Bioceramics Joon Park

Rozměr: px
Začít zobrazení ze stránky:

Download "Bioceramics Joon Park"

Transkript

1 Bioceramics Joon Park 6 Aluminum Oxides (Alumina) Str.: Bc. Jan Tureček skupina: PMB 23 obor: PMB FBMI ČVUT v Praze

2 6 Aluminum Oxides (Alumina) Jednotlivé pestrobarevné krystaly oxidu hliníku. Takové krystaly mohou vyrůst uměle. Polykrystalický oxid hliníku byl po mnoho let používaný jako izolátor v zapalovacích svíčkách, jako vysokonapěťový izolátor a jako implantát. Viz obrázky 6.11 a 6.15, které jsou s povolením převzaté z: Podívejte se prosím do barevné části na tyto obrázky ve všech barvách.

3 Oxidy hliníku byly hojně používané v průmyslu, například pro řezací nástroje, izolátory zapalovacích svíček a pro domácí lampy na sodíkové výpary díky svým mechanickým, elektrickým, chemickým a tepelným vlastnostem [8]. Hliníkové oxidy byli zkoumané od roku 1907, kdy byl vydán patent na čistý keramického oxid hlinitý. Nicméně komercializace produktů přišla mnohem později, ve 20. a 30. letech 20. Století, a v té době se začali vyrábět materiály pro pece a bylo objeveno slinování (sintrování) prašného oxidu hlinitého s přidáním MgO jako pomocného materiálu. V podstatě čistý oxid hlinitý (>99.5%) byl používaný od počátku 70. let jako materiál pro implantáty, zvláště pro umělé kloubní protézy (většinou kyčelní) a pro zubní implantáty, protože měl vynikající kompatibilitu s okolními tkáněmi a výborné mechanické vlastnosti (zejména co se týče tření a opotřebení) [8]. Oxid hlinitým má ale kvůli jeho křehkosti mnohem menší pevnost v tahu než pevnost v tlaku (nemůže podstoupit plastickou deformaci jako kovy a plasty, jako je zmíněno v 3.1). Tyto vlastnosti omezují jeho použití pro aplikace, kde je namáhán v tlaku. Nejvíce se oxid hlinitý používá pro výrobu implantátů z monokrystalů nebo pevných polykrystalů o vysoké hustotě a čistotě nebo z uměle vytvořených monokrystalů podobných safíru nebo rubínu. Tabulka 6.1. Chemické složení, zrnitost a hustota hliníkových oxidů Žíhaný, A-14 Tubular, T-60 ISO6474 b Biolox c Al 2 O SiO2 + alkali oxides a SiO <0.01 <0.01 Fe 2 O <0.015 Na 2 O <0.01 <0.01 CaO <0.01 Velikost zrn (µm) - - <4.5 3 Hustota (g/ml) >3.94 >3.95 a ASTM F603 specifikuje, že kombinovaní SiO 2 s alkalickými oxidy by mělo být menší než 0.1%, pro aplikace jako chirurgické nebo dentální implantáty. b Vydáno po roce Také kombinované SiO2 + Fe2O3 + Na2O + CaO < 0.1%. c Product Feldmuhle (Plochingen, Německo). Reprodukované s povolením z [13]. Copyright 1970, American Ceramic Society. 6.1 Zdroje, složení, struktura Hlavními zdroji vysoce čistého oxidu hlinitého je Bauxit (hydratovaný oxid hlinitý) a nativní korund (minerální oxid hlinitý). Nejběžnější proces získání čistého alumina (oxid hliníku) je Bayer proces,

4 kterým se získají tzv. α-alumina [12]. Tento proces zahrnuje rozpuštění drceného bauxitu v roztoku hydroxidu sodného (NaOH), pod tlakem a za vysokých teplot (až 300 C) a vytvoření přesyceného sodno-hlinitého roztoku. Hydratovaný oxid hlinitý se vysráží očkováním nebo jako metastabilní bayerite snížením ph oxidem uhličitým. Praním a sušením sraženiny při 1000 ~ 1200 C se sraženina změní na nízko-teplotní formu "kalcinovaného" alumina. Byly vyvinuty i další různé způsoby získávání čistého alumina, tyto způsoby jsou závislé na zdroji surovin [12]. Komerčně dostupný čistý oxid hlinitý obvykle obsahuje 99,5 až 99,6% A1 2 O 3, 0.06 až 0.12% SiO 2, % Fe 2 O 3, a % Na 2 O, a má hustotu 3,65-3,9 g/cm 3, jak je uvedeno v tabulce 6.1. Je také možné získat oxid hlinitý o čistotě 99,9%, který se připravuje z amonného kamence. Nicméně, pro práci s implantáty, specifikuje Americká společnost pro testování a materiály (ASTM) pouze 99,5%-ní čistotu oxidu hlinitého, s kombinací méně než 0.1% SiO 2 a oxidů alkalických kovů (především Na 2 O). Obrázek 6.1. Bazální roviny struktury krystalu oxidu hlinitého. Jsou zde naznačeny bazální směry rovin a šestihranné vektory buněk. Převzato se svolením z [8]. Copyright 1984, Springer-Verlag. Krystalová struktura α-alumina je šestiúhelníková a je těsná (sbalená) (a = 0,4758 a c = 1,299 nm) a patří do prostoru skupiny D 6 3 d. Sbalení Al a O k sobě v bazální rovině šestiúhelníkové těsné struktury je na obrázku 6.1. Jak je uvedeno v tabulce 2.2, třetina z odpovídajících octaedrických míst jsou ve struktuře Al 2 O 3 volná, takže existují tři různé typy vrstev kationtů. Koordinační čísla pro Al 3+ a O 2- jsou 6 a 4, a jejich poloměry jsou 0,053 resp. 0,138 nm. Monokrystaly oxidu hlinitého se úspěšně používají k výrobě implantátů [14]. Implantáty se vyrábí nanesením jemného hlinitého prášku na povrch zárodečného krystalu, který je zahříván

5 elektrickým obloukem nebo oxyhydrogenovým plamenem. Následně se pomalu od zdroje tepla stahuje krystal, který byl vytvořen tavením hlinitého prášku. Totu metodou byly vypěstovány krystaly, které měli až 10 cm v průměru. Čistý mono-krystal rubínu může být použit jako krystal do hodinek. Některé krystaly mohou být barvené přidáním Cr 2 O 3 (0,05%), který z nich udělá růžové, ty pak mohou být použity pro výrobu laserů s vlnovou délkou 694 nm. Přidáním 0,5% Cr 2 O 3 vzniknou krystaly, které mohou být použity pro lasery s vlnovou délkou nm. K výrobě modrých safírů se používají jiné kovové ionty: Ti 3+, Fe 3+. Tabulka 6.2. Mechanické vlastnosti oxidu hlinitého Vlastnosti a materiály Hodnoty Pevnost v ohybu (MPa) Safír Rubín 345 Polykrystaly Pevnost v tlaku (MPa) Safír Polykrstaly Pevnost v tahu (MPa) Monokrystaly 490 Vlákna Potažená 1448 Nepotažená 483 Polykrystaly 259 Modul pružnosti (GPa) Monokrystaly Polykrystaly Poissonovo číslo Safír Polykrystaly 0.32 Všechna měření při 25 C. Přetištěno se svolením z [13]. Copyright 1970, American Ceramic society.

6 Příklad 6.1 Spočítejte teoretickou hustotu monokrystalu alumna. Odpověď: Vzhledem k tomu, že hustota je dána jako: Pak: 6.2 Mechanické Jako u všech ostatních křehkých materiálů, mechanické vlastnosti polykrystalického oxidu hlinitého ve velké míře závisí na velikosti zrna, jeho distribuci a pórovitosti. Například pevnost v ohybu (σ b ) polykrystalického oxidu hlinitého s konstantní velikostí zrna může být vyjádřeno, rovnicí (5.10), ve znění:, (6.1) kde ρ 0 je pevnost v ohybu při nulové pórovitosti, n je konstanta, a P je pórovitost. Pevnost při nulové pórovitosti může být získána z rovnice (3.57) a obr Vztah mezi velikostí zrna a pórovitostí pro plně hustý oxid hlinitý je uveden na obrázku 6.2. Je zde vidět velký experimentální rozptyl, což naznačuje, že tento typ měření je obtížný. Obrázek 6.2. Velikost zrna versus pórovitost vysoce čistého (99,9 + %), plně hustého alumina. Přetištěno s povolení [27]. Copyright 1963, American Ceramic Society.

7 Když je pórovitost nižší než 2%, zrna jsou pak mnohem větší, čímž se podle rovnice (3.59) sníží pevnost. Velikost zrn může být udržena menší než 2 µm přidáním 0,1% MgO. Typická mikrostruktura oxidu hlinitého o vysoké hustotě, určeného pro implantáty, je na obrázku 6.3. Přidání MgO učiní oxid hlinitý téměř průsvitný, což může být využito i pro sodíkové výbojky (Lucalox ). Tento typ alumina se pro implantáty nepoužívá. Tabulka 6.2 uvádí mechanické vlastnosti typického implantátu z alumina. Oxid hlinitý má obecně tvrdost 20 ~ 30 GPa a Mohsovu tvrdost 9. Vysokou tvrdost doprovází i nízké tření a opotřebení, což jsou hlavní výhody při použití hliníku jako materiálu pro kloubní náhrady, navzdory jeho křehkosti. Tabulka 6.3 uvádí tribologické vlastnosti oxidu hlinitého. Dlouhodobé tribologické vlastnosti hustého alumina jsou výhodnější než u jiných materiálů, např.: koeficient tření, objem opotřebení a drsnost povrchu u páru hliník-hlinik v čase klesá, což je znázorněno na obrázku 6.4. Tyto vlastnosti vyplývají z toho, že voda a dlouhý řetěz karboxylové kyseliny jsou přednostně chemicky sorbované na povrchu oxidu hlinitého, a to i při nízkých koncentracích vodní páry (viz tabulka 6.4), to je i navrženo na obrázku 6.5. Obrázek 6.3. Mikrostruktura alumina o vysoké hustotě určeného pro implantáty (100 zvětšeno). Přetištěno se svolením z [8]. Copyright 1984, Springer-Verlag.

8 Obrázek 6.4. Tribologické chování oxidu hlinitého: (a) tření, (b) opotřebení, a (c) drsnost povrchu [7]. Přetištěno se svolením z [7]. Copyright 1980, Wiley. Tabulka 6.3. Tribologické vlastnosti oxidu hlinitého (alumina) Vlastnosti Hodnoty Zkušební podmínky Součinitel tření aluminu-aluminum Sucho Voda aluminum UHMWPE 0.16 Sucho 0.05 Voda Míra opotřebení (mg za 20 h) aluminum na aluminum 0.10 Sucho UHMWPE na aluminum 0.10 Sucho Převzato se souhlasem z [27]. Copyright 1977, Wiley.

9 Tabulka 6.4. Opotřebení a tření vysoce hustého oxidu hlinitého při různých relativních tlacích vodní páry Relativní součinitel tlaku Opotřebení vodních par P/P 0 (10 4 mm 3 m 1 ) Koeficient tření Monomolekulární pokrytí nastane, když P/P 0 = Převzato se souhlasem z [9]. Copyright 1984, Springer-Verlag. Příklad 6.2 Stanovte průměrnou velikost zrn a číslo zrnitosti mikrostruktury oxidu hlinitého znázorněné na obrázku 6.3. Dále odhadněte příčnou pevnost v ohybu oxidu hlinitého na základě velikosti zrn z obr Odpověď: Počet zrn na 10 cm lineární stupnice je asi 20; proto je průměrná velikost 0,5 cm, což znamená 5 µm, neboť obrázek byl zvětšen Index velikosti zrna je standardizován ASTM podle rovnice N = 2 n-1, kde n je číslo zrnitosti a N je počet zrn na čtvereční palec při lineárním 100 zvětšení. Jestliže tedy dáme palcovou čtvercovou mřížku na obrázek náhodně, získám asi kolem 30 zrn. Tento obrázek je ale zvětšen 1000 namísto 100 a počet zrn na čtvereční palec je tedy A proto: 3000 = 2 n-1 a n = 12,55. Číslo zrnitosti je téměř 13. Podle obrázku 3.24 je příčná pevnost v ohybu, při velikosti zrna 5 µm, asi 300 MPa, což je více než jaká je pevnost v tahu uvedená v tabulce 6.2.

10 Obrázek 6.5. Adsorpční chování keramického hliníkového povrchu. Převzato se souhlasem z [8]. Copyright 1984, Springer-Verlag Únavové vlastnosti a životnost Je velmi zajímavé, že inertní keramiky, jako je oxid hlinitý, může vykazovat únavu způsobenou buď dynamickými, nebo statickými podmínkami. V jedné studii bylo prokázáno, že únavová pevnost oxidu hlinitého se snižuje při přítomnosti vody spolu a nad hranicí kritického napětí [10]. Toto snížení únavové pevnosti je způsobeno následným růstem trhlin, který je urychlen molekulami vody. Nicméně, další studie ukázala, že snížení pevnosti je vykazováno, pokud je absorpce vody sledována pomocí rastrovací elektronové mikroskopie rozbitých vzorků, ale nebyla zaznamenáno žádné snížení pevnosti u vzorků, které neukázaly žádné vodoznaky na povrchu zlomu (obr. 6,6). Bylo tedy navrhnuto, že přítomnost malého množství oxidu křemičitého může přispět k pronikání molekul vody, což snižuje pevnost [15]. Není jasné, zda se stejným mechanismem pracuje statická únava v jediném krystalu alumina. Je však rozumné předpokládat, že stejné statická únava nastane v případě, že krystaly budou obsahovat chyby nebo nečistoty, které budou působit jako zdroje trhlin místo hranic zrn u polykrystalického oxidu hlinitého a dále bude způsobovat růst trhlin v napjatém materiálu. Únavové vlastnosti oxidu hlinitého jsou důležité pří použití těchto implantátů jako nosných umělých kloubů. Je to podobné jako dynamická únava kromě toho, že je zatížení vyvoláno nárazem

11 například kýváním. Jeden takový výsledek testu je zobrazen na obrázku 6.7, který je podobný Wohlerovu graf ukazující napětí v závislosti na počtu cyklů. Obrázek 6.6. Pevnost v ohybu aluminových prutů při stárnutí pod napětím v Ringerově roztoku. Převzato se svolením z [15]. Copyright 1978, Wiley. Obrázek 6.7. Dopad únavové pevnosti alumina měřené kyvadlovým testem. Přetištěno se svolením z [7]. Copyright 1980, Wiley. Porucha na každém vzorku byla souzena podle vzhledu první trhliny. Je zřejmé, že test nemůže odhalit vnitřní praskliny nebo mikrotrhliny, které jsou mimo schopnosti pozorovacího přístroje jako je optický mikroskop. To je důvod, proč je poměrně obtížné předpovědět únavovou životnost keramických materiálů, jako je oxid hlinitý, v dynamických podmínkách.

12 Některé metody používají teorii pravděpodobnosti k pochopení statického a dynamického únavového chování polykrystalického oxidu hlinitého [4]. Kumulativní pravděpodobnost porušení struktury pod napětím na konstantní plochu, je dána: (6.2) kde t je doba do poruchy (spodní hranici času do poruchy), L 0 je parametr měřítka, A je plocha pod napětím, a m je Weibullovův modul. Obrázek 6.8 ukazuje výsledky statických a dynamických únavových zkoušek alumina při pokojové teplotě, kde můžeme sledovat: (1) na okolí materiálu má drastický vliv na únavovou životnost, což je opět působeno korozí pod napětím v přítomnosti vodní páry, a (2) odolnost polykrystalického keramického oxidu hlinitého na cyklické zatížení je nižší než je statické zatížení při pokojové teplotě, což může být významné návrhu implantátu. Obrázek 6.8. (a) Doba do prasknutí při statickém zatížení ve srovnání pravděpodobností zlomeniny ve vzduchu a (50% RH) v čistém argonu při pokojové teplotě. (b) Pravděpodobnost zlomeniny ve srovnání s časem do prasknutí při statické a dynamické únavové zkoušce při pokojové teplotě.

13 Někteří předpovídali únavovou životnost alumina a Bioskla (sklo-keramika, viz 8.3) potaženého alumina na základě teorie lomové mechaniky, která je založena na předpokladu, že únava se řídí pomalým růstem trhlin předcházející vadám [23]. Obecně může být rozložení pevnosti keramiky v inertní atmosféře (σ i ) být vztaženo k pravděpodobnosti poruchy (F) Weibullovým vztahem, který je podle Trantina [29] podobný rovnici (6.2): kde m a σ 0 jsou konstanty. Obrázek 6.9 ukazuje dobrou volbou pro Biosklo vrstveného oxidem hlinitým testovaného v tris pufru a kapalném dusíku [23]. Obrázek 6.9. Závislosti ln ln (1 / 1 - F) ve srovnání ln σ pro Biosklo vrstveného oxidem hlinitým v trishydroxyamino-metanovém pufru a kapalném dusíku. Přetištěno se svolením z [23]. Copyright 1979, Wiley. Minimální životnost t min lze předvídat jen tehdy, pokud je každý vzorek podroben testování na napětí větší než se očekává při provozu: (6.4) kde σ P je dokazované testované napětí, σ a je aplikované napětí a B a N jsou konstanty. Přeskupeno do rovnice: (6.4) (6.5) která výjde přímo, pokud log t m σ 2 a se vynese proti log (σ P / σ a ), se sklonem N - 2 a průsečík se rovná B (viz obr ).

14 Příklad 6.3 Vypočítejte kontrolní zkoušku napětí hliníkového keramického implantátu pro minimální životnost 50 let pod neustálým namáháním, při použití normální tělesné hmotnosti (700 N). Předpokládejme průřez 2 cm 2 a dynamické zatížení může být 10 vyšší než statické zatížení. Odpověď: Napětí na implantátu je [(700 N) / (2 cm2)] = 3,5 MPa. Pokud budeme předpokládat dynamické zatížení, tak se maximální napětí bude blížit 35 MPa. log t min σ a = log [50 yr 365 days/yr 24 hr/day 60 min/hr 60 s/min 35 MPa] = Z obrázku 6.7 je σ P /σ a = 2.35 v Ringerově roztoku; a proto σ P = MPa. Tato hodnota by měla být značně zvýšená v důsledku nepřátelského prostředí těla. Obrázek Graf z rovnice (6.4) pro aluminum při zátěžovém testu. N = 43,85; log B = 3,256, m = 13,21, a σ 0 = (psi). Převzato se svolením z [23]. Copyright 1979, Wiley.

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22

Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI. Jaroslav Krucký, PMB 22 Kapitola 3.6 Charakterizace keramiky a skla POVRCHOVÉ VLASTNOSTI Jaroslav Krucký, PMB 22 SYMBOLY Řecká písmena θ: kontaktní úhel. σ: napětí. ε: zatížení. ν: Poissonův koeficient. λ: vlnová délka. γ: povrchová

Více

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla

Nauka o materiálu. Přednáška č.12 Keramické materiály a anorganická nekovová skla Nauka o materiálu Přednáška č.12 Keramické materiály a anorganická nekovová skla Úvod Keramika a nekovová skla jsou ve srovnání s kovy velmi křehké. Jejich pevnost v tahu je nízká a finálnímu lomu nepředchází

Více

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008

Křehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Požadavky na technické materiály

Požadavky na technické materiály Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky

Více

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý iglidur Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost HENNLICH s.r.o. Tel. 416 711 338 ax 416 711 999 lin-tech@hennlich.cz

Více

Nízká cena při vysokých množstvích

Nízká cena při vysokých množstvích Nízká cena při vysokých množstvích iglidur Vhodné i pro statické zatížení Bezúdržbový provoz Cenově výhodné Odolný vůči nečistotám Odolnost proti vibracím 225 iglidur Nízká cena při vysokých množstvích.

Více

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost

Elektricky vodivý iglidur F. Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost Elektricky vodivý Produktová řada Elektricky vodivý Vysoká pevnost v tlaku Dobrá tepelná odolnost Vysoká hodnota pv Dobrá chemická odolnost 59 Elektricky vodivý. Materiál je extrémní tuhý a tvrdý, kromě

Více

FDA kompatibilní iglidur A180

FDA kompatibilní iglidur A180 FDA kompatibilní Produktová řada Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Pro vlhká prostředí 411 FDA univerzální. je materiál s FDA certifikací

Více

Minule vazebné síly v látkách

Minule vazebné síly v látkách MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn

Více

2 MECHANICKÉ VLASTNOSTI SKLA

2 MECHANICKÉ VLASTNOSTI SKLA 2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost

Více

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty

iglidur H2 Nízká cena iglidur H2 Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty Nízká cena iglidur Může být použit pod vodou Cenově výhodné Vysoká chemická odolnost Pro vysoké teploty 399 iglidur Nízká cena. Pro aplikace s vysokými požadavky na teplotní odolnost. Může být podmíněně

Více

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost

Bez PTFE a silikonu iglidur C. Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost Bez PTFE a silikonu iglidur Suchý provoz Pokud požadujete dobrou otěruvzdornost Bezúdržbovost HENNLIH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz 613 iglidur Bez PTFE a

Více

Vysoké teploty, univerzální

Vysoké teploty, univerzální Vysoké teploty, univerzální Vynikající koeficient tření na oceli Trvalá provozní teplota do +180 C Pro střední a vysoké zatížení Zvláště vhodné pro rotační pohyb HENNLICH s.r.o. Tel. 416 711 338 Fax 416

Více

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů

Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Hodnocení opotřebení a změn tribologických vlastností brzdových kotoučů Vedoucí práce: Doc. Ing. Milan Honner, Ph.D. Konzultant: Doc. Dr. Ing. Antonín Kříž Bc. Roman Voch Obsah 1) Cíle diplomové práce

Více

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby

iglidur UW500 Pro horké tekutiny iglidur UW500 Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby Pro horké tekutiny iglidur Pro použití pod vodou při vysokých teplotách Pro rychlé a konstantní pohyby 341 iglidur Pro horké tekutiny. Kluzná pouzdra iglidur byla vyvinuta pro aplikace pod vodou při teplotách

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení

Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení Nízká cena iglidur Produktová řada Dobrá odolnost proti opotřebení Nízké tření bez mazání Cenově efektivní Nízké opotřebení HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák

Zdroj: Bioceramics: Propertie s, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák Zdroj: Bioceramics: Properties, Characterization, and applications (Biokeramika: Vlastnosti, charakterizace a aplikace) Překlad: Václav Petrák Kapitola 8., strany: 167-177 8. Sklokeramika (a) Nádoby Corning

Více

Nauka o materiálu. Přednáška č.14 Kompozity

Nauka o materiálu. Přednáška č.14 Kompozity Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno

Více

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití Biopolymer Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový materiál splňuje

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ

Charakteristika. Vlastnosti. Použití NÁSTROJE NA TLAKOVÉ LITÍ NÁSTROJE NA PROTLAČOVÁNÍ NÁSTROJE PRO TVÁŘENÍ ZA TEPLA VYŠŠÍ ŽIVOTNOST NÁSTROJŮ DIEVAR DIEVAR 2 DIEVAR Charakteristika DIEVAR je Cr-Mo-V legovaná vysoce výkonná ocel pro práci za tepla s vysokou odolností proti vzniku trhlin a prasklin z tepelné únavy a s vysokou odolností proti opotřebení

Více

Teplotně a chemicky odolný, FDA kompatibilní iglidur A500

Teplotně a chemicky odolný, FDA kompatibilní iglidur A500 Teplotně a chemicky odolný, FDA kompatibilní Produktová řada Samomazný a bezúdržbový Je v souladu s předpisy FDA (Food and Drug Administration) Pro přímý kontakt s potravinami a léčivy Teplotní odolnost

Více

iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití

iglidur N54 Biopolymer iglidur N54 Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití iglidur Biopolymer iglidur Produktová řada Samomazná a bezúdržbová Založen na obnovitelných zdrojích Univerzální použití 575 Biopolymer. Z 54% je založen na obnovitelných zdrojích. I přesto tento nový

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Karbid křemíku, bílý korund a hnědý korund

Karbid křemíku, bílý korund a hnědý korund Karbid křemíku, bílý korund a hnědý korund c/o Cerablast GmbH & Co.KG Gerhard-Rummler-Str.2 D-74343 Sachsenheim / Německo Telefon: 0049 7147 220824 Fax: 0049 7147 220840 E-Mail: info@korutec.com http://www.korutec.com

Více

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec,

Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, BUM - 7 Únava materiálu Jméno: St. skupina: Datum cvičení: Autor cvičení: Doc. Ing. Stanislav Věchet, CSc., Ing. Petr Liškutín, Ing. Martin Petrenec, Úkoly k řešení 1. Vysvětlete stručně co je únava materiálu.

Více

KRYSTALY PRO VĚDU, VÝZKUM A ŠPIČKOVÉ TECHNOLOGIE

KRYSTALY PRO VĚDU, VÝZKUM A ŠPIČKOVÉ TECHNOLOGIE KRYSTALY PRO VĚDU, VÝZKUM A ŠPIČKOVÉ TECHNOLOGIE MONOKRYSTALICKÉ LUMINOFORY Řešení vyvinuté za podpory TAČR Projekt: TA04010135 LED SVĚTELNÉ ZDROJE Světlo v barvě přirozené pro lidské oko Luminofor Modré

Více

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2

Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír Šatava 2 Syntéza leucitové suroviny pro dentální kompozity 1 Ústav skla a keramiky VŠCHT Praha VYSOKÁ ŠKOLA CHEMICKO- TECHNOLOGICKÁ V PRAZE Alexandra Kloužková 1 Martina Mrázová 2 Martina Kohoutková 2 Vladimír

Více

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství

ruvzdorné povlaky endoprotéz Otěruvzdorn Obsah TRIBOLOGIE Otěruvzdorné povlaky endoprotéz Fakulta strojního inženýrství Otěruvzdorn ruvzdorné povlaky endoprotéz Obsah Základní části endoprotéz Požadavky na materiály Materiály endoprotéz Keramické povlaky DLC povlaky MPC povlaky Metody vytváření povlaků Testy povlaků Závěr

Více

Sklářské a bižuterní materiály 2005/06

Sklářské a bižuterní materiály 2005/06 Sklářské a bižuterní materiály 005/06 Cvičení 4 Výpočet parametru Y z hmotnostních a molárních % Vlastnosti skla a skloviny Viskozita. Viskozitní křivka. Výpočet pomocí Vogel-Fulcher-Tammannovy rovnice.

Více

Pod vodu iglidur H370. Produktová řada Odolný proti opotřebení - zejména pod vodou Vysoká teplotní odolnost 40 C až +200 C Vysoká chemická odolnost

Pod vodu iglidur H370. Produktová řada Odolný proti opotřebení - zejména pod vodou Vysoká teplotní odolnost 40 C až +200 C Vysoká chemická odolnost Pod vodu Produktová řada Odolný proti opotřebení - zejména pod vodou Vysoká teplotní odolnost 40 C až +200 C Vysoká chemická odolnost 375 Pod vodu. Materiál je tím pravým řešením pro aplikace pod vodou.

Více

18MTY 1. Ing. Jaroslav Valach, Ph.D.

18MTY 1. Ing. Jaroslav Valach, Ph.D. 18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce

Více

Pro vysoká zatížení iglidur Q

Pro vysoká zatížení iglidur Q Pro vysoká zatížení Produktová řada Vynikající odolnost proti opotřebení, zejména pro extrémní zatížení Doporučeno pro extrémní pv hodnoty Dobrý koeficient tření Necitlivé na znečištění 541 Pro vysoká

Více

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008

Keramika. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Keramika Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. K. Daďourek 2008 Tuhost a váha materiálů Keramika má největší tuhost z technických materiálů Keramika je lehčí než kovy, ale

Více

Pro vysoké rychlosti pod vodou

Pro vysoké rychlosti pod vodou Pro vysoké rychlosti pod vodou iglidur Produktová řada Pro aplikace pod vodou Pro rychlý a konstantní pohyb Dlouhá životnost HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM

JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM JEMNOZRNNÉ BETONY S ČÁSTEČNOU NÁHRADOU CEMENTU PŘÍRODNÍM ZEOLITEM Pavla Rovnaníková, Martin Sedlmajer, Martin Vyšvařil Fakulta stavební VUT v Brně Seminář Vápno, cement, ekologie, Skalský Dvůr 12. 14.

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování

Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Kumulace poškození termoplastického laminátu C/PPS při cyklickém zatížení a jeho posuzování Jiří Minster, Martin Šperl, ÚTAM AV ČR, v. v. i., Praha Jaroslav Lukeš, FS ČVUT v Praze Motivace a obsah přednášky

Více

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008

Druhy vláken. Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy vláken Technická univerzita v Liberci Kompozitní materiály, 5. MI Doc. Ing. Karel Daďourek 2008 Druhy různých vláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová

Více

Pro vysoké rychlosti iglidur L250

Pro vysoké rychlosti iglidur L250 Pro vysoké rychlosti Produktová řada Pro rotační aplikace Velmi nízký koeficient tření Vynikající odolnost proti opotřebení HENNLICH s.r.o. Tel. 416 711 338 Fax 416 711 999 lin-tech@hennlich.cz www.hennlich.cz

Více

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky

Nauka o materiálu. Přednáška č.5 Základy lomové mechaniky Nauka o materiálu Přednáška č.5 Základy lomové mechaniky Způsoby stanovení napjatosti a deformace Využívají se tři přístupy: 1. Analytický - jen jednoduché geometrie těles - vždy za jistých zjednodušujících

Více

Struktura a vlastnosti kovů I.

Struktura a vlastnosti kovů I. Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)

Více

Základy materiálového inženýrství. Křehké materiály Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Základy materiálového inženýrství. Křehké materiály Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základy materiálového inženýrství Křehké materiály Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Základní charakteristiky křehkých materiálů Křehký lom

Více

Části a mechanismy strojů 1 KKS/CMS1

Části a mechanismy strojů 1 KKS/CMS1 Katedra konstruování strojů Fakulta strojní Části a mechanismy strojů 1 KKS/CMS1 Podklady k přednáškám část A4 Prof. Ing. Stanislav Hosnedl, CSc. a kol. Tato prezentace je spolufinancována Evropským sociálním

Více

Sklo definice, vlastnosti, výroba. LF MU Brno Brýlová technologie

Sklo definice, vlastnosti, výroba. LF MU Brno Brýlová technologie Sklo definice, vlastnosti, výroba LF MU Brno Brýlová technologie Definice skla Sklo je tvrdý, křehký, špatně vodivý materiál, který praská, jestliže je vystaven prudkým teplotním změnám (např. ochlazení)

Více

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.

Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti

Více

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4

Díly forem. Vložky forem Jádra Vtokové dílce Trysky Vyhazovače (nitridované) tlakové písty, tlakové komory (normálně nitridované) V 0,4 1 VIDAR SUPREME 2 Charakteristika VIDAR SUPREME je Cr-Mo-V legovaná ocel pro práci za tepla, pro kterou jsou charakteristické tyto vlastnosti: Velmi dobrá odolnost proti náhlým změnám teploty a tvoření

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

Základní informace o wolframu

Základní informace o wolframu Základní informace o wolframu 1 Wolfram objevili roku 1793 páni Fausto de Elhuyar a Juan J. de Elhuyar. Jedná se o šedobílý těžký tažný tvrdý polyvalentní kovový element s vysokým bodem tání, který se

Více

Pevnost kompozitů obecné zatížení

Pevnost kompozitů obecné zatížení Pevnost kompozitů obecné zatížení Osnova Příčná pevnost v tahu Pevnost v tahu pod nenulovým úhlem proti vláknům Podélná pevnost v tlaku Příčná pevnost v tlaku Pevnost vláknových kompozitů - obecně Základní

Více

Všeobecně lze říci, že EUCOR má několikanásobně vyšší odolnost proti otěru než tavený čedič a řádově vyšší než speciální legované ocele a litiny.

Všeobecně lze říci, že EUCOR má několikanásobně vyšší odolnost proti otěru než tavený čedič a řádově vyšší než speciální legované ocele a litiny. KATALOGOVÝ LIST E-02 A. CHARAKTERISTIKA EUCOR je obchodní označení korundo-baddeleyitového materiálu, respektive odlitků, vyráběných tavením vhodných surovin v elektrické obloukové peci, odléváním vzniklé

Více

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná.

Test A 100 [%] 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. Test A 1. Čím je charakteristická plastická deformace? - Je to deformace nevratná. 2. Co je to µ? - Poissonův poměr µ poměr poměrného příčného zkrácení k poměrnému podélnému prodloužení v oblasti pružných

Více

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky

Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,

Více

Plastická deformace a pevnost

Plastická deformace a pevnost Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových

Více

Pracovní diagram vláken

Pracovní diagram vláken Druhy vláken Rozdělení přednášky Základní vlastnosti vláken a nanovláken Přírodní vlákna Skleněná vlákna Uhlíková a grafitová vlákna Aramidová a silonová vlákna Keramická vlákna Kovová vlákna Whiskery

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Ivan Jeřábek Ústav letadlové techniky FS ČVUT v Praze 1 Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních materiálů Definice zkoušky definice vstupu a výstupu:

Více

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické

ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti

Více

VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ

VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ Sborník str. 363-370 VLIV MIKROSTRUKTURY SLINUTÝCH KARBIDŮ NA ŽIVOTNOST NÁSTROJŮ A STROJNÍCH SOUČÁSTÍ Antonín Kříž Západočeská univerzita, Univerzitní 22, 306 14, Prášková metalurgie - progresivní technologie

Více

Křehké porušení a zlomy. Ondrej Lexa, 2010

Křehké porušení a zlomy. Ondrej Lexa, 2010 Křehké porušení a zlomy Ondrej Lexa, 2010 Odpověď na působení napětí Reologie 2 Křehká deformace Obálky porušení Tenzní versus střižné fraktury Co je křehká deformace? pevné látky se skládají z atomů propojených

Více

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012

Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či náhrad. 20. března 2012 Prohloubení odborné spolupráce a propojení ústavů lékařské biofyziky na lékařských fakultách v České republice CZ.1.07/2.4.00/17.0058 Co by mohl (budoucí) lékař vědět o materiálech tkáňových výztuží či

Více

Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Číslo a název klíčové aktivity: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Zlepšení podmínek pro vzdělávání na středních školách Operačního programu Vzdělávání pro konkurenceschopnost Název a adresa školy: Integrovaná střední škola Cheb, Obrněné brigády 6, 350 11 Cheb Číslo projektu:

Více

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU

BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Sekce X: xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx BEZCEMENTOVÝ BETON S POJIVEM Z ÚLETOVÉHO POPÍLKU Rostislav Šulc, Pavel Svoboda 1 Úvod V rámci společného programu Katedry technologie staveb FSv ČVUT a Ústavu skla

Více

HLINÍK. Lehké neželezné kovy a jejich slitiny

HLINÍK. Lehké neželezné kovy a jejich slitiny Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.

Více

Anorganická pojiva, cementy, malty

Anorganická pojiva, cementy, malty Anorganická pojiva, cementy, malty Ing. Alexander Trinner Technický a zkušební ústav stavební Praha, s.p. pobočka Plzeň Zahradní 15, 326 00 Plzeň trinner@tzus.cz; www.tzus.cz 1 Anorganická pojiva Definice:

Více

TERMOMECHANICKÉ VLASTNOSTI

TERMOMECHANICKÉ VLASTNOSTI TERMOMECHANICKÉ VLASTNOSTI ŽÁROBETONŮ (ŽB) Jiří Hamáček, Jaroslav Kutzendörfer VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav skla a keramiky & ŽÁROHMOTY, spol. s r.o. Třemošná VŠCHT, Praha 2008 TERMOMECHANICKÉ

Více

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep

Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při

Více

Zkoušení kompozitních materiálů

Zkoušení kompozitních materiálů Zkoušení kompozitních materiálů Ivan Jeřábek Odbor letadel FS ČVUT v Praze 1 Zkoušen ení kompozitních materiálů Zkoušky materiálových charakteristik Zkouška kompozitních konstrukcí 2 Zkoušen ení kompozitních

Více

Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur J

Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur J Nízké tření a opotřebení: Pro rychlé i pomalé pohyby iglidur Více než 250 rozměrů skladem ve výrobním závodě Nízké opotřebení s různými materiály hřídele Nízký koeficient tření za sucha Pohlcování vibrací

Více

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával.

Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Keramika Keramika spolu s dřevem, kostmi, kůží a kameny patřila mezi první materiály, které pravěký člověk zpracovával. Chceme li definovat pojem keramika, můžeme říci, že je to materiál převážně krystalický,

Více

ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006. Degradace nízkolegovaných ocelí v. abrazivním a korozivním prostředí

ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006. Degradace nízkolegovaných ocelí v. abrazivním a korozivním prostředí ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006 Degradace nízkolegovaných ocelí v abrazivním a korozivním prostředí ÚSTAV KONSTRUOVÁNÍ seminář 27.10.2006 Odborný Curiculum Vitae Curiculum Vitae Michal Černý - 29.

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života

Únava materiálu. únavového zatěžování. 1) Úvod. 2) Základní charakteristiky. 3) Křivka únavového života. 4) Etapy únavového života Únava materiálu 1) Úvod 2) Základní charakteristiky únavového zatěžování 3) Křivka únavového života 4) Etapy únavového života 5) Klíčové vlivy na únavový život 1 Degradace vlastností materiálu za provozu

Více

PMC - kompozity s plastovou matricí

PMC - kompozity s plastovou matricí PMC - kompozity s plastovou matricí Rozdělení PMC PMC částicové vláknové Matrice elastomer Matrice elastomer Matrice termoplast Matrice termoplast Matrice reaktoplast Matrice reaktoplast Částice v polymeru

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 9 Název úlohy: Charakteristiky termistoru Jméno: Ondřej Skácel Obor: FOF Datum měření: 16.11.2015 Datum odevzdání:... Připomínky opravujícího:

Více

Pro vysoká dyn. zatížení a otěruvzdornost iglidur Z

Pro vysoká dyn. zatížení a otěruvzdornost iglidur Z Pro vysoká dyn. zatížení a otěruvzdornost iglidur Produktová řada Vynikající odolnost proti opotřebení, zejména při vysokém zatížení Vysoká tepelná odolnost Pro extrémní zatížení Pro vysoké obvodové rychlosti

Více

Použití. Části formy V 0,9. Části nástroje. Matrice Podpěrné nástroje, držáky matric, pouzdra, lisovací podložky,

Použití. Části formy V 0,9. Části nástroje. Matrice Podpěrné nástroje, držáky matric, pouzdra, lisovací podložky, ORVAR SUPREME 2 Charakteristika ORVAR SUPREME je Cr-Mo-V legovaná nástrojová ocel, pro kterou jsou charakteristické tyto vlastnosti: Velmi dobrá odolnost proti náhlým tepelným změnám a tvoření trhlin za

Více

Sklo chemické složení, vlastnosti, druhy skel a jejich použití

Sklo chemické složení, vlastnosti, druhy skel a jejich použití Sklo chemické složení, vlastnosti, druhy skel a jejich použití Jak je definováno sklo? ztuhlá tavenina průhledných křemičitanů (pevný roztok) homogenní amorfní látka (bez pravidelné vnitřní struktury,

Více

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/ Výpočty z chemických vzorců Výpočty z chemických vzorců 1. Hmotnost kyslíku je 80 g. Vypočítejte : a) počet atomů kyslíku ( 3,011 10 atomů) b) počet molů kyslíku (2,5 mol) c) počet molekul kyslíku (1,505 10 24 molekul) d) objem (dm

Více

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy)

Wöhlerova křivka (uhlíkové oceli výrazná mez únavy) Únava 1. Úvod Mezním stavem únava je definován stav, kdy v důsledku působení časově proměnných zatížení dojde k poruše funkční způsobilosti konstrukce či jejího elementu. Charakteristické pro tento proces

Více

VÚHŽ a.s. Laboratoře a zkušebny č.p. 240, Dobrá

VÚHŽ a.s. Laboratoře a zkušebny č.p. 240, Dobrá Pracoviště zkušební laboratoře: 1. 621 - Laboratoř chemická 2. 622 - Laboratoř metalografická 3. 623 - Laboratoř mechanických vlastností 4. 624 - Laboratoř korozní Laboratoř je způsobilá aktualizovat normy

Více

Vysoké učení technické v Brně Zkušební laboratoř při ÚTHD FAST VUT v Brně Veveří 95, Brno

Vysoké učení technické v Brně Zkušební laboratoř při ÚTHD FAST VUT v Brně Veveří 95, Brno List 1 z 13 Pracoviště zkušební laboratoře: 1. Pracoviště V 2. Pracoviště P Purkyňova 139, 602 00 Brno Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu

Více

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl

Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl Zkoušení fyzikálně-mechanických vlastností materiálů a výrobků pro automobilový průmysl Zákaznický den, Zlín 17.3.2011 Základní typy zkoušek stanovení základních vlastností surovin, materiálu polotovarů

Více

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( )

OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 ( ) OPTIMALIZACE NÁVRHU CB VOZOVEK NA ZÁKLADĚ POČÍTAČOVÉHO A EXPERIMENTÁLNÍHO MODELOVÁNÍ. GAČR 103/09/1746 (2009 2011) Dílčí část projektu: Experiment zaměřený na únavové vlastnosti CB desek L. Vébr, B. Novotný,

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní

REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT. Západočeská univerzita v Plzni Fakulta strojní REGIONÁLNÍ TECHNOLOGICKÝ INSTITUT Západočeská univerzita v Plzni Fakulta strojní Výzkumné centrum RTI Regionální technologický institut - RTI je výzkumné centrum Fakulty strojní Západočeské univerzity

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

Identifikace zkušebního postupu/metody PP 621 1.01 (ČSN ISO 9556, ČSN ISO 4935) PP 621 1.02 (ČSN EN 10276-2, ČSN 42 0525)

Identifikace zkušebního postupu/metody PP 621 1.01 (ČSN ISO 9556, ČSN ISO 4935) PP 621 1.02 (ČSN EN 10276-2, ČSN 42 0525) List 1 z 9 Pracoviště zkušební laboratoře: Odd. 621 Laboratoř chemická, fázová a korozní Protokoly o zkouškách podepisuje: Ing. Karel Malaník, CSc. ředitel Laboratoří a zkušeben Ing. Vít Michenka zástupce

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK) Ing. Jan Závitkovský e-mail: jan.zavitkovsky@centrum.cz

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor obrábění Téma: 10. cvičení - Broušení Okruhy: Druhy brusek, účel a využití Základní druhy brousicích materiálů

Více

Poškození strojních součástí

Poškození strojních součástí Poškození strojních součástí Degradace strojních součástí Ve strojích při jejich provozu probíhají děje, které mají za následek změny vlastností součástí. Tyto změny jsou prvotními technickými příčinami

Více

Experimentální zjišťování charakteristik kompozitových materiálů a dílů

Experimentální zjišťování charakteristik kompozitových materiálů a dílů Experimentální zjišťování charakteristik kompozitových materiálů a dílů Dr. Ing. Roman Růžek Výzkumný a zkušební letecký ústav, a.s. Praha 9 Letňany ruzek@vzlu.cz Základní rozdělení zkoušek pro ověření

Více

Identifikace zkušebního postupu/metody

Identifikace zkušebního postupu/metody Pracoviště zkušební laboratoře: 1. 621 Laboratoř chemická a radioizotopová 2. 622 Laboratoř metalografická 3. 623 Laboratoř mechanických vlastností 4. 624 Laboratoř korozní Laboratoř je způsobilá aktualizovat

Více

LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha

LŠVT 2007. Mechanické vlastnosti: jak a co lze měřm. ěřit na tenkých vrstvách. Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Mechanické vlastnosti: jak a co lze měřm ěřit na tenkých vrstvách Jiří Vyskočil, Andrea Mašková HVM Plasma, Praha Prague, May 2005 OBSAH 1 mechanické vlastnosti objemových materiálů 1 tenké vrstvy a jejich

Více

LETECKÉ MATERIÁLY. Úvod do předmětu

LETECKÉ MATERIÁLY. Úvod do předmětu LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých

Více