráty a fosfáty) přírodní výluhy (nitráty a fosfáty) přísun nitrátů, fosfátů a amoniaku z odpadů živočišné produkce (močůvka, kejda, chlévská mrva) srážky splachy a eroze v důsledku zemědělské výroby, těžby a stavebnictví přísun detergentů (fosfáty) přísun čištěných odpadních vod (nitráty a fosfáty) přísun nečištěných odpadních vod (nitráty a fosfáty)
11 Živiny způsobující eutrofizaci Nutno hledat regresní vztah mezi koncentrací jednotlivých živin a koncentrací chlorofylu a jakožto nejsnadněji měřitelným parametrem charakterizujícím rozvoj řas. Dillon & Rigler (1974) lineární regresní vztah mezi logaritmem koncentrace fosforu během jarní cirkulace a logaritmem průměrné letní (ve vegetačním období) koncentrace chlorofylu a Straškraba (1980) u koncentrací fosforu vyšších než 100 μg/l je vhodnější použít místo mocninového logistický vztah, neboť biomasa řas, vyjádřená v chlorofylu a, nemůže být větší než určitá kritická hodnota, nad níž je další rozvoj řas omezen samozastíněním a nikoliv koncentrací živin
12 Předpoklad, že fosfor vystupuje z makrobiogenních prvků nejčastěji jako limitující prvek, byl potvrzen celou řadou studií a experimentů, u nás např. Komárková (1974) v Klíčavské a Slapské údolní nádrži zjistila zvýšený rozvoj planktonních řas pouze po přidání sloučenin fosforu Poměr N:P (dusík:fosfor) indikuje, který nutrient je pravděpodobně limitujícím pro růst řas v jezerech N:P < 16:1 = limitace dusíkem (řasy mají méně dusíku) N:P > 16:1 = limitace fosforem (řasy mají méně fosforu) Největším zdrojem celkového dusíku v povodích byl odtok z hnojené zemědělské půdy (50-67 %); komunální odpadní vody se podílely méně (12-30 %) Největším zdrojem celkového fosforu v povodích byly komunální odpadní vody (75-90 %); zbývající část pocházela z eroze zemědělské půdy (5-14 %), z přirozeného odnosu v povodí (4-9 %) a z atmosférické depozice na hladinu toků a nádrží (1-2 %).
13 FOSFOR VE VODÁCH 1. Rozpuštěný anorganicky vázaný fosfor ve formě jednoduchých nebo komplexních orthofosforečnanů nebo polyfosforečnanů 2. Rozpuštěný organicky vázaný fosfor ve formě fosfátů hexos, fosfolipidů, ATP, ADP, nukleových kyslin apod.
14 Složení fytoplanktonu a jeho změny se změnou trofie: Se zvyšující se trofií dochází obecně ke zvyšování biomasy řas, mění se druhové složení fytoplanktonu, často s převahou monospeciové populace planktonních sinic Oligotrofní jezera Staurastrum, Cosmarium, Staurodesmus, Tabellaria, Cyclotella, Melosira, Dinobryon Mesotrofní jezera Staurastrum, Closterium, Cyclotella, Stephanodiscus, Asterionella, Pediastrum, Eudorina, Peridinium, Ceratium Eutrofní jezera Melosira, Asterionella, Stephanodiscus, Scenedesmus, Eudorina, Aphanizomenon,Microcystis, Anabaena
15 TOXINY SINIC (CYANOTOXINY) 1. cytotoxiny cytotoxické a cytostatické účinky 2. biotoxiny neurotoxiny, hepatotoxiny Neurotoxiny (anatoxin, aphanotoxin) - termolabilní, blokují sodíkový kanál membrán křeče pohybového svalstva, dávení, dušení Hepatotoxiny (microcystin) - termostabilní, poškození struktury a funkce jater Cyanotoxiny přítomné ve vodách: - poruchy zažívacího traktu - alergické reakce (záněty spojivek, svědí pokožka..) -onemocnění jater!!! CHRONICKÁ ONEMOCNĚNÍ!!!
16 Boj proti eutrofizaci Omezení (redukce) externího přísunu živin modifikace technologických výrobních postupů (detergenty) odstraňování N a P z odpadních vod úpravy v povodí (aplikace protierozních opatření) Kontrola interních procesů ( Ekotechnologie ) aerace hypolimnia - destratifikace srážení fosforu a ošetření sedimentů odstraňování sedimentu vybagrováním odstraňování makrovegetace a sinic využití býložravých a algivorních ryb použití algicidů, flokulantů a koagulantů použití cyanofágů biomanipulace! KOMBINACE OBOU STRATEGIÍ JE NEJVHODNĚJŠÍ!
17 Acidifikace Okyselování vod problém především 2. poloviny 20. století přetrvává dodnes příčina: kyselé deště (oxid siřčitý a NO x ze spalování fosilních paliv do ovzduší dešťová voda má ph 4-4,5 namísto 5-6. nejdříve úbytek hydrouhličitanů, ztráta pufrační kapacity vody, pak nárůst koncentrace hliníku toxický vliv na hydrobionty. dojem čisté vody, nízká druhová bohatost. problém se zesiluje v oblastech s kyselým podložím (např. žula) Indikace ph alkalinita bioindikace (citlivé druhy mizí)
18 Acidifikace vodních ekosystémů Identifikace zdrojů
19 Koncentrace S ve vzduchu a kyselost srážek Většina kyselých srážek dopadá na zemský povrch v oblasti produkce, ale určitá část může být transportována větrem tisíce kilometrů ~ 17 % kyselých depozic v Norsku pochází z Anglie a 20 % depozic spadlých ve Švédsku z východní Evropy. Ve srovnání s neznečištěnými srážkami (ph 5,6), mají mnohá průmyslová území srážky s hodnotou ph 4,0 4,54, lokálně toto ph může klesnout až na 3,0.
20 Vliv geologických podmínek Kyselé horniny žuly (granity, granodiority), některé metamorfity
21 Acidifikace a chemie vody vysrážení Ca a Mg sírany nedostupné pro organismy porušený hydrogen-karbonátový ústojný systém speciace a změna rozpustnosti kovů a solí kovů, biodostupnost toxických kovů Al, Cu, Zn aj.
22 Acidifikace a organismy Acidosenzitivní organismy vápenité vnější schránky a kostry, vnější žábra, nechráněná vývojová stádia, zpravidla permanentní organismy Acidotolerantní organismy dýchání celým povrchem těla, plastronové dýchání a nebo vzdušný kyslík, temporární organismy Domluvená hranice acidifikace povrchových vod ph 5,5, silná acidifikace pod ph 4,5
23 Fytoplankton Zpravidla dominují obrněnky (Dinoflagellata) Ovlivnění bottom-up (vysrážení fosforu hliníkem) Fytobentos Zpravidla dominují rozsivky a zelené vláknité řasy Ovlivnění top-down (absence bezobratlých spásačů) Zoobentos Nejvíce senzitivní jsou zpravidla jepice Nejodolnější jsou zpravidla chrostíci Napříč různými taxonomickými skupinami jsou nejodolnější obvykle kouskovači (shredders) Vliv sníženého ph (H+) Vliv top-down kontroly (absence rybích predátorů) Absence CaCO 3 nutného pro tvorbu krunýřů (raci, blešivci, plži)
24 Vliv na ryby Rozsah ph 6,5 9 - žádný vliv 6,0 6,4 - pravděpodobně žádný škodlivý vliv s výjimkou velmi vysokých koncentrací CO 2 (>1000 mg/l) 5,0 5,9 - žádný specifický škodlivý vliv s výjimkou vysokých koncentrací CO 2 (> 20 mg/l) nebo pokud jsou přítomné železité ionty 4,5 4,9 - škodlivý vliv na jikrách salmonidů a dospělců ryb, pokud jsou koncentrace Ca 2+, Na + a Cl - nízké 4,0 4,4 - škodlivý vliv pro dospělce různých druhů ryb, které nebyly aklimatizovány na nízké ph 3,5 3,9 - letální pro salmonidy, aklimatizované plotice mohou přežívat delší období 3,0 3,4 - většina ryb je usmrcena během několika hodin
25 Kyselé důlní vody Vlivy kyselost toxicita kovů salinizace sedimentace vysráženého železa
26 Těžké kovy cca 40 prvků, specifická hmotnost vyšší než 5 g/m 3 - Hg, Cr, Pb, Ni, Zn, Cu stopové prvky nezbytné pro organismy součást přirozeného pozadí (liší se podle místních podmínek). vyšší koncentrace toxické působení zdroje - těžba a zpracování rud a uhlí, spalování fosilních paliv, průmysl, pesticidy
27 Těžké kovy Specifická hmotnost > 5 g. m -3 Antropogenní činnost metalurgie, spalování uhlí, doprava, zemědělství Forma výskytu - rozpustné vs nerozpustné sloučeniny - oxidační stupeň - organická vs anorganická forma Kumulace Vazba na povrchu drobných částic sedimenty Uvolňování rozpuštěná forma Schopnost většiny kovů akumulovat se do sedimentů
28 Toxické kovy Hg bioakumulace v tukových tkáních, oragnosloučeniny metylrtuť a etylrtuť, akutní a chronická toxicita Cd bioakumulace v tukových tkáních, chronická toxicita Pb dtto, metylolovo, etylolovo, chronická toxicita As, Co, V, Ni, Cr, Zn biokoncentrace, přímá akutní toxicita
29 Mimořádně toxické kovy - blokují činnost enzymů obsahujících SH skupiny - Hg, Pb, Cd, As, Se, Cu, V Chronickýcká onemocnění - nádorová (As, Cr, Cd, Ni) -teratogenní (Hg, Pb) Ve směsi se toxické účinky jednotlivých kovů mohou vzájemně zesilovat (synergismus Cd + Zn, Ni + Zn, Hg + Cu), nebo zeslabovat (Se + Cd, Se + Hg).
30 Kadmium (Cd) Patří mezi kovy s největším potenciálem znečištění; kumuluje se především ve vodních sedimentech a suspendovaných částečkách. Během letních měsíců obsahuje povrchová voda relativně vysoké koncentrace kadmia, především rozpustného iontu CdCl + ; naopak anaerobní vrstva u dna je chudá na kadmium, protože, sulfid vzniklý mikrobiální redukcí sráží kadmium na nerozpustný sulfid kademnatý. Podzimní míchání vody způsobuje desorpci kadmia rozpuštěné kadmium poté reaguje se suspendovaným materiálem a sedimentuje Pokud je ph > 8, je Cd přítomno ve volné iontové formě Cd 2+
31 Hodnoty kadmia se nezvyšují se vzrůstajícím stupněm potravního řetězce v ekosystému povrchových vod Jako bioindikátoru zatížení vod kadmiem je vhodné používat organismy zooplanktonu a bentosu spíše než ryby. Beruška snadno akumuluje Cd z vody Příjem Cd potravou (i v případě jeho vysoké koncentrace) se jeví jako méně účinný Vysoce účinná biokoncentrace Cd z vody indikuje, že predace na beruškách může představovat významný mechanismus pro vstup Cd do akvatických potravních řetězců
32 Arzén (As) Přírodním zdrojem je litosféra, kde zvětráváním arzenopyritu, popř. jiných minerálů obsahujících arzen, vznikají sekundární metabolity, nejčatěji arseničnany. Arzenopyrit je v zemské kůře stabilní, je-li pod hladinou podzemní vody octne-li se v zóně nenasycené vodou, dochází k jeho oxidaci a tím ke vzniku sekundárních minerálů. Arzen uvolněný do vody představuje závažný polutant Bangladéš podzemní voda z deltových náplavů řeky Gangy (cca 78 mil. lidí); V důsledku oxidace minerálů obsahujících arzén dosahuje koncentrace arzénu v podzemní vodě hodnot až μg/l chronická onemocnění a úmrtí stovek až tisíců lidí
33 Olovo (Pb) nebyla prokázána biomagnifikace podél potravního řetězce kumulace v sedimentech a tvorba methylderivátů toxické působení zejména na vodní ptactvo konzumace olověných broků z myslivecké činnosti a olověných zátěží používaných rybáři USA 2,4 mil ptáků /rok Velká Británie 8000 kachen/rok (Anas platyrhynchos) labutě (Cygnus olor) z 1500 mrtvých labutí v letech zahynulo 60 % v důsledku otravy olovem z olůvek a zátěží
34 Organické sloučeniny cínu (Sn) Antikorozní barviva a nátěry kontakt s vodním prostředím Nejtoxičtější jsou sloučeniny obsahující tři organické skupiny (metyl-butyl)
35 Organické polutany ropné uhlovodíky a polyaromatické uhlovodíky (PaHs) polychrované bifenyly (PCBs) polychrované dibenzodioxiny (PCDDs) polychlorované dibenzofurany (PCDFs) polybromované bifenyly (PBBs) chlorované pesticidy organofosforové pesticdy karbamatové pesticidy pyretroidy fenoxy herbicidy chlorfenoly a chlorkresoly.
36 Ropné látky a uhlovodíky uhlovodíky a jejich směsi, které jsou tekuté při teplotách + 40 o C a nižších. Patří mezi ně motorová paliva, mazací a topné oleje, benzín, nafta, petrolej, ropa a podobné látky. Havárie, splachy nafty a olejů ze silnic, lodní doprava nehody tankerů a úniky ropy z tankerů představují minoritní zdroj ropného znečištění vodních ekosystémů, cca 6 %. Vliv ropných látek na organismy přímá toxicita fyzikální udušení
37 Degradace uhlovodíků a ropných látek uhlovodíky a jejich deriváty dokáží rozkládat různé druhy mikrorganismů bakterie, kvasinky a vláknité houby. Polycyklické aromatické uhlovodíky dokáží štěpit vedle baktérií i dřevokazné houby způsobující bílou hnilobu dřeva. doposud bylo zjištěno, že cca 21 rodů baktérií, 10 rodů hub a 5 rodů kvasinek má schopnost degradovat uhlovodíky. Smíšená populace mikroorganismů může degradovat až 97 % ropy. Preference substrátů je obecně v řadě alifatické > heterocyklické > asfalteny. rozklad uhlovodíků a jejich derivátů probíhá za aerobních i anaerobních podmínek
38 PBTs (Persistent, bioaccumulative, toxic) chlorované pesticidy, polychlorované bifenyly, polychlorované dibenzodioxiny a dibenzofurany polycyklické aromatické uhlovodíky skupina organických sloučenin, jejichž dominantními fyzikálněchemickými a environmentálně-chemickými vlastnostmi jsou: 1. odolnost vůči různým degradačním procesům, 2. malá rozpustnost ve vodě, 3. lipofilní charakter a z toho plynoucí výrazná tendence k bioakumulaci a 4. polotěkavost umožňující globální atmosférický transport
39 Pesticidy chemické, biocidní látky používané na ochranu užitkových rostlin v zemědělství a lesnictví, proti plevelům, houbám a živočišným škůdcům. ve vodním hospodářství, slouží např. k likvidaci některých vodních rostlin, k redukci zooplanktonu v případě ohrožení ryb kyslíkovým deficitem nebo např. k antiparazitárnímu ošetření kaprovitých ryb Organochlorové insekticidy (organochlory) 1. Zásah do transportu K +, Na +, Mg 2+ a funkce ATP-ázy - narušení přenosu uvedených prvků přes membránu nervových vláken a tím pravděpodobně i přenos nervových vzruchů, což nepříznivě ovlivňuje funkci nervového systému a samotného mozku. 2. Ovlivnění existence estrogenních hormonů a metabolismu Ca 2+, což vyvolává poruchy v reprodukci, snižuje plodnost a přežívání mláďat.
40 Bipyridilové herbicidy (např. Gramoxone S) silné, rychle působící kontraktní chemikálie širokého působení, které ničí buněčné membrány Polychlorované bifenyly (PCBs) velká stálost, odolnost vůči vysokým teplotám, dobré tepelné a nízké elektrické vodivosti a malá rozpustnost ve vodě široké uplatnění především v elektrotechnice
41 Polychlorované dibenzo-para-dioxiny (PCDDs) Polychlorované dibenzofurany (PCDFs) nikdy se cíleně nevyraběly a průmyslově nevyužívaly, ale vznikaly a stále vznikají jako nežádoucí vedlejší produkty v průmyslových výrobách, zvláště chemických, hutních a zejména při spalovacích procesech. vysoký bod tání, malá rozpustnost ve vodě, lipofilní charakter Polycyklické aromatické uhlovodíky (PAU) spalování uhlí, koksárenský průmysl, ropné havárie, automobilová doprava
42 Povrchově aktivní látky (tenzidy) Skupina organických látek, které se již při nízké koncentraci významně hromadí (adsorbují) na fázovém rozhraní a snižují tak mezifázovou, resp. povrchovou energii. Výsledkem je vznik fázového rozhraní pevné blanky na povrchu Detergenty přípravky na praní a čištění, které obsahují jeden nebo více tenzidů a další přísady, které zvyšují účinnost směsi. Přísady se dělí na: (i) aktivační přísady; (ii) pomocné přísady; (iii) plnící přísady (plnidla). Detergence proces odstraňující z tuhého povrchu tuhé i kapalné částečky hmoty kombinovaným využitím mechanické práce a účinku tenzidu (praní a čištění).
43 Vlivy tenzidů na hydrosféru pro živou přírodu jsou všechny tenzidy biologicky aktivními látkami, neboť svými povrchovými efekty ovlivňují děje na membránách buněk. pěnění zhoršení rozputnosti kyslíku (snížení intenzity reaerace) 1. Biodegradabilita 2. Toxicita 3. Eutrofizace Měkké tenzidy rozklad > 90 % během 14dní Obdouratelné rozklad % během 14 dní Tvrdé tenzidy - < 35 % během 14 dní Polyfosforečnany detergentů (35-40 %) Zejména kationtové tenzidy (baktericidní a bakteriostatické) Se zvyšujícím se počtem uhlíků řetězce klesá biodegradabilita a roste toxicita. Odbourávání tenzidů probíhá snadno, jestliže jejich struktura obsahuje lineární, nerozvětvený a nesubstituovaný uhlovodíkový řetězec. U neionických tenzidů na bázi polyethylenoxidu klesá rychlost odbourávání tím více, čím je větší polymerační stupeň molekul.
44 Radionuklidy Radionuklidy (radioaktivní izotopy) jsou produktem rozpadu těžkých jader, jako např. uranu či plutonia, nebo vznikají reakcí neutronů se stabilním jádry V důsledku bioakumulace vodními živočichy působí radionuklidy jako tzv. vnitřní zářiče. Při přemístění vodních živočichů kontaminovaných radionuklidy do neaktivní vody dochází k jejich dekontaminaci.
45 Nejvíce radioaktivních látek je v organismech primární trofické úrovně; v tekoucích vodách se snižuje specifická aktivita radioizotopů podél trofického řetězce. RADON (Rn) v pitné vodě Nebezpečí radioaktivní kontaminace organismu inhalací či konzumací pitné vody obsahující radon je ve srovnání s kouřením zanedbatelné.
46 TOXICITA Bývá definována jako jedovatý účinek znečišťující látky (polutantu), který potlačuje až ničí život v ekosystémech. Akutní toxicita (velká dávka jedu krátkého trvání) Je obvykle letální, tj. jedovatý účinek toxické látky se projevuje okamžitě Chronická toxicita (nízká dávka jedu po dlouhou dobu) Může být buď letální nebo subletální, tj. účinek se projevuje až po několika měsících či rocích působení a často dochází k hromadění (kumulaci) jedovatých látek v tělech organismů. Projevy se zjišťují zpravidla až u dalších vývojových generacích (genotoxicita) Terminální toxicita V důsledku vysoké expozice toxické látky dochází ke smrti organismu, protože počet poškozených buněk je větší než počet buněk schopných reparace Replikující toxicita Poškození (buněk) organismu se mohou projevit v zasažené populaci i po delším čase (v následující generaci)
47 TOXICITA VODY zejména účinek cizorodých látek, které se do recipientu dostávají především s nejrůznějšími odpadními vodami, ale existuje i přirozená toxicita, která vzniká v přírodních vodách bez lidského zásahu (jedovaté meziprodukty rozkladu organických látek sulfan, hydroxylamin, amoniak). Toxikologie vod se zabývá hlavně akutní toxicitou Chronická toxicita má význam pro pitné vody z hlediska stanovení prahových koncentrací a nejvyšších přípustných koncentrací látek (NPK) ve vodě. NPK je koncentrace látky a jejích metabolitů ve vodách, která při stálém působení nevyvolá negativní účinky na hydrochemický režim recipientů a na mikroorganismy, primární producenty, planktonní a bentické organismy a ryby.
48 Směsi jedů vykazují kombinovaný vliv 1. Přídatný (aditivní, vlivy se sčítají) 2. Látky mohou jedna s druhou interferovat (antagonismus) 3. Celkový vliv na organismus může být větší, než když působí látka samostatně (synergismus)
49 Subletální vlivy můžeme pozorovat na úrovni biochemické, fyziologické, behaviorální nebo úrovni životního cyklu. Včasná detekce abnormalit v tkáních organismů může poskytnout důkaz o expozici organismu působení polutantů dlouho před tím, než se objeví závažné poruchy organismu. - síhové (Coregonus sp.) z jezer kontaminovaných olovem vykazovali značnou inhibici aktivity enzymu alanin deaminázy (ALA-D) v červených krvinkách, ale navzdory postižení 88 % síhů nebylo pozorováno žádní trvalé snížení obsahu hemoglobinu nebo hodnot hematokriu - koncentrace Cd 1 mg.l -1 podstatně snížila fotosyntézu sinice Anabaena inaequlis, při koncentraci 20 mg.l -1 byla fixace oxidu uhličitého kompletně inhibována Při nízkých hladinách polutantů je organismus udržován ve zdravém stavu homeostatickými mechanismy; se vzrůstající koncentrací se objevují různé kompenzace; při ještě vyšších koncentracích začíná být organismus stresován, objevují se fyziologické poruchy, organismus není schopen nahradit ztráty smrt organismu
50 Toxické vlastnosti polutantu Toxicita polutantu musí být funkcí chemické struktury nebo konfigurace a zcela malá změna v molekule jedu může způsobit velké kolísání toxicity Existence empirických vztahů mezi chemickou strukturou a toxicitou byla potvrzena u nejrůznějších složek a stala se základem tzv. QSAR (quantitative structure-activity relationships). QSAR mohou být použity k predikci toxicity např. u látek, které doposud nebyly syntetizovány.
51 Z hlediska působení toxických látek na ekosystémy je dále důležitý rozdíl mezi: a) přímou toxicitou, kdy látka působí ve své původní podobě, b) nepřímou toxicitou, kdy toxicky nepůsobí původní látka, ale např. meziprodukty jejího rozkladu a c) kumulativní toxicitou, kdy toxická látka je v organismu postupně ukládána (kumulována) a její účinky se manifestují až po dosažení prahové koncentrace Toxické působení nějaké látky v ekosystému můžeme sledovat i pomocí výpočtu tzv. druhového deficitu, který vyjadřuje, o kolik procent je zkoumaná lokalita chudší na druhy organismů než referenční lokalita na srovnatelném nezasaženém úseku. F = A1 - Ax / A1 kde F = druhový deficit v %, Ax = počet druhů na lokalitě x, kterou zkoumáme a A1 = počet druhů na referenční lokalitě. Výsledek 0 % znamená, že zde není vůbec žádný toxický vliv, výsledek 100 % znamená totální zničení biocenózy. Přechod mezi oběma extrémy pak udává přibližně toxické působení jedovatých látek na zkoumaných lokalitách.
52 Rozložitelnost a toxicita určují chování látek v prostředí. Podle těchto kritérií lze látky přicházející do vodního prostředí rozdělit do následujících skupin: a) látky rozložitelné a netoxické b) látky rozložitelné a toxické c) látky těžko rozložitelné a netoxické d) látky těžko rozložitelné a toxické Údaje o toxicitě jednotlivých látek mohou poskytnout pouze biologické metody hodnocení, tzv. biologické testy toxicity (biotesty) BIOTEST (bioassay) Definován jako zkouška, která stanoví množství nebo koncentraci látky v prostředí pomocí reakcí živého organismu. V širším pojetí se jedná o stanovení biologického účinku nějaké látky nebo faktoru prostředí. Protože v přírodě působí faktory komplexně, volí se preferenčně metody laboratorní, které využívají jediný druh organismu, který je vystaven změnám jediného faktoru za časový interval v kontrolovaných podmínkách
53 Testy toxicity na vodních organismech (biotesty) se mohou provádět v podstatě na třech úrovních a) na úrovni buněk b) na úrovni organismů c) na úrovni společenstev Rozeznáváme 3 generace biotestů na vodních organismech: 1. generace tzv. klasické (standardní, konvenční ) biotesty 2. generace mikrobiotesty (alternativní testy toxicity) 3. generace biosenzory nebo biosondy
54 Biotesty 1. generace v ČR jsou doporučovány 3 konvenční testy, identické s evropskými ISO a OECD normami: h akutní test toxicity na rybách (Poecilia reticulata, Brachydanio rerio) h imobilizační test na perloočkách (Daphnia magna) 72 h růstově inhibiční test na řasách (Raphidocelis subcapitata, Scenedesmus quadricaudata)
55 Mikrobiotesty Miniaturizace testů (zkumavky, kyvety, mikrotitrační destičky), zkrácení doby kultivace organismy se dlouhodobě uchovávají v klidových stádiích (bezobratlí), v lyofilizovaném stavu (baktérie) nebo v imobilizované formě (řasy) a před vlastním testováním se oživí Bateriové biotesty užívají souboru různých organismů (bakterie, řasa, perloočka). Do baterie jsou individuální testy vybírány tak, aby v dané baterii byly zastoupeny různé trofické stupně (tj. úroveň primárního producenta řasy), úroveň konzumenta (bezobratlí) a úroveň destruenta (bakteriální test) Příklad screeningové baterie Microtox bakteriální luminescenční test Thamnotoxkit F; Rotoxkit F - bezobratlí Algaltoxkit F řasový test na destičkách, spektrofotometrické hodnocení
56 Testy na úrovni biocenóz - toxický účinek se sleduje v přírodě samotné a nebo na modelu, který je jí blízký. - změny ve složení biocenóz nemusí být vždy vyvolány přímým toxický účinkem na určitý druh, ale mohou být výsledkem narušení potravního řetězce apod. reprodukovatelnost testů je omezená Biomarkery (Biologické a biochemické indikátory kontaminace) vybrané parametry, jejichž měřitelné změny jsou prvními, časnými odpověďmi na expozici cizorodými látkami. Biomarkery zpravidla indikují mechanismus toxicity, nikoliv určitou látku, ale některé biochemické parametry mohou specificky odrážet expozici některou třídou nebo skupinou kontaminantů. Biologickými modely jsou nejčastěji jaterní tkáň, či primární hepatocyty. Biomarkery by měly intenzívně odrážet vliv znečišťujících látek, ale přitom výrazně nepodléhat fyziologickému kolísání!!!
57 Akumulace (hromadění látky v organismu) Bioakumulace - pouhý příjem z vody, nezávislý na trofickém stupni - důležitý aspekt subletální toxicity - hladiny polutantů v tkáních žijících organismů jsou užívány k indikaci stupně kontaminace vodního prostředí (biomonitoring) Biomagnifikace - zvyšování koncentrace polutantu podél trofického řetězce - typické pro organochlorové pesticidy, výjimečně u kovů (Hg) Biokoncentrační faktor (BCF) - zpravidla určován v laboratoři; jedná se o poměr mezi koncentrací v organismu a koncentrací ve vodě, dosažený steady state - všeobecně považován za validní indikátor kapacity polutantu kumulovat se v živočišných tkáních.
58 Oteplování vodních ekosystémů Místní až globální vliv Místní vlivy většinou vypouštění oteplených vod z elektráren, ale i hlubinné důlní vody, výtoky z nádrží. vazba na obsah kyslíku ve vodách a další fyz.-chem. ukazatele. významná je distribuce vypouštění (nepřirozené vyrovnání nebo nepřirozené kolísání teplot). Globální vlivy klimatické změny
59 Tepelné znečičtění Zvýšená teplota snížení hustoty vody ( viskozity) snížení nasycení vody kyslíkem zvýšení toxicity některých látek zvýšení rozkladných procesů( O 2 ) Maximální tolerovaná teplota = teplota, která umožňuje reprodukci sledovaného druhu
60 Biota kvalitativní i kvantitativní změny společenstev, vliv na rychlost vývoje, reprodukci, vymizení citlivějších druhů urychlení larválního vývoje zrychlení metabolismu zrychlený žír vyšší biomasa pokles druhové diverzity zvýšení abundance a biomasy dominantních taxonů raná stádia (po vykulení či vylíhnutí) jsou nejcitlivější tolerované teploty teplotní adaptace Aklimatizací lze uměle zvýšit teplotu vody, při které organismus přežívá a je schopen. Využití oteplené vody 1. rychlený plůdek 2. chov tropických ryb (Tilapia)
Vliv lidské činnosti na vodní prostředí II.
Vliv lidské činnosti na vodní prostředí II. Znečišťování vod Jako znečištění lze chápat každou změnu přirozených fyzikálních a chemických vlastností vody, která snižuje její kvalitu se zřetelem k použitelnosti.
APLIKOVANÁ HYDROBIOLOGIE III - EUTROFIZACE
APLIKOVANÁ HYDROBIOLOGIE III - EUTROFIZACE Eutrofizace je definována jako proces zvyšování produkce organické hmoty ve vodě, ke které dochází především na základě zvýšeného přísunu živin (OECD 1982) S
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ PŮDA 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - půda V této kapitole se dozvíte: Jak vznikla půda. Nejvýznamnější škodliviny znečištění půd. Co je to
Koloběh látek v přírodě - koloběh dusíku
Koloběh látek v přírodě - koloběh dusíku Globální oběh látek v přírodě se žádná látka nevyskytuje stále na jednom místě díky různým činitelům (voda, vítr..) se látky dostávají do pohybu oběhu - cyklu N
Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku
Hydrobiologie pro terrestrické biology Téma 9: Voda jako životní prostředí rozpuštěné látky : sloučeniny dusíku Koloběh dusíku Dusík je jedním z hlavních biogenních prvků Hlavní zásobník : atmosféra, plynný
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ
DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků Nejdůležitější C, O, N, H, P tzv.
HLAVNÍ PROBLÉMY V ŽIVOTNÍM PROSTŘEDÍ
HLAVNÍ PROBLÉMY V ŽIVOTNÍM PROSTŘEDÍ Současná etapa je charakterizována: populační explozí a nebývalým rozvojem hospodářské činnosti společnosti řadou antropogenních činností s nadměrnou produkcí škodlivin
) se ve vodě ihned rozpouští za tvorby amonných solí (iontová, disociovaná forma NH 4+ ). Vzájemný poměr obou forem závisí na ph a teplotě.
Amoniakální dusík Amoniakální dusík se vyskytuje téměř ve všech typech vod. Je primárním produktem rozkladu organických dusíkatých látek živočišného i rostlinného původu. Organického původu je rovněž ve
Chemie životního prostředí III Hydrosféra (04) Samočistící schopnost vod
Centre of Excellence Chemie životního prostředí III Hydrosféra (04) Samočistící schopnost vod Ivan Holoubek RECETOX, Masaryk University, Brno, CR holoubek@recetox. recetox.muni.cz; http://recetox.muni
Téma 27 : Znečistění vod. Zdroje, původ, typy a důsledky
Téma 27 : Znečistění vod Zdroje, původ, typy a důsledky literatura : Znečistění vod : učebnice Lellák a Kubíček, 1991: strana 167 196 (z toho : - acidifikace str.167, - eutrofizace str. 172, - čištění
Klasifikace vod podle čistoty. Jakost (kvalita) vod. Čištění vod z rybářských provozů
Ochrana kvality vod Klasifikace vod podle čistoty Jakost (kvalita) vod Čištění vod z rybářských provozů Doc. Ing. Radovan Kopp, Ph.D. Klasifikace vod podle čistoty JAKOST (= KVALITA) VODY - moderní technický
Eutrofizace Acidifikace
Eutrofizace Acidifikace Eutrofizace Eutrofizace Atkins (1923), Juday (1926), Fischer (1924) fosfor limitujícím prvkem, přidání způsobilo vzestup rybí produkce X dusík, draslík 60. léta 20. století vodní
Dekompozice, cykly látek, toky energií
Dekompozice, cykly látek, toky energií Vše souvisí se vším Živou hmotu tvoří 3 hlavní organické složky: - Bílkoviny, cukry, tuky Syntézu zajišťuje cca 20 biogenních prvků - Nejdůležitější C, O, N, H, P
Modul 02 Přírodovědné předměty
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty hmota i energie nevznikají,
Ekosystém II. Koloběh hmoty: uhlík, dusík, fosfor. Člověk a biosféra
Ekosystém II. Koloběh hmoty: uhlík, dusík, fosfor Člověk a biosféra Koloběh hmoty v ekosystému Zásoby (pools) chemických prvků jsou uloženy v různých rezervoárech - atmosféra - hydrosféra - litosféra -
Pesticidy. Soldep hnědá tekutina (účinná látka - 25% trichlorfon) Využití v rybářství:
Soldep hnědá tekutina (účinná látka - 25% trichlorfon) Využití v rybářství: k redukci hrubého dafniového zooplanktonu (50 200 ml.ha -1 ) k zabránění kyslíkových deficitů, k převedení na drobné formy zooplanktonu
Ochrana půdy. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín
Ochrana půdy Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín Obsah přednášky Vlastnosti půdy Změna kvality půdy Ochrana před chemickou degradací -
FAKTORY PROST EDÍ OHRO UJÍCÍ ZDRAVÍ LOV KA
FAKTORY PROSTEDÍ OHROUJÍCÍ ZDRAVÍ LOVKA CIZORODÉ LÁTKY V OVZDUŠÍ VODA (LÁTKY V NÍ OBSAŽENÉ) KONTAMINACE PŮDY HLUK A VIBRACE ZÁŘENÍ TOXICKÉ KOVY PERZISTENTNÍ ORGANICKÉ POLUTANTY Cizorodé látky v ovzduí
Využití zásoby živin a primární produkce v eutrofních rybnících
Využití zásoby živin a primární produkce v eutrofních rybnících Libor Pechar a kolektiv Jihočeská Univerzita v Českých Budějovicích Zemědělská fakulta, Laboratoř aplikované ekologie a ENKI o.p.s., Třeboň
Ichtyologické důsledky znečišťování povrchových vod
Sinice, řasy a makrofyta v ekosystémech povrchových vod Ichtyologické důsledky znečišťování povrchových vod Hydrologická situace ČR, vývoj znečištění vod, vodní eroze, specifické polutanty, ohrožené druhy
SSOS_ZE_2.10 Degradace půdy, prezentace
Číslo projektu CZ.1.07/1.5.00/34.0378 Zefektivnění výuky prostřednictvím ICT technologií III/2- Inovace a zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity SSOS_ZE_2.10 Degradace
Minerální výživa na extrémních půdách. Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů
Minerální výživa na extrémních půdách Půdy silně kyselé, alkalické, zasolené a s vysokou koncentrací těžkých kovů Procesy vedoucí k acidifikaci půd Zvětrávání hornin s následným vymýváním kationtů (draslík,
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ OVZDUŠÍ 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - ovzduší V této kapitole se dozvíte: Co je to ovzduší. Jaké plyny jsou v atmosféře. Jaké složky znečišťují
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková
FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB
FAKTORY VNITŘNÍHO PROSTŘEDÍ STAVEB Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
Bioremediace půd a podzemních vod
Bioremediace půd a podzemních vod Jde o postupy (mikro)biologické dekontaminace půd a podzemních vod Jsou používány tam, kde nepostačuje přirozená atenuace: - polutanty jsou biologicky či jinak špatně
SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM
SLEDOVÁNÍ VÝSKYTU GENOTOXICKÝCH LÁTEK V POVODÍ ŘEKY SVRATKY V SOUVISLOSTI S URANOVÝM PRŮMYSLEM Jana Badurová, Hana Hudcová, Radoslava Funková, Helena Mojžíšková, Jana Svobodová Toxikologická rizika spojená
Biologická produktivita
Biologická produktivita vod Biologická produktivita vod V biosféře probíhá biogenní forma pohybu látek a energie uskutečňovaná metabolickou aktivitou všech organismů. Ve vodním prostředí zkoumá tyto procesy
Environmentální problémy. Znečišťování ovzduší a vod
GLOBÁLNÍ PROBLÉMY LIDSTVA Environmentální problémy Znečišťování ovzduší a vod Bc. Hana KUTÁ, Brno, 2010 OSNOVA Klíčové pojmy 1. ZNEČIŠŤOVÁNÍ OVZDUŠÍ Definice problému Přírodní zdroje znečištění Antropogenní
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků. OpVK CZ.1.07/2.2.00/
C1200 Úvod do studia biochemie 4.2 Velké cykly prvků OpVK CZ.1.07/2.2.00/15.0233 Petr Zbořil Biochemické cykly prvků Velké cykly prvků jako zobecnění přeměn látek při popisu jejich koloběhu Země jako superorganismus
Maturitní témata Blok předmětů z životního prostředí Školní rok: 2013-2014
STŘEDNÍ ŠKOLA INFORMATIKY A SLUŽEB ELIŠKY KRÁSNOHORSKÉ 2069 DVŮR KRÁLOVÉ N. L. Obor Aplikovaná chemie ŠVP Aplikovaná chemie, ochrana životní prostředí, farmaceutické substance Maturitní témata Blok předmětů
Hodnocení účinků látek znečišťujících ovzduší na ekosystémy dle metodologie EHK OSN
Hodnocení účinků látek znečišťujících ovzduší na ekosystémy dle metodologie EHK OSN Obsah přednášky: Doc. Ing. Miloš Zapletal, Dr. Procesy Účinky Kritéria pro hodnocení účinků Opatření a legislativa Imisní
Vysoká eutrofizační účinnost fosforu původem z odpadních vod v nádrži Lipno
Vysoká eutrofizační účinnost fosforu původem z odpadních vod v nádrži Lipno Josef Hejzlar Petr Znachor Zuzana Sobolíková Vladimír Rohlík Biologické centrum AV ČR, v. v. i. Hydrobiologický ústav České Budějovice
MIKROORGANISMY EDÍ. Ústav inženýrstv. enýrství ochrany ŽP FT UTB ve Zlíně
MIKROORGANISMY A OCHRANA ŽIVOTNÍHO PROSTŘED EDÍ Ústav inženýrstv enýrství ochrany ŽP FT UTB ve Zlíně Důvody využívání mikroorganismů v procesech ochrany životního prostřed edí jsou prakticky všudypřítomné
PRACOVNÍ LIST EVVO - VODA
Projekt Integrovaný vzdělávací systém města Jáchymov Mosty indikátor 06.43.19 PRACOVNÍ LIST EVVO - VODA Úkol: Fyzikální a chemická analýza vody Princip: Vlastním pozorováním získat poznatky o vlastnostech
ZATÍŽENÍ SEDIMENTU HOSTIVAŘSKÉ NÁDRŽE PRIORITNÍMI POLUTANTY 40 LET AKUMULACE ZNEČIŠTĚNÍ
ZATÍŽENÍ SEDIMENTU HOSTIVAŘSKÉ NÁDRŽE PRIORITNÍMI POLUTANTY 4 LET AKUMULACE ZNEČIŠTĚNÍ ČVUT v Praze, Fakulta stavební Katedra zdravotního a ekologického inženýrství Thákurova 7, Praha 6, 16629, Česká republika
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ VODA
PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ VODA 2010 Ing. Andrea Sikorová, Ph.D. 1 Problémy životního prostředí - voda V této kapitole se dozvíte: Jaké složky znečišťují vodu. Příčiny znečištěné vody. Nástroje ke snížení
EKOLOGICKÉ ZEMĚDĚLSTVÍ, PROBLEMATIKA BIOPOTRAVIN A FILOZOFIE KONZUMENTA
EKOLOGICKÉ ZEMĚDĚLSTVÍ, PROBLEMATIKA BIOPOTRAVIN A FILOZOFIE KONZUMENTA Agr.Dr. Josef Dlouhý, Prof.h.c. j.f.dlouhy@gmail.com Problémy konvenčního zemědělství: závislost na fosilní energii závislost na
Biogeochemické cykly vybraných chemických prvků. Biogenní prvky. Uhlík. Význam uhlíku. Formy výskytu CO 2 ve vodách
Biogeochemické cykly vybraných chemických prvků Biogenní prvky stálé primární prvky H, C, O, N, P stálé sekundární prvky Na, K, Mg, Ca, S, Cl, Fe stopové prvky invariabilní B, Sn, F, Cr, I, Co, Si, Mn,
Hospodaření s vodou při údržbě zeleně
Střední škola zemědělská a přírodovědná Rožnov pod Radhoštěm nábř. Dukelských hrdinů 570, 756 61 Rožnov pod Radhoštěm TEL: 571 654 390, FAX: 571 654 392, E-MAIL: info@szesro.cz Hospodaření s vodou při
ÚVOD DO PROBLEMATIKY Výklad základních pojmů v oboru aplikované geochemie a kontaminační geologie
ÚVOD DO PROBLEMATIKY Výklad základních pojmů v oboru aplikované geochemie a kontaminační geologie Ing. Radim Ptáček, Ph.D GEOoffice, s.r.o., kontaktní e-mail: ptacek@geooffice.cz Základní pojmy Jsou podrobně
Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D.
Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D. Osnova 2 Legislativa Biomasa druhy složení Emise vznik, množství, vlastnosti, dopad na ŽP a zdraví, opatření CO SO 2 NO x Chlor TZL
Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ
Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.6.2013
Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech.
Hydrosféra - (vodní obal Země) soubor všeho vodstva Země povrchové vody, podpovrchové vody, vody obsažené v atmosféře a vody v živých organismech. hydrologie hydrogeografie oceánografie hydrogeologie Hydrologický
Kyslík. Kyslík. Rybářství 3. Kyslík. Kyslík. Koloběh kyslíku 27.11.2014. Chemismus vodního prostředí. Výskyty jednotlivých prvků a jejich koloběhy
Rybářství 3 Chemismus vodního prostředí Výskyty jednotlivých prvků a jejich koloběhy Kyslík Významný pro: dýchání hydrobiontů aerobní rozklad organické hmoty Do vody se dostává: difúzí při styku se vzduchem
Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace
Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav
Rybářství 4. Produktivita a produkce. Primární produkce - rozdělení. Primární produkce - PP 27.11.2014
Rybářství 4 Produktivita a produkce Vztahy v populacích Trofické vztahy Trofické stupně, jejich charakteristika Biologická produktivita vod (produkce, produktivita, primární produkce a její měření) V biosféře
ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno
ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno KATEGORIE HNOJIVÝCH VÝROBKŮ (DLE FUNKCE) 1. Hnojivo 2. Materiál k vápnění
EKOTOXICITA V ČESKÉ LEGISLASTIVĚ. Vít Matějů ENVISAN-GEM, a.s. Biotechnologická divize, Radiová 7, 102 31 Praha 10 envisan@mbox.vol.
EKOTOXICITA V ČESKÉ LEGISLASTIVĚ Vít Matějů ENVISAN-GEM, a.s. Biotechnologická divize, Radiová 7, 102 31 Praha 10 envisan@mbox.vol.cz BIOODPADY-5. března 2009 - POPULUS 2 CO TO JE EKOTOXICITA? Ekotoxicita
Vysvětlivky: Důležité pojmy
Leonardo da Vinci Project Udržitelný rozvoj při procesech komerčního praní Modul 1 Voda v prádelnách Kapitola 7 Vysvětlivky: Důležité pojmy Module 1 Voda v prádelnách Kapitola 7 Slovník důležitých pojmů
12. CHEMIE povinný povinný. chemický děj
12. CHEMIE Ročník Dotace Povinnost (skupina) 1. 2. 3. 4. 5. 6. 7. 8. 9. - - - - - - - 2+0 1+1 - - - - - - - povinný povinný Ročník: osmý Výstupy Učivo Průřezová témata Poznámky Žák: Tematický okruh: Úvod
Obr. č. 1 nezbytná údržba aerační věže před zahájením aerační sezóny
Projekt Realizace opatření na Brněnské údolní nádrži Stručný výtah ze závěrečné zprávy k tomuto projektu CÍLE PROJEKTU Cílem projektu Realizace opatření na Brněnské údolní nádrži je snížení eutrofizace
Voda jako životní prostředí ph a CO 2
Hydrobiologie pro terrestrické biology Téma 8: Voda jako životní prostředí ph a CO 2 Koncentrace vodíkových iontů a systém rovnováhy forem oxidu uhličitého Koncentrace vodíkových iontů ph je dána mírou
3.5 CHEMISMUS MINAMATA 3.5.1. ZASTOUPENÍPRVKŮ V PŘÍRODĚ KOLOBĚH RTUTI. Obsahy prvků v zemské kůře. Zastoupení hlavních prvků
MINAMATA 3.5 CHEMISMUS člověk savci ptáci KOLOBĚH RTUTI přírodní i umělé zdroje C 2 H 6 UV 3.5.1. ZASTOUPENÍPRVKŮ V PŘÍRODĚ toxické účinky Hg (CH 3 ) 2 Hg kumulace rtuť v různých formách detoxikace potravní
Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů na život jedince, m
Přednáška č. 4 Pěstitelství, základy ekologie, pedologie a fenologie Země Podmínky působící na organismy: abiotické - vlivy neživé části prostředí na organismus biotické - vlivy ostatních živých organismů
Moderní metody intenzivní produkce ryb
Moderní metody intenzivní produkce ryb Pramen: FAO Světová produkce (tis. tun) Produkce ryb v evropských zemích (mil. EUR) 1900 4000 1700 1500 1300 3800 3600 3400 3200 3000 1100 2800 900 700 2600 2400
Charakteristika vyučovacího předmětu Chemie
Charakteristika vyučovacího předmětu Chemie Obsahové, časové a organizační vymezení předmětu Chemie Obsah předmětu Chemie je zaměřen na praktické využití poznatků o chemických látkách, na znalost a dodržování
ODPADNÍ VODY ODPADNÍ VODY. další typy znečištění. Ukazatele znečištění odpadních vod. přehled znečišťujících látek v odpadních vodách
1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 množství (mil.m 3 ) ODPADNÍ VODY ODPADNÍ VODY vody
Ekologie a její obory, vztahy mezi organismy a prostředím
Variace 1 Ekologie a její obory, vztahy mezi organismy a prostředím Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková
KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ MOTTO:
KANALIZACE, BIOLOGICKÉ ČOV A VLASTNOSTI PRODUKOVANÝCH KALŮ ING. JAN FOLLER, VODÁRENSKÁ AKCIOVÁ SPOLEČNOST, a. s. foller@vasgr.cz MOTTO: PŘIJME-LI ODBORNÁ ZEMĚDĚLSKÁ VEŘEJNOST FAKT, ŽE APLIKACE KALŮ Z BIOLOGICKÉHO
Hodnocení CHEMICKÉHO stavu a fyzikálně-chemické složky EKOLOGICKÉHO stavu vodních útvarů. Mgr. Martin Pták Martin.Ptak@mzp.cz Odbor ochrany vod
Hodnocení CHEMICKÉHO stavu a fyzikálně-chemické složky EKOLOGICKÉHO stavu vodních útvarů Mgr. Martin Pták Martin.Ptak@mzp.cz Odbor ochrany vod Proč hodnotit vodní útvary? Směrnice 2000/60/ES Evropského
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 02 Přírodovědné předměty 1 2 3 skupenství ( kapalné
Základní škola, Ostrava Poruba, Bulharská 1532, příspěvková organizace
Chemie - 8. ročník pozorování, pokus a bezpečnost práce Určí společné a rozdílné vlastnosti látek vlastnosti látek hustota, rozpustnost, tepelná a elektrická vodivost, vliv atmosféry na vlastnosti a stav
Jan POTUŽÁK a Kateřina KOLÁŘOVÁ. Povodí Vltavy, státní podnik, VHL České Budějovice
Jan POTUŽÁK a Kateřina KOLÁŘOVÁ Povodí Vltavy, státní podnik, VHL České Budějovice Mapy a umístění rybník Zhejral VN Karhov Rybník Zhejral (49 º 13'12.975''N; 15º18 48.557''E) Zatopená plocha: 14,46 ha
Biologické metody v technických normách. Ing. Lenka Fremrová
Biologické metody v technických normách Ing. Lenka Fremrová 1 Tvorba norem na mezinárodní úrovni (EN, ISO, EN ISO) na národní úrovni (ČSN) na odvětvové úrovni (TNV) 2 Evropský výbor pro normalizaci (CEN)
Pracovní list číslo 01
Pracovní list číslo 01 Voda 1. Najdi na internetu pojem acidifikace vody a vysvětli. Je to jev pozitivní nebo negativní? 2. Splaškové odpadní vody obvykle reagují a. Kysele b. Zásaditě c. Neutrálně 3.
Průmyslová zóna Kladno Dříň, areál Sochorové válcovny Třineckých železáren a.s., Třinecká 733, Buštěhrad 273 43
Průmyslová zóna Kladno Dříň, areál Sochorové válcovny Třineckých železáren a.s., Třinecká 733, Buštěhrad 273 43 Výroba a zpracování paliv a maziv, produkce nemrznoucích směsí pro chlazení automobilů a
TOXIKOLOGICKÁ PROBLEMATIKA CHEMICKÝCH HAVARIÍ
TOXIKOLOGICKÁ PROBLEMATIKA CHEMICKÝCH HAVARIÍ prof. RNDr. Jiří Patočka, DrSc. prof. RNDr. Rudolf Štětina, CSc. Katedra toxikologie Fakulta vojenského zdravotnictví UO Hradec Králové Rozdělení jedů Podle
autoři a obrázky: Mgr. Hana a Radovan Sloupovi
EKOLOGIE autoři a obrázky: Mgr. Hana a Radovan Sloupovi 1. Určitě jsi v nabídkových letácích elektroniky zaregistroval zkratku PHE. Jde o poplatek za ekologickou likvidaci výrobku. Částka takto uvedená
Oligobiogenní prvky bývají běžnou součástí organismů, ale v těle jich již podstatně méně (do 1%) než prvků makrobiogenních.
1 (3) CHEMICKÉ SLOŢENÍ ORGANISMŮ Prvky Stejné prvky a sloučeniny se opakují ve všech formách života, protože mají shodné principy stavby těla i metabolismu. Např. chemické děje při dýchání jsou stejné
LIKVIDACE SPLAŠKOVÝCH ODPADNÍCH VOD
LIKVIDACE SPLAŠKOVÝCH ODPADNÍCH VOD Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Obsah přednášky legislativa, pojmy zdroje znečištění ukazatele znečištění způsoby likvidace odpadních
CZ.1.07/1.5.00/34.1076 Pro vzdělanější Šluknovsko 32 - Inovace a zkvalitnění výuky prostřednictvím ICT
Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu Název
IMPLEMENTACE BIOVENTINGU
IMPLEMENTACE BIOVENTINGU Vít Matějů ENVISAN-GEM, a.s. Biotechnologická divize, Radiová 7, Praha 10 envisan@vol.cz 1 CHARAKTERIZACE LOKALITY 1. Přehled existujících informací 2. Složení půdních plynů 3.
CZ.1.07/1.5.00/
[1] Číslo projektu Název školy Předmět CZ.1.07/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Základy obecné ekologie
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
= hodnocení biologického vlivu stresorů od
Ekotoxikologie na PřF MU = hodnocení biologického vlivu stresorů od molekulární a buněčné úrovně až po úroveň systémovou dběry vzorků, terénní studie, laboratorní studie Hodnocení toxicity vzorků, jejich
Kyslík a vodík. Bezbarvý plyn, bez chuti a zápachu, asi 14krát lehčí než vzduch. Běžně tvoří molekuly H2. hydridy (např.
1 Kyslík a vodík Kyslík Vlastnosti Bezbarvý reaktivní plyn, bez zápachu, nejčastěji tvoří molekuly O2. Kapalný kyslík je modrý. S jinými prvky tvoří sloučeniny oxidy (např. CO, CO2, SO2...) Výskyt Nejrozšířenější
Předmět: CHEMIE Ročník: 8. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu
Chemie ukázka chemického skla Chemie přírodní věda, poznat chemické sklo a pomůcky, zásady bezpečné práce práce s dostupnými a běžně používanými látkami (směsmi). Na základě piktogramů žák posoudí nebezpečnost
Látka toxická pro mikroorganismy a vyšší živočichy i v nízké koncentraci. Do prostředí se dostává: Používá se například:
Látka toxická pro mikroorganismy a vyšší živočichy i v nízké koncentraci. Do prostředí se dostává: při rozkladu organických zbytků lesních požárech většina má průmyslový původ Používá se například: při
Základní látky znečišťující životní prostředí
Základní látky znečišťující životní prostředí Vliv chemických látek na prostředí chemie výrazně zasahuje do vzájemných vztahů člověka a prostředí člověk běžně používá chemické látky: v domácnosti, průmyslu,
VY_32_INOVACE_06A_06 Voda a životní prostředí ANOTACE
ŠKOLA: AUTOR: NÁZEV: TEMA: ČÍSLO PROJEKTU: Gymnázium Chomutov, Mostecká 3000, příspěvková organizace Mgr. Monika ŠLÉGLOVÁ VY_32_INOVACE_06A_06 Voda a životní prostředí NEKOVY CZ.1.07/1.5.00/34.0816 DATUM
Vodní prostředí. O čem to bude. Velký hydrologický cyklus v biosféře. Ze široka. Fyzikální vlastnosti vody. Chemické vlastnosti vody
Vodní prostředí O čem to bude Fyzikální vlastnosti vody Chemické vlastnosti vody Koloběhy látek ve vodě Ze široka Velký hydrologický cyklus v biosféře Světové oceány pokrývají 70,8% zemského povrchu Povrchové
NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663
EU - PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:
10. Minerální výživa rostlin na extrémních půdách
10. Minerální výživa rostlin na extrémních půdách Extrémní půdy: Kyselé Alkalické Zasolené Kontaminované těžkými kovy Kyselé půdy Procesy vedoucí k acidifikaci (abnormálnímu okyselení): Zvětrávání hornin
Biogeochemické cykly vybraných chemických prvků
Biogeochemické cykly vybraných chemických prvků Uhlík důležitý biogenní prvek cyklus C jedním z nejdůležitějších látkových toků v biosféře poměr mezi CO 2 a C org - vliv na oxidačně redukční potenciál
Jak funguje zdravá krajina? Prof. RNDr. Hana Čížková, CSc.
Jak funguje zdravá krajina? Prof. RNDr. Hana Čížková, CSc. Obsah přednášky 1. Tradiční pohled na zdravou krajinu 2. mechanismy pohybu látek postupně od úrovně celé rostliny přes porosty, ekosystémy až
CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení
CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení biodeteriogenů Biokoroze stavebních materiálů Vznik a
INTENZIFIKACE ČOV V PAPÍRENSKÉM PRŮMYSLU REALIZACE A PROVOZNÍ ZKUŠENOSTI
INTENZIFIKACE ČOV V PAPÍRENSKÉM PRŮMYSLU REALIZACE A PROVOZNÍ ZKUŠENOSTI Ing. Peter Bočan Ing. Roman Wachtl HYDROTECH s.r.o. Odpadní vody v papírenském průmyslu 11.- 12.11.2015 ZÁKLADNÍ CHARAKTERISTIKA
Ekologie. (obecná ekologie, ochrana životního prostředí, globální problémy)
Modelové otázky z biologie pro přijímací zkoušky na 2. lékařskou fakultu UK (starší vydání, 2006) - Zdeněk Kočárek, Zdeněk Sedláček, Petr Goetz, Jaroslav Mareš, Taťána Maříková, Miloslav Kuklík, 1 až 4
Půdní úrodnost, výživa a hnojení
Půdní úrodnost, výživa a hnojení Faktory ovlivňující růst a vývoj rostlin Přírodní faktory ovlivňující růst a vývoj rostlin významně ovlivňují úspěch či neúspěch budoucí rostlinné produkce. Ovlivňují se
Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy, poznámky. Poznáváme přírodu
Předmět: PŘÍRODOPIS Ročník: 6. Časová dotace: 2 hodiny týdně Očekávané výstupy podle RVP ZV Učivo předmětu Přesahy, poznámky Konkretizované tematické okruhy realizovaného průřezového tématu Poznáváme přírodu
Metodický list č. 1. TÉMA: Ekologicky šetrné zemědělství PĚSTOVÁNÍ ROSTLIN. Ochrana krajiny
32 TÉMA: Cíl: uvědomit si vazby mezi zemědělstvím, přírodou a životním prostředím, seznámit žáky s prioritami současné zemědělské výroby v souladu s ochranou životního prostředí Základní pojmy: meliorace,
GLOBE TEAM: Kateřina Glombková. Monika Mokrošová. Miriam Hrachovcová. Jana Prymusová
GLOBE TEAM: Kateřina Glombková Monika Mokrošová Miriam Hrachovcová Jana Prymusová o Albrechtice leží ve východní části České republiky o je to malá obec mezi Karvinou a Českým Těšínem o do naší školy chodí
Sloučeniny dusíku. N elementární N anorganicky vázaný. N organicky vázaný. resp. N-NH 3 dusitanový dusík N-NO. amoniakální dusík N-NH 4+
Sloučeniny dusíku Dusík patří mezi nejdůležitější biogenní prvky ve vodách Sloučeniny dusíku se uplatňují při všech biologických procesech probíhajících v povrchových, podzemních i odpadních vodách Dusík
VLIV DEŠŤOVÉ KANALIZACE NA OBSAH TOXICKÝCH KOVŮ A KVALITU VODY V DROBNÉM URBANIZOVANÉM TOKU
Your Name and Company Lucie Doležalová, Dana Komínková, Lucie Večeřová, Jana Nábělková lucie.dolezalova@fsv.cvut.cz kominkova@fsv.cvut.cz ČVUT v Praze, fakulta stavební, Katedra zdravotního a ekologického
Sůl kyseliny mléčné - konečný produkt anaerobního metabolismu
Biochemické vyšetření ve sportu Laktát Sůl kyseliny mléčné - konečný produkt anaerobního metabolismu V klidu 0,8 mmol/l (0,5-1,5 mmol/l) Tvorba laktátu = přetížení aerobního způsobu zisku energie a přestup
TOXICKÉ CHEMICKÉ LÁTKY a možnosti detoxikace
TOXICKÉ CHEMICKÉ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Chemické látky nebezpečné lidskému zdraví V literatuře se těmto látkám říká POP perzistentní organické polutanty. Tyto látky splňují
Znečištění ovzduší. Bratislava, 19. února 2014 MUDr. Miroslav Šuta. a lidské zdraví. Centrum pro životní prostředí a zdraví
Znečištění ovzduší a lidské zdraví Bratislava, 19. února 2014 odborný konzultant v oblasti ekologických a zdravotních rizik Znečištění ovzduší (kontext) způsobuje předčasnou smrt asi 370 tisíc Evropanů
SINICE. Kde se vzaly? Co jsou to sinice? cyanobakterie (sinice) a řasy přirozená součást života ve vod. nádržích. důsledek eutrofizace.
Kde se vzaly? SINICE charakteristika cyanotoxiny prevence masového rozvoje možnosti jeho omezení odstraňování cyanotoxinů vodárenskými technologiemi cyanobakterie (sinice) a řasy přirozená součást života