je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co

Rozměr: px
Začít zobrazení ze stránky:

Download "je nutná k tomu, aby byl odhad takto pořízený je potřebná k tomu, aby proměnné-instrumenty vysvětlující veličiny v rovnici je nahrazovaly co"

Transkript

1 Obecná etod nstruentálních proěnných (G)IV (Generl Instruentl Vrbles ethod) v soustvě sultánních regresních rovnc utor etody: J.D. Srgn [958] Metod nstruentálních proěnných je jstý zobecnění dvoustupňové etody nejenších čtverců 2SLS. oskytuje, stejně jko 2SLS, vždy (přnejenší) konzstentní odhdy strukturních pretrů regresních rovnc v nterdependentních ekonoetrckých odelech. Zákldní otvcí etody je nlézt určté poocné proěnné - tzv. nstruentální proěnné - které sehrjí stejnou úlohu, jko á trnsforce R X př odvození odhdové funkce 2SLS (vz druhý postup odvození 2SLS) Hledjí se tedy tkové proěnné - jejch tc ve vzthu k -té rovnc oznče jko - které budou vyhovovt vzthu y δ + ε kde (Y,X ); δ (β,γ )... přto tkové, že ) budou nekorelovné s náhodný složk -té strukturní rovnce b) budou co nejvíce korelovné s vysvětlující proěnný -té rovnce. odínk ) konzstentní. odínk b) zstupující nejvýstžněj je nutná k tou, by byl odhd tkto pořízený je potřebná k tou, by proěnné-nstruenty vysvětlující velčny v rovnc je nhrzovly co Z podínek je zřejé, že nstruentální proěnné lze vybírt (pouze) z predeternovných proěnných odelu (běžné endogenní jsou korelovné s náhodný složk). roblé nespočívá v to, čí nhrdt v -té rovnc přítoné predeternovné proěnné, le čí nhrdt přítoné běžné endogenní velčny.

2 Zbývá tedy provést co nejvhodnější výběr z predeternovných proěnných odelu. Je tedy zřejé, že nstruentální proěnné budou defnovné poocí tcového vzthu A X. A kde je určující tce defnující nstruentální proěnné (tce tzv.nstruentů) je tce nstruentálních proěnných pro -tou rovnc ( X je tce všech predeternovných proěnných odelu). Volb nstruentálních proěnných (tce ) je tedy rovnocenná určení tce nstruentů A. Index příslušnost k rovnc lze vynecht, pokud pro odhd kždé rovnce odelu použjee tutéž skupnu nstruentálních proěnných (je to obvyklé, nkolv nutností). V toto přípdě bycho psl kde X. A, A je tce nstruentů defnujících nstruentální proěnné pro odhd pretrů všech rovnc. Z poždvků, které byly n nstruenty položeny, plyne, že IVodhdová funkce strukturních pretrů odelu á tvr IV δˆ. (. y. (. (.δ. + ε ) δ. + (. ε oznák podínkou exstence IV-estátoru je, by byly exstovl nverzní tce k tc [ q,t ]. [ T; + q ] K tou je opět přnejenší nutné, by byl splněn podínk + q q: jnk by tce [ q,t ]. [ T; + q ] neohl být n čtvercová (tí éně ne regulární). (obvykle předpokldáe q T) Vlstnost IV-odhdové funkce Lze ukázt, že IV-estátor strukturních pretrů odelu á tyto vlstnost: ) Odhdy pretrů δ. ( tj. β., γ. ) jsou konzstentní, neboť pltí očet nstruentů potřebných k odhdu -té rovnce usí být tedy roven počtu vysvětlujících proěnných této rovnce. odrobněj v část pojednávjící o dentfkční probléu. 2

3 p lδˆ T δ p l( /T) T.p l( ε /T) 0 T v důsledku (syptotcké ) nekorelovnost proěnných náhodných složek ε 2) Odhdy pretrů δ ( nebol protože Eδˆ Eδ β ) nejsou nestrnné,, γ [ (. ε ] δ E( + +. ε le výrz E( ε E( E( ε ) vzhlede k ožné závslost j běžných endogenních proěnných přítoných ve náhodných složek ε. 3) Odhdy pretrů δ ( tj. β, γ ) nejsou, ž n výjku, kdy etod IV přechází v 2SLS, obecně vydtné (n v rác etod s oezenou nforcí). 4) Odhdy pretrů δ ( tj. β, y ) jsou (z stejných předpokldů (e), (f), (g), (h) jko u 2SLS) vždy syptotcky norální, tedy pltí T.(δˆ. δ. ) N(0,σ Konzstentní odhd prvků obvyklý způsobe:.p l T T j T T IVσ j pro jednotlvé rovnce získáe IV σˆ j kde z rezdu e., e. j vezee odhdy náhodných složek ε., ε. j získné etodou IV. Je tedy zřejé, že otázk nejlepšího výběru (poskytujícího nejvydtnější IV-odhd) ez různý IV-estátory spočívá v optální defnc tce A. Jný slovy, vyšetřujee, pro jkou volbu tce A nstává xální ožná korelce ez nstruenty v A (resp. ez nstruentální proěnný v ) vysvětlující proěnný -té rovnce? v e. T v e.j 3

4 ro ěření korelce ez dvě skupn náhodných velčn (jících stejný počet pozorování) se užívá vektorový korelční koefcent defnovný jko: r (;) ( ) C + q 0.. ( )( ) ( Hodnot tohoto koefcentu se pohybuje ez 0 (nezávslost) (přesná závslost). Výrz, který v kovrnční tcí IV-estátoru ( /T) ( /T)( /T v sobě obshuje frgent výrzu pro tzv. ) zobecněný rozptyl. Ten je defnován jko + q GVr δˆ σ.(.( ).(. ) Mez vektorový korelční koefcente zobecněný rozptyle pltí tedy vzth GVr δˆ + q σ..(r C(; )) z čehož je ptrné, že pro tková, pro která je nlzován hodnot GVr δˆ. je právě xlzován korelce ez. Vyšetříe, kdy tková korelce nbude xální ožné hodnoty; v toto přípdě poskytne IV-odhdová funkce δ nejvydtnější odhd. Lze přto ukázt, že pltí: r (,) r (,X) C Znená to tedy, že neůže být překročen horní hrnce dná (vektorovou) korelcí ez nožnou nstruentálních proěnných nožnou všech predeternovných proěnných. Této xální korelovnost je dosženo pro volbu C A (X X) X ř této volbě tce A dostnee : 4

5 X.A X(X X) X k je IV- odhdová funkce rovn δˆ ( Y X(X X) X X(X X) X Y X Y Znená to tedy, že : [ X(X X) X Y;X(X X) X X ] [ XΠˆ ;X ] IV y. Y X(X X) X Y Y X(X X) X y. 2SLS X X(X X) X Y X X(X X) X y ) 2SLS-odhdová funkce je specální přípde IV-odhdové funkce př volbě tce nstruentů jko A (X X) X 2) 2SLS-odhdová funkce poskytuje ve srovnání s jkoukolv jnou volbou tce A nejvydtnější odhd. tj. ve syslu syptotcké vydtnost je 2SLS-odhdová funkce donntní vůč vše osttní IV-estátorů. Skutečnost, že plkcí technky IV nelze překont etodu 2SLS ůže být jstý zklání. V nelneárních odelech tou tk není, zde ůžee z nstruenty vzít též nelneární kobnce z predeternovných proěnných. An NL2S estátor (nelneární dvoustupňová etod nejenších čtverců) není zde defnován jednoznčně : exstují npř. BNL2S (best) MNLS (nl) estátor. očet nstruentálních proěnných n usí být v rozezí ez + q, tedy q + q n q okud upltníe nstruentální proěnné v xální ožné počtu q tj. jko všechny predeternovné proěnné, pk - využjee xu nforce obsžené v odelových proěnných, což povede k vydtnéu odhdu, le - budee prcovt s obsžnější tce přípdně nžší spolehlvostí výsledku δˆ. 5

6 okud upltníe nstruentální proěnné v nální přípustné počtu + q tj. jko výběr + q predeternovných proěnných, pk - nevyužjee všechnu potřebnou nforc obsženou v odelových proěnných, což bude ít z následek éně kvltní (byť konzstentní) odhdu, le - výpočet bude úspornější počet stupňů volnost odelu vyšší. Koprose ůže být vzetí nstruentálních proěnných v podobě lneární kobnce sestávjící z prvních + q hlvních koponent oentové tce X X. 6

7 ř řešení konkrétních úloh se upltňují tyto přístupy k volbě nstruentálních proěnných (defnujících tc A): ) prostý výběr počtu + q z celke q predeternovných proěnných. Mtce nstruentů bude zde ít tvr A [ q, + q ], přčež v této obdélníkové tc budou jednčkové prvky pouze v hlvní pseudodgonále,,2,, + q A U predeternovných proěnných, které jsou vzty jko nstruentální, je v příslušné sloupc A jednčk vynechávný odpovídjí nulové sloupce. b) + q členná lneární kobnce složená z predeternovných proěnných V toto přípdě á příslušná tce tvr A q, q, q,3, + q 2, + q 3, + q q, + q Koefcenty lneární kobnce jsou obsženy ve sloupcích této tce. c) prvních + q hlvních koponent sestrojených z tce predeternovných proěnných 7

8 A q, q, q,3, + q 2, + q 3, + q q, + q Koefcenty této lneární kobnce (opět obsžené ve sloupcích tce A 3) předstvují prvky vlstních vektorů příslušných oentové tc X X. Z celke q hlvních koponent se oezujee n největších + q z nch. 8

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

Algoritmus určování rovnice roviny pro laserové skenování

Algoritmus určování rovnice roviny pro laserové skenování Algortus určování rovnce rovny pro lserové skenování Úvod Ing Bronslv Kosk, Ing Mrtn Štroner, PhD, Doc Ing Jří Pospíšl, CSc, ČVU - Fkult stvební, Prh V rác řešení projektu GA ČR Moderní optoelektroncké

Více

3. Kvadratické rovnice

3. Kvadratické rovnice CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

Zadání příkladů. Zadání:

Zadání příkladů. Zadání: Zdání příkldů Zdání: ) Popšte oblst vužtí plánovných expermentů ) Uveďte krtér optmlt plánů ) Co sou Hdmrdov mtce ké mí vlstnost? ) Co sou. fktorové plán k e lze vužít? 5) Blok čtverce - oblst ech vužtí

Více

. Potom (2) B pro danou periodickou funkci f ( ) x se nazývá Fourierova analýza.

. Potom (2) B pro danou periodickou funkci f ( ) x se nazývá Fourierova analýza. Učební text k přednášce UFY Fourierov nlýz, Fourierov trnsforce nhronické periodické vlny Fourierov nlýz Fourierův teoré: Funkce f ( x ) s prostorovou periodou ůže být rozvinut do řdy hronických funkcí

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2)

P i= Od každého obrázku sady odečteme průměrný obraz (provedeme centrování dat): (2) METODA PCA A JEJÍ IMPLEMENTACE V JAZYCE C++ Lukáš Frtsch, Ing. ČVUT v Praze, Fakulta elektrotechncká, Katedra radoelektronky Abstrakt Metoda PCA (Prncpal Coponent Analyss- analýza hlavních koponent) ůže

Více

Matematika I A ukázkový test 1 pro 2018/2019

Matematika I A ukázkový test 1 pro 2018/2019 Matematka I A ukázkový test 1 pro 2018/2019 1. Je dána soustava rovnc s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napšte Frobenovu větu (předpoklady + tvrzení). b) Vyšetřete

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

4 NÁHODNÝ VEKTOR. Čas ke studiu kapitoly: 60 minut. Cíl: Po prostudování této kapitoly budete umět

4 NÁHODNÝ VEKTOR. Čas ke studiu kapitoly: 60 minut. Cíl: Po prostudování této kapitoly budete umět 4 NÁHODNÝ VEKTOR Čs ke studu kptol: 6 mnut Cíl: o prostudování této kptol udete umět popst náhodný vektor eho sdružené rozdělení vsvětlt pom mrgnální podmíněné rozdělení prvděpodonost popst stochstckou

Více

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4)

Obecně: K dané funkci f hledáme funkci ϕ z dané množiny funkcí M, pro kterou v daných bodech x 0 < x 1 <... < x n. (δ ij... Kroneckerovo delta) (4) KAPITOLA 13: Numerická integrce interpolce [MA1-18:P13.1] 13.1 Interpolce Obecně: K dné funkci f hledáme funkci ϕ z dné množiny funkcí M, pro kterou v dných bodech x 0 < x 1

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Druhé kvantování. Slaterův determinant = χ χ

Druhé kvantování. Slaterův determinant = χ χ Druhé kvntování Druhé kvntování žádná nová fyzk! jný formlsmus upltnění prncpu ntsymetre bez použtí Slterových determnntů. Antsymetrcké vlstnost vlnových funkcí jsou přeneseny n lgebrcké vlstnost dných

Více

OBECNÝ URČITÝ INTEGRÁL

OBECNÝ URČITÝ INTEGRÁL OBECNÝ URČITÝ INTEGRÁL Zobecnění Newtonov nebo Riemnnov integrálu se definují různým způsobem dostnou se někdy různé, někdy stejné pojmy. V tomto textu bude postup volen jko zobecnění Newtonov integrálu,

Více

Regresní lineární model symboly

Regresní lineární model symboly Lneární model, Dskrmnační analýza, Podůrné vektory Regresní lneární model symboly Použté značení b arametry modelu (vektor ) očet atrbutů (skalár) N očet říkladů (skalár) x jeden říklad (vektor ) x -tá

Více

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ

1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ 1 CHYBY, VARIABILITA A NEJISTOTY INSTRUMENTÁLNÍCH MĚŘENÍ Účele ěření je stanovení velkost ěřené velčny, charakterzující určtou specfckou vlastnost. Specfkace ěřené velčny ůže vyžadovat údaje o dalších

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

25 Měrný náboj elektronu

25 Měrný náboj elektronu 5 Měrný náboj elektronu ÚKOL Stnovte ěrný náboj elektronu e výsledek porovnejte s tbulkovou hodnotou. TEORIE Poěr náboje elektronu e hotnosti elektronu nzýváe ěrný náboj elektronu. Jednou z ožných etod

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

Metoda konečných prvků. Robert Zemčík

Metoda konečných prvků. Robert Zemčík Metod konečných prvků Robert Zemčík Zápdočeská unverzt v Plzn 2014 1 Rovnce mtemtcké teore pružnost Předpokládáme homogenní, zotropní lneární mterál, mlé deformce. Jednoosá nptost Cuchyho podmínky rovnováhy

Více

NÁVRH DECENTRALIZOVANÉHO ŘÍZENÍ METODOU DYNAMICKÉ KOMPENZACE. Milan Cepák, Branislav Rehák, Vladimír Havlena ČVUT FEL, katedra řídicí techniky

NÁVRH DECENTRALIZOVANÉHO ŘÍZENÍ METODOU DYNAMICKÉ KOMPENZACE. Milan Cepák, Branislav Rehák, Vladimír Havlena ČVUT FEL, katedra řídicí techniky ÁVR DECETRALIZVAÉ ŘÍZEÍ METDU DYAMICÉ MPEZACE Mlan Cepák, ranslav Rehák, Vladír avlena ČVUT FEL, katedra řídcí technky Abstrakt: Tento příspěvek se zabývá návrhe decentralzovaného řízení rozlehlých systéů

Více

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku

Základní principy fyziky semestrální projekt. Studium dynamiky kladky, závaží a vozíku Zákldní principy fyziky seestrální projekt Studiu dyniky kldky, závží vozíku Petr Luzr I/4 008/009 Zákldní principy fyziky Seestrální projekt Projekt zdl: Projekt vyprcovl: prof. In. rntišek Schuer, DrSc.

Více

Univerzita Tomáše Bati ve Zlíně

Univerzita Tomáše Bati ve Zlíně nvert Tomáše Bt ve Zlíně LBOTONÍ CČENÍ ELEKTOTECHNKY PŮMYSLOÉ ELEKTONKY Náev úlohy: Metody řešení stejnosměrných elektrckých ovodů v ustáleném stvu Zprcovl: Petr Lur, Josef Morvčík Skupn: T / Dtum měření:

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6

x jsou všechna reálná čísla x, pro která platí: log(x + 5) D: x ( 5; 4) (4; ) + x+6 Test studijních předpokldů Vrint A1 Příkld 1. Kolik přirozených čísel lze vytvořit z číslic 0, 1,, 4, 8, jestliže se žádná číslice neopkuje? A: 1 B: 3 C: 60 D: 40 E: 48 Příkld. Definičním oborem funkce

Více

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

NEWTONŮV INTEGRÁL. V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování. Ztím nebylo jsné, k čemu tento nástroj slouží. Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

jsou všechna reálná čísla x, pro která platí: + x 6

jsou všechna reálná čísla x, pro která platí: + x 6 Příkld 1. Kolik lichých přirozených čísel lze vytvořit z číslic 0, 1, 2,, 8, jestliže se žádná číslice neopkuje? A: 2 B: 6 C: 9 D: 52 E: 55 Příkld 2. Definičním oborem funkce y = A: x ( 5; ) B: x ( 5;

Více

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží.

V předchozích kapitolách byla popsána inverzní operace k derivování. Zatím nebylo jasné, k čemu tento nástroj slouží. NEWTONŮV INTEGRÁL V předchozích kpitolách byl popsán inverzní operce k derivování Ztím nebylo jsné, k čemu tento nástroj slouží Uvžujme trmvj, která je poháněn elektřinou při brždění vyrábí dynmem elektřinu:

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

evod povahy kritérií v modelech vícekriteriální analýzy variant Anotace Klí ová slova Annotation Keywords Úvod

evod povahy kritérií v modelech vícekriteriální analýzy variant Anotace Klí ová slova Annotation Keywords Úvod Převod povhy krtérí v odelech vícekrterální nlýzy vrnt Mln Houšk, Ludl Döeová Ktedr operční systéové nlýzy PEF ČZU v Prze e-l: housk@pef.czu.cz, doeov@pef.czu.cz Anotce Př řešení úloh vícekrterální nlýzy

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Riemnnův integrál opkování Vět. Nechť f je spojitá funkce n intervlu, b nechť c, b. Oznčíme-li F (x) = x (, b), pk F (x) = f(x) pro kždé x (, b). VIII.3.

Více

Termodynamický popis chemicky reagujícího systému

Termodynamický popis chemicky reagujícího systému 5. CHEMICKÉ ROVNOVÁHY Všechny chemcké rekce směřují k dynmcké rovnováze, v níž jsou řítomny jk výchozí látky tk rodukty, které všk nemjí jž tendenc se měnt. V řdě řídů je všk oloh rovnováhy tk osunut ve

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje.

4. přednáška 22. října Úplné metrické prostory. Metrický prostor (M, d) je úplný, když každá cauchyovská posloupnost bodů v M konverguje. 4. přednášk 22. říjn 2007 Úplné metrické prostory. Metrický prostor (M, d) je úplný, když kždá cuchyovská posloupnost bodů v M konverguje. Příkldy. 1. Euklidovský prostor R je úplný, kždá cuchyovská posloupnost

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC

2.5. MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC 25 MATICOVÉ ŘEŠENÍ SOUSTAV LINEÁRNÍCH ROVNIC V této kaptole se dozvíte: jak lze obecnou soustavu lneárních rovnc zapsat pomocí matcového počtu; přesnou formulac podmínek řeštelnost soustavy lneárních rovnc

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

Přibližné řešení algebraických rovnic

Přibližné řešení algebraických rovnic Přblžné řešení lgebrcých rovnc Algebrcou rovncí stupně n nzýváme rovnc =, tj n n x x x =, de n N, x C, oefcenty P n,,, n R, Budeme prcovt s tzv normovou lgebrcou rovncí ( = ) n n x x x = Řešením (ořenem)

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Pozorování obvykle kvalitativní charakter, popis stavu, popis změn, dlouhodobá zkušenost např. popis duhy, střídání dne a noci, koloběh vody.

Pozorování obvykle kvalitativní charakter, popis stavu, popis změn, dlouhodobá zkušenost např. popis duhy, střídání dne a noci, koloběh vody. . Měření Fzkální velčn Fzkální jednotk oustv I Jné soustv Měření - ch - zprcování výsledků měření - grf Pozorování ovkle kvlttvní chrkter, pops stvu, pops změn, dlouhodoá zkušenost npř. pops duh, střídání

Více

NMAF061, ZS Písemná část zkoušky 16. leden 2018

NMAF061, ZS Písemná část zkoušky 16. leden 2018 Jednotlivé kroky při výpočtech stručně, le co nejpřesněji odůvodněte. Pokud používáte nějké tvrzení, nezpomeňte ověřit splnění předpokldů. Jméno příjmení: Skupin: Příkld 1 3 4 5 6 Celkem bodů Bodů 7 6

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

VIII. Primitivní funkce a Riemannův integrál

VIII. Primitivní funkce a Riemannův integrál VIII. Primitivní funkce Riemnnův integrál VIII.2. Primitivní funkce Definice. Nechť funkce f je definován n neprázdném otevřeném intervlu I. Řekneme, že funkce F : I R je primitivní funkce k f n intervlu

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět MR 1 Pvel Pdevět PŘÍHRADOVÉ KONTRUKCE REAKCE A VNITŘNÍ ÍLY PŘÍHRADOVÉ KONTRUKCE jsou prutové soustvy s kloubovým vzbm. Příhrdová konstrukce je tvořen z přímých prutů nvzájem spojených ve styčnících kloubovým

Více

Podmíněná pravděpodobnost, spolehlivost soustav

Podmíněná pravděpodobnost, spolehlivost soustav S1 odmíněná pravděpodobnost, spolehlvost soustav odmíněná pravděpodobnost, spolehlvost soustav Lbor Žák odmíněná pravděpodobnost Nechť,, 0, podmíněná pravděpodobnost evu vzhledem k evu : S akou pravděpodobností

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

8 Mongeovo promítání

8 Mongeovo promítání 8 Mongeovo promítání Pomocí metod uvedených v kpitolách 3. 4., 3. 6. bychom mohli promítnout do roviny 3 libovolný útvr U E. V prxi všk většinou nestčí sestrojit jeden průmět. Z průmětu útvru U je většinou

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

4. cvičení z Matematiky 2

4. cvičení z Matematiky 2 4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak,

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak, .6. Mocniny celý ocnitele I Předpokldy: 6, 6 Př. : Kteé ze dvou pvidel je teticky hezčí? ) Po kždé R, N pltí: +. ) Po kždé R,, N, > pltí:. Zákldní poždvek n káu tetického pvidl: Muí ýt co nejoecnější inie

Více

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)

II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y) . NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál

Více

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819

c 2 b 2 a 2 2.8.20 Důkazy Pythagorovy věty Předpoklady: 020819 .8.0 Důkzy Pythgorovy věty Předpokldy: 00819 Pedgogická poznámk: V řešení kždého příkldu jsou uvedeny rdy, které dávám postupně žákům, bych jim pomohl. Pedgogická poznámk: Diskuse o následujícím příkldu

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

rovnice 8.1 Úvod Kapitola 8

rovnice 8.1 Úvod Kapitola 8 Kpitol 8 Zobecněné lineární diferenciální rovnice 8.1 Úvod Všechny integrály v této kpitole jsou KS-integrály, jejichž definice je rozšířen ve smyslu odstvce 6.8 n mticové funkce (tj. funkce zobrzující

Více

17 Křivky v rovině a prostoru

17 Křivky v rovině a prostoru 17 Křivky v rovině prostoru Definice 17.1 (rovinné křivky souvisejících pojmů). 1. Nechť F (t) [ϕ(t), ψ(t)] je 2-funkce spojitá n, b. Rovinnou křivkou nzveme množinu : {F (t) : t, b } R 2. 2-funkce F [ϕ,

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Staré mapy TEMAP - elearning

Staré mapy TEMAP - elearning Sté py TEMAP - elenng Modul 3 Geoefeencování Ing. Mkét Potůčková, Ph.D. 3 Příodovědecká fkult UK v Pze Kted plkovné geonfotky ktogfe Motvce Sté py nohdy neyly vyhotoveny v ktogfcké zození č je toto zození

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Opakování ke státní maturitě didaktické testy

Opakování ke státní maturitě didaktické testy Číslo projektu CZ..7/../.9 Škol Autor Číslo mteriálu Název Tém hodiny Předmět Ročník/y/ Anotce Střední odborná škol Střední odborné učiliště, Hustopeče, Msrykovo nám. Mgr. Rent Kučerová VY INOVACE_MA..

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

8 Dynamika soustav těles-metoda uvolňování

8 Dynamika soustav těles-metoda uvolňování 97 8 Dynk soustv těles-etod uvolňování Vyšetřování pohybu soustv těles vázných knetcký dvojce vyšetřování dynckých slových únků působících n jednotlvá těles soustv tvoří zákld dynky stojů echnsů. Úlohy

Více

Termodynamika materiálů verse 2.03 (12/2006)

Termodynamika materiálů verse 2.03 (12/2006) ermodynmk mterálů verse.03 (/006) 8. Dodtek 8.. Zákldní mtemtcký prát Převážná řd pozntků v termodynmce vyplývá z první druhé věty termodynmcké, které postuluí č umožňuí odvodt vzthy mez ednotlvým termodynmckým

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Numerická integrace konstitučních vztahů

Numerická integrace konstitučních vztahů Numercká ntegrace konsttučních vztahů Po výočtu neznámých deformačních uzlových arametrů v každé terac NR metody je nutné stanovt naětí a deformace na rvcích. Nař. Jednoosý tah (vz obr. vravo) Pro nterval

Více

Integrální počet - III. část (určitý vlastní integrál)

Integrální počet - III. část (určitý vlastní integrál) Integrální počet - III. část (určitý vlstní integrál) Michl Fusek Ústv mtemtiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednášk z AMA1 Michl Fusek (fusekmi@feec.vutbr.cz) 1 / 18 Obsh 1 Určitý vlstní (Riemnnův)

Více

BLUP. Zdeňka Veselá

BLUP. Zdeňka Veselá BLUP deňk Veselá vesel.zdenk@vuzv.cz BLUP V prxi předpověď plemenné hodnot pomocí BLUP Best Liner Unised Prediction Sstém rovnic lineárních modelů se smíšenými efekt Fixní efekt npř. věk mtk, pohlví, plemeno,

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Náhodná proměnná Vybraná spojitá rozdělení PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Vybrná spojitá rozdělení Zákldní soubor u spojité náhodné proměnné je nespočetná množin. Z je tedy podmnožin množiny reálných čísel (R). Distribuční funkce

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice

2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice 59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více