05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")

Rozměr: px
Začít zobrazení ze stránky:

Download "05/29/08 cvic5.r. cv5.dat <- read.csv("cvic5.csv")"

Transkript

1 Zobecněné lineární modely Úloha 5: Vzdělání a zájem o politiku cv5.dat <- read.csv("cvic5.csv") Jména veličin a rozměry datové tabulky names(cv5.dat) [1] "n" "polit" "vzdel" "stat" dim(cv5.dat) [1] 30 4 Vypišme soubor cv5.dat n polit vzdel stat 1 94 Ano Zakladni SSSR 2 84 Ne Zakladni SSSR Ano Zakladni USA Ne Zakladni USA Ano Zakladni Britanie Ne Zakladni Britanie Ano Zakladni Italie Ne Zakladni Italie Ano Zakladni Mexiko Ne Zakladni Mexiko Ano Stredni SSSR Ne Stredni SSSR Ano Stredni USA Ne Stredni USA Ano Stredni Britanie Ne Stredni Britanie Ano Stredni Italie Ne Stredni Italie Ano Stredni Mexiko Ne Stredni Mexiko Ano Vysok. SSSR Ne Vysok. SSSR Ano Vysok. USA 24 8 Ne Vysok. USA Ano Vysok. Britanie 26 2 Ne Vysok. Britanie Ano Vysok. Italie 28 7 Ne Vysok. Italie Ano Vysok. Mexiko 30 2 Ne Vysok. Mexiko Jaký typ má polit class(cv5.dat$polit) [1] "character" Mám vypnutou automatickou konverzi znaků na faktory Využiju toho k tomu, abych si pořadí úrovní faktorů zadával podle potřeby cv5.dat$pol.f <- factor(cv5.dat$polit,levels=c("ne","ano")) cv5.dat$vzd.f <- factor(cv5.dat$vzdel, levels=c("zakladni","stredni","vysok.")) cv5.dat$stat.f <- factor(cv5.dat$stat, levels=c("usa","britanie","italie","mexiko","sssr")) Model nezávislosti: (P,V,S) Page 1

2 fit1 <- glm(n~pol.f+vzd.f+stat.f,family=poisson,data=cv5.dat) summary(fit1) Call: glm(formula = n ~ pol.f + vzd.f + stat.f, family = poisson, data = cv5.dat) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** pol.fano < 2e-16 *** vzd.fstredni < 2e-16 *** vzd.fvysok < 2e-16 *** stat.fbritanie ** stat.fitalie stat.fmexiko stat.fsssr e-05 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: on 29 degrees of freedom Residual deviance: on 22 degrees of freedom AIC: Interpretace parametru pol.fano = : Odhad šance na zájem o politiku mezi všemi účastníky studie je exp( ) = 1.80 Odhad pravděpodobnosti zájmu o politiku je 1.80/(1+1.80) = 0.64 Test kvality modelu: Pokud model platí, (residuální) deviance má chí-kvadrát rozdělení s 22 stupni volnosti (lze, neboť všechny regresory jsou diskrétní) Testová statistika: , model jasně zamítáme. Veličiny P, V, S nejsou vzájemně nezávislé. Model (PV,PS,VS) fit2 <- glm(n~(pol.f+vzd.f+stat.f)^2,family=poisson,data=cv5.dat) summary(fit2) Call: glm(formula = n ~ (pol.f + vzd.f + stat.f)^2, family = poisson, data = cv5.dat) Deviance Residuals: Min 1Q Median 3Q Max Coefficients: Estimate Std. Error z value Pr(> z ) (Intercept) < 2e-16 *** pol.fano e-15 *** vzd.fstredni e-07 *** vzd.fvysok < 2e-16 *** stat.fbritanie e-05 *** stat.fitalie < 2e-16 *** stat.fmexiko < 2e-16 *** stat.fsssr pol.fano:vzd.fstredni < 2e-16 *** pol.fano:vzd.fvysok < 2e-16 *** Page 2

3 pol.fano:stat.fbritanie pol.fano:stat.fitalie < 2e-16 *** pol.fano:stat.fmexiko e-09 *** pol.fano:stat.fsssr e-11 *** vzd.fstredni:stat.fbritanie e-11 *** vzd.fvysok.:stat.fbritanie < 2e-16 *** vzd.fstredni:stat.fitalie < 2e-16 *** vzd.fvysok.:stat.fitalie e-13 *** vzd.fstredni:stat.fmexiko < 2e-16 *** vzd.fvysok.:stat.fmexiko < 2e-16 *** vzd.fstredni:stat.fsssr e-11 *** vzd.fvysok.:stat.fsssr < 2e-16 *** --- Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: on 29 degrees of freedom Residual deviance: on 8 degrees of freedom AIC: Number of Fisher Scoring iterations: 4 V tomto modelu jsou všechny veličiny vzájemně závislé. Podmíněné poměry šancí dvou veličin však nezávisí na hodnotách třetí veličiny. Interpretace parametru pol.fano:vzd.fvysok. = Odhad poměru šancí na zájem o politiku mezi vysokoškoláky a lidmi se základním vzděláním je exp( ) = 7.91 Mezi vysokoškoláky je téměř 8-krát větší šance na zájem o politiku než mezi lidmi se základním vzděláním. anova(fit1,fit2,test="chisq") Analysis of Deviance Table Model 1: n ~ pol.f + vzd.f + stat.f Model 2: n ~ (pol.f + vzd.f + stat.f)^2 Resid. Df Resid. Dev Df Deviance P(> Chi ) Model s interakcemi je výrazně lepší. drop1(fit2,test="chisq") Single term deletions Model: n ~ (pol.f + vzd.f + stat.f)^2 Df Deviance AIC LRT Pr(Chi) <none> pol.f:vzd.f < 2.2e-16 *** pol.f:stat.f < 2.2e-16 *** vzd.f:stat.f < 2.2e-16 *** Žádnou z interakcí nelze z modelu vypustit. Test kvality modelu: Pokud model platí, (residuální) deviance má chí-kvadrát rozdělení s 8 stupni volnosti Testová statistika: 35.09, model jasně zamítáme. Musíme přejít k saturovanému modelu. Page 3

4 fit.s <- glm(n~(pol.f+vzd.f+stat.f)^3,family=poisson,data=cv5.dat) summary(fit.s) Call: glm(formula = n ~ (pol.f + vzd.f + stat.f)^3, family = poisson, data = cv5.dat) Deviance Residuals: [1] [26] Coefficients: Estimate Std. Err. z value Pr(> z ) (Intercept) < 2e-16 pol.fano e-10 vzd.fstredni vzd.fvysok e-13 stat.fbritanie stat.fitalie < 2e-16 stat.fmexiko < 2e-16 stat.fsssr pol.fano:vzd.fstredni e-08 pol.fano:vzd.fvysok e-10 pol.fano:stat.fbritanie pol.fano:stat.fitalie < 2e-16 pol.fano:stat.fmexiko e-07 pol.fano:stat.fsssr vzd.fstredni:stat.fbritanie vzd.fvysok.:stat.fbritanie vzd.fstredni:stat.fitalie e-10 vzd.fvysok.:stat.fitalie vzd.fstredni:stat.fmexiko < 2e-16 vzd.fvysok.:stat.fmexiko vzd.fstredni:stat.fsssr e-05 vzd.fvysok.:stat.fsssr e-10 pol.fano:vzd.fstredni:stat.fbritanie pol.fano:vzd.fvysok.:stat.fbritanie pol.fano:vzd.fstredni:stat.fitalie pol.fano:vzd.fvysok.:stat.fitalie pol.fano:vzd.fstredni:stat.fmexiko pol.fano:vzd.fvysok.:stat.fmexiko pol.fano:vzd.fstredni:stat.fsssr pol.fano:vzd.fvysok.:stat.fsssr Signif. codes: 0 '***' '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 (Dispersion parameter for poisson family taken to be 1) Null deviance: e+03 on 29 degrees of freedom Residual deviance: e-13 on 0 degrees of freedom AIC: Saturovaný model je lepší než kterýkoli jiný model. Znamená to, že vztah kterýchkoli dvou studovaných veličin závisí na hodnotě třetí veličiny. Odpovědi na otázky bodu 5: (a) Je ve všech zemích stejná souvislost vzdělání se zájmem o politiku? Ne. Kdyby byla, data by byla v souladu s předchozím modelem. (b) Ve které zemi mají lidé se základním vzděláním nejmenší zájem o politiku? Základní vzdělání je referenční úroveň, takže se stačí podívat na interakce státu se zájmem o politiku. Jejich parametry porovnávají zájem o politiku mezi lidmi se základním vzděláním v jednotlivých zemích se Page 4

5 Spojenými státy. Nejvyšší hodnotu má Británie, nejnižší Itálie. (c) Na které úrovni vzdělání jsou nejmarkantnější rozdíly mezi zeměmi v zájmu o politiku? Je to mezi lidmi se základním, středním, nebo vysokoškolským vzděláním? Pro základní vzdělání už víme, že největší rozdíl je mezi Itálií a Británií. Poměr šancí na zájem o politiku mezi těmito dvěma zeměmi je exp( ( )) = 7.8. Pro střední vzdělání musíme vzít v úvahu i trojné interakce a správně je přičíst ke dvojným. pol.fano:stat.fbritanie pol.fano:vzd.fstredni:stat.fbritanie pol.fano:stat.fitalie pol.fano:vzd.fstredni:stat.fitalie pol.fano:stat.fmexiko pol.fano:vzd.fstredni:stat.fmexiko pol.fano:stat.fsssr pol.fano:vzd.fstredni:stat.fsssr Znaménka všech součtů jsou záporná, takže nejvyšší zájem o politiku mezi středoškoláky je v USA. Nejmenší součet má stále Itálie, Poměr šancí na zájem o politiku mezi těmito dvěma zeměmi je exp(-(-1.332)) = 3.8. Podobně u vysokoškoláků: pol.fano:stat.fbritanie pol.fano:vzd.fvysok.:stat.fbritanie pol.fano:stat.fitalie pol.fano:vzd.fvysok.:stat.fitalie pol.fano:stat.fmexiko pol.fano:vzd.fvysok.:stat.fmexiko pol.fano:stat.fsssr pol.fano:vzd.fvysok.:stat.fsssr Tentokrát je to USA vs. SSSR (i když Itálie je těsně za ním), poměr šancí exp(-( )) = 3.4. Největší rozdíly mezi zeměmi v zájmu o politiku jsou u lidí se základním vzděláním. (d) Ve které zemi je největší rozdíl v zájmu o politiku mezi lidmi se základním a vysokoškolským vzděláním? Nyní budeme brát parametry pro interakce politiky se vzděláním podle zemí. pol.fano:vzd.fvysok pol.fano:vzd.fvysok.:stat.fbritanie pol.fano:vzd.fvysok.:stat.fitalie pol.fano:vzd.fvysok.:stat.fmexiko pol.fano:vzd.fvysok.:stat.fsssr Najdeme odhad poměru šancí mezi vysokoškoláky a lidmi se základním vzděláním pro každou zemi zvlášť: USA: OR = exp( ) = 11.1 Británie: OR = exp( ) = 4.45 Itálie: OR = exp( ) = 21.3 Mexiko: OR = exp( ) = 10.6 SSSR: OR = exp( ) = 5.9 Největší rozdíl je v Itálii, nejmenší v Británii. Page 5

Frekvenční analýza, čtyřpolní tabulky

Frekvenční analýza, čtyřpolní tabulky Frekvenční analýza, čtyřpolní tabulky V následujícím příkladě nás zajímá, zda sekání má pozitivní vliv na reprodukci studovaného druhu. V experimentu tedy máme dva druhy ošetření (sekané, nesekané) a pro

Více

Tabulární data, pozorované vs očekávané četnosti

Tabulární data, pozorované vs očekávané četnosti Tabulární data, pozorované vs očekávané četnosti Máme data o počtech např. samců a samic v populaci a zajímá nás, zda naše pozorované (observed) četnosti se liší od předpokládaného (expected). Příklad

Více

Statistické metody v marketingu. Ing. Michael Rost, Ph.D.

Statistické metody v marketingu. Ing. Michael Rost, Ph.D. Statistické metody v marketingu Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Regresní analýza doplnění základů Vzhledem k požadavku Vašich kolegů zařazuji doplňující partii o regresní

Více

Problém 1: Ceny nemovitostí Poznámkykřešení 1

Problém 1: Ceny nemovitostí Poznámkykřešení 1 Problém 1: Ceny nemovitostí Poznámkykřešení 1 Zadání 1.Majínemovitostiurčenékbydlenívyššícenutam,kdeječistšíovzduší?Pokudano,okolik? 2. Lze vztah mezi znečištěním a cenou, pokud existuje, vysvětlit tím,

Více

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007

Moderní regresní metody. Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Moderní regresní metody Petr Šmilauer Biologická fakulta JU České Budějovice (c) 1998-2007 Obsah Úvod... 5 1 Klasický lineární model a analýza variance... 7 Motivační příklad... 7 Fitování klasického lineárního

Více

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi.

Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. SEMINÁRNÍ PRÁCE Zadání: Data: Statistické metody: Zpracování studie týkající se průzkumu vlastností statistických proměnných a vztahů mezi nimi. Minimálně 6 proměnných o 30 pozorováních (z toho 2 proměnné

Více

Pokud data zadáme přes "Commands" okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18.

Pokud data zadáme přes Commands okno: SDF1$X1<-c(1:15) //vytvoření řady čísel od 1 do 15 SDF1$Y1<-c(1.5,3,4.5,5,6,8,9,11,13,14,15,16,18. Regresní analýza; transformace dat Pro řešení vztahů mezi proměnnými kontinuálního typu používáme korelační a regresní analýzy. Korelace se používá pokud nelze určit "kauzalitu". Regresní analýza je určena

Více

PSY117/454 Statistická analýza dat v psychologii Přednáška 10

PSY117/454 Statistická analýza dat v psychologii Přednáška 10 PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot

Více

4ST201 STATISTIKA CVIČENÍ Č. 10

4ST201 STATISTIKA CVIČENÍ Č. 10 4ST201 STATISTIKA CVIČENÍ Č. 10 regresní analýza - vícenásobná lineární regrese korelační analýza Př. 10.1 Máte zadaný výstup regresní analýzy závislosti závisle proměnné Y na nezávisle proměnné X. Doplňte

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2015/16 Cvičení 7: Časově řady, autokorelace LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Časové řady Data: HDP.wf1

Více

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6

Stav Svobodný Rozvedený Vdovec. Svobodná 37 10 6. Rozvedená 8 12 8. Vdova 5 8 6 1. Příklad Byly sledovány rodinné stavy nevěst a ženichů při uzavírání sňatků a byla vytvořena následující tabulka četností. Stav Svobodný Rozvedený Vdovec Svobodná 37 10 6 Rozvedená 8 12 8 Vdova 5 8 6

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD

TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD TECHNIKA UMĚLÝCH PROMĚNNÝCH V PRŮŘEZOVÉ ANALÝZE A V MODELECH ČASOVÝCH ŘAD Umělé (dummy) proměnné se používají, pokud chceme do modelu zahrnout proměnné, které mají kvalitativní či diskrétní charakter,

Více

Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání

Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání Analýza variance (ANOVA) - jednocestná; faktor s pevným efektem; mnohonásobná srovnání 1. Analýzu variance (ANOVu) používáme při studiu problémů, kdy máme závislou proměnou spojitého typu a nezávislé proměnné

Více

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII

ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII ANALÝZA KATEGORIZOVANÝCH DAT V SOCIOLOGII Tomáš Katrňák Fakulta sociálních studií Masarykova univerzita Brno SOCIOLOGIE A STATISTIKA nadindividuální společenské struktury podmiňují lidské chování (Durkheim)

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Statistické metody v ekonomii: Teoretická východiska, Jednofaktorová a dvoufaktorová analýza rozptlylu. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii: Teoretická východiska, Jednofaktorová a dvoufaktorová analýza rozptlylu. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii: Teoretická východiska, Jednofaktorová a dvoufaktorová analýza rozptlylu Ing. Michael Rost, Ph.D. Co je vlastně cílem? Cílem statistického zpracování dat je podání informace

Více

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13

Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13 Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test

Více

Návod na statistický software PSPP část 2. Kontingenční tabulky

Návod na statistický software PSPP část 2. Kontingenční tabulky Návod na statistický software PSPP část 2. Kontingenční tabulky Jiří Šafr FHS UK poslední revize 31. srpna 2010 Logika kontingenčních tabulek... 2 Postup vytváření kontingenčních tabulek v PSPP (SPSS)....

Více

kovů v sedimentech řeky Moravy

kovů v sedimentech řeky Moravy Smíšené regresní modely při sledování obsahu těžkých kovů v sedimentech řeky Moravy Marie Forbelská Masarykova univerzita Brno Přírodovědecká fakulta Ústav matematiky a statistiky 3. 5. 6. 2012 Marie Forbelská

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza

5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Statistické modelování v S-Plus

Statistické modelování v S-Plus Statistické modelování v S-Plus Pravidla jen tak mezi námi Všechny modely jsou špatné Některé modely jsou lepší než jiné Nikdy si nejsme jisti, že model je správný Čím je model jednodušší, tím je lepší

Více

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění

Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Statistické metody vyhodnocení vlivu škodlivin na denní úmrtnost, hospitalizaci a příznaky kardiovaskulárních a respiračních onemocnění Jiří Skorkovský Úvod a cíle studie vlivu PM10 na denní

Více

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků

{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a

Více

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO

MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO MOŽNOSTI A LIMITY VYUŽITÍ MODERNÍCH TECHNOLOGIÍ PŘI VÝUCE MATEMATIKY NA EKF VŠB-TUO RNDr. Jana Hrubá Katedra matematických metod v ekonomice (K151) Institut inovace vzdělávání (K167) Ekonomická fakulta

Více

Navrhování experimentů a jejich analýza. Eva Jarošová

Navrhování experimentů a jejich analýza. Eva Jarošová Navrhování experimentů a jejich analýza Eva Jarošová Obsah Základní techniky Vyhodnocení výsledků Experimenty s jedním zkoumaným faktorem Faktoriální experimenty úplné 2 N dílčí 2 N-p Experimenty pro studium

Více

STATISTICA Téma 7. Testy na základě více než 2 výběrů

STATISTICA Téma 7. Testy na základě více než 2 výběrů STATISTICA Téma 7. Testy na základě více než 2 výběrů 1) Test na homoskedasticitu Nalezneme jej v několika submenu. Omezme se na submenu Základní statistiky a tabulky základního menu Statistika. V něm

Více

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky

Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného

Více

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35

Obsah. 3 Testy 31 3.1 z test... 32 3.2 z test 2... 33 3.3 t test... 34 3.4 t test 2s... 35 Obsah 1 Popisná statistika 4 1.1 bas stat........................................ 5 1.2 mean.......................................... 6 1.3 meansq........................................ 7 1.4 sumsq.........................................

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests), : veličiny X, Y jsou nezávislé nij eij

Testy dobré shody TESTY DOBRÉ SHODY (angl. goodness-of-fit tests),   : veličiny X, Y jsou nezávislé nij eij Testy dobré shody Máme dvě veličiny a předpokládáme, že jsou nezávislé (platí nulová hypotéza nezávislosti). Často chceme naopak prokázat jejich závislost. K tomu slouží: TESTY DOBRÉ SHODY (angl. goodness-of-fit

Více

MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI

MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI MULTIFAKTOROVÁ ANALÝZA DOPRAVNÍ NEHODOVOSTI metodika provádění Tato metodika byla zpracována v rámci výzkumného projektu Identifikace a řešení kritických míst a úseků v síti pozemních komunikací, které

Více

Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce

Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce UK FHS Historická sociologie (LS 2011) Analýza kvantitativních dat II. 2. Vztahy mezi kategorizovanými znaky v kontingenční tabulce Jiří Šafr jiri.safr(zavináč)seznam.cz poslední aktualizace 23.4. 2011

Více

Testování hypotéz Biolog Statistik: Matematik: Informatik:

Testování hypotéz Biolog Statistik: Matematik: Informatik: Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé

Více

Test dobré shody v KONTINGENČNÍCH TABULKÁCH

Test dobré shody v KONTINGENČNÍCH TABULKÁCH Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když

Více

Jak velká je poptávka po gymnáziích? Aproč není vyšší?

Jak velká je poptávka po gymnáziích? Aproč není vyšší? Jak velká je poptávka po gymnáziích? Aproč není vyšší? Petr Matějů 1 Otázky Je růst podílu žáků ve školách poskytujících všeobecné vzdělání žádoucí? Jaká je aktuální poptávka po studiu na gymnáziích? Co

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 9 Vícerozměrná data a jejich zpracování 9.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěmi, případně více náhodnými veličinami. V praxi pracujeme

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

"Competitivness in the EU Challenge for the V4 countries" Nitra, May 17-18, 2006

Competitivness in the EU Challenge for the V4 countries Nitra, May 17-18, 2006 ANALÝZA ROZPTYLU JAKO ZÁKLADNÍ METODA MNOHONÁSOBNÉHO POROVNÁVÁNÍ STŘEDNÍCH HODNOT V RŮZNÝCH SOFTWAROVÝCH PRODUKTECH ANALYSIS OF VARIANCE AS A PRIMARY METHOD OF MULTIPLE COMPARISON OF EXPECTED VALUES IN

Více

Statistické testování hypotéz II

Statistické testování hypotéz II PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení

Více

NELINEÁRNÍ REGRESE V PŘÍKLADECH NONLINEAR REGRESSION IN EXAMPLES. Karel Zvára. 1. Úvodem. 2. Bodový a intervalový odhad

NELINEÁRNÍ REGRESE V PŘÍKLADECH NONLINEAR REGRESSION IN EXAMPLES. Karel Zvára. 1. Úvodem. 2. Bodový a intervalový odhad 7 7 7 Ročník 26, číslo 3, září 2015 Informační bulletin České statistické společnosti, 3/2015 NELINEÁRNÍ REGRESE V PŘÍKLADECH NONLINEAR REGRESSION IN EXAMPLES Karel Zvára Adresa: ÚAMVT PřF UK v Praze,

Více

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů

PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ. Příloha A. Metoda nejmenších čtverců Prodej bytů PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ Příloha A Metoda nejmenších čtverců Prodej bytů i PŘÍLOHA A. METODA NEJMENŠÍCH ČTVERCŮ PRODEJ BYTŮ 1 2 3 TOT. 1 7 33 40 2 1 18 125 144 2.5 1 72 73 3.5 1

Více

Úvodem Dříve les než stromy 3 Operace s maticemi

Úvodem Dříve les než stromy 3 Operace s maticemi Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová

Více

MSA-Analýza systému měření

MSA-Analýza systému měření MSA-Analýza systému měření Josef Bednář Abstrakt: V příspěvku je popsáno provedení analýzy systému měření v technické praxi pro spojitá data. Je zde popsáno provedení R&R studie pomocí analýzy rozptylu

Více

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu.

Analýza rozptylu. Podle počtu analyzovaných faktorů rozlišujeme jednofaktorovou, dvoufaktorovou a vícefaktorovou analýzu rozptylu. Analýza rozptylu Analýza rozptylu umožňuje ověřit významnost rozdílu mezi výběrovými průměry většího počtu náhodných výběrů, umožňuje posoudit vliv různých faktorů. Podle počtu analyzovaných faktorů rozlišujeme

Více

Kontingenční tabulky. (Analýza kategoriálních dat)

Kontingenční tabulky. (Analýza kategoriálních dat) Kontingenční tabulky (Analýza kategoriálních dat) Agenda Standardní analýzy dat v kontingenčních tabulkách úvod, KT, míry diverzity nominálních veličin, některá rozdělení chí kvadrát testy, analýza reziduí,

Více

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů).

V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). 1. Příklad V tabulce jsou uvedeny roční náklady na údržbu (v dolarech) a cena domu (v tis. dolarů). Náklady 835 63 240 1005 184 213 313 658 195 545 Cena 136 24 52 143 42 43 67 106 61 99 a.) Modelujte závislost

Více

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu

Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech

Více

Malé statistické repetitorium Verze s řešením

Malé statistické repetitorium Verze s řešením Verze s řešením Příklad : Rozdělení náhodné veličiny základní charakteristiky Rozdělení diskrétní náhodné veličiny X je dáno následující tabulkou x 0 4 5 P(X = x) 005 05 05 0 a) Nakreslete graf distribuční

Více

Testování hypotéz a měření asociace mezi proměnnými

Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

Cvičení ze statistiky - 9. Filip Děchtěrenko

Cvičení ze statistiky - 9. Filip Děchtěrenko Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz

Více

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008)

Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Normy ČSN a ČSN ISO z oblasti aplikované statistiky (stav aktualizovaný k 1.1.2008) Ing. Vratislav Horálek, DrSc., předseda TNK 4 při ČNI 1 Terminologické normy [1] ČSN ISO 3534-1:1994 Statistika Slovník

Více

StatSoft Jak poznat vliv faktorů vizuálně

StatSoft Jak poznat vliv faktorů vizuálně StatSoft Jak poznat vliv faktorů vizuálně V tomto článku bychom se rádi věnovali otázce, jak poznat již z grafického náhledu vztahy a závislosti v analýze rozptylu. Pomocí následujících grafických zobrazení

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie ZS 2014/15 Cvičení 5: Vícenásobná regrese, multikolinearita LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE 1. Jednoduchá

Více

INTRODUCTION TO MACHINE LEARNING (NPFL054) A template for Homework #2

INTRODUCTION TO MACHINE LEARNING (NPFL054) A template for Homework #2 INTRODUCTION TO MACHINE LEARNING (NPFL054) A template for Homework #2 Name: Petr Bělohlávek School year: 2015/2016 Provide answers for the exercises 1. (a) - (c), 2.(c), 2.(d.1-2), 2.(e.1-2) For each exercise,

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113

ÚKOL 2 1886 22 5,77 5,00 5 2,531,003,056 -,869,113 ÚKOL 2 Jméno a příjmení: UČO: Imatrik. ročník: Úkol 2.1: V souboru EVS99_cvicny.sav zjistěte, zdali rozložení názoru na to, kdo by měl být odpovědný za zajištění bydlení (proměnná q54h), je normální. Řešte

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21

A 4 9 18 24 26 B 1 5 10 11 16 C 2 3 8 13 15 17 19 22 23 25 D 6 7 12 14 20 21 Příklad 1 Soutěž o nelepší akost výrobků obeslali čtyři výrobci A, B, C, D celkem 26 výrobky. Porota sestavila toto pořadí (uveden pouze původ výrobku od nelepšího k nehoršímu): Pořadí 1 2 3 4 5 6 7 8

Více

Statistické metody uţívané při ověřování platnosti hypotéz

Statistické metody uţívané při ověřování platnosti hypotéz Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr

Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule

Více

Testy pro porovnání vlastností dvou skupin

Testy pro porovnání vlastností dvou skupin Testy pro porovnání vlastností dvou skupin Petr Pošík Části dokumentu jsou převzaty (i doslovně) z Mirko Navara: Pravděpodobnost a matematická statistika, https://cw.felk.cvut.cz/lib/exe/fetch.php/courses/a6m33ssl/pms_print.pdf

Více

LINEÁRNÍ REGRESE. Lineární regresní model

LINEÁRNÍ REGRESE. Lineární regresní model LINEÁRNÍ REGRESE Chemometrie I, David MILDE Lineární regresní model 1 Typy závislosti 2 proměnných FUNKČNÍ VZTAH: 2 závisle proměnné: určité hodnotě x odpovídá jediná hodnota y. KORELACE: 2 náhodné (nezávislé)

Více

4EK211 Základy ekonometrie

4EK211 Základy ekonometrie 4EK211 Základy ekonometrie LS 2014/15 Cvičení 4: Statistické vlastnosti MNČ LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Upřesnění k pojmům a značení

Více

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B

META-ANALÝZA Z POHLEDU STATISTIKA. Medicína založená na důkazu - Modul 3B META-ANALÝZA Z POHLEDU STATISTIKA Medicína založená na důkazu - Modul 3B OBSAH: Úvodní definice... 2 Ověření homogenity pomocí Q statistiky... 3 Testování homogenity studií pomocí I 2 indexu... 6 Výpočet

Více

Cvičení 9: Neparametrické úlohy o mediánech

Cvičení 9: Neparametrické úlohy o mediánech Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1

Více

OCEŇOVÁNÍ TECHNOLOGIÍ. Ivan Dvořák, Sychrov, 23. května 2012

OCEŇOVÁNÍ TECHNOLOGIÍ. Ivan Dvořák, Sychrov, 23. května 2012 van Dvořák, Sychrov, 23. května 2012 Motivace hceme-li prodávat jakýkoliv statek, musíme znát jeho cenu o platí i pro duševní vlastnictví (P), což je tzv. nehmotný statek Speciálním případem duševního

Více

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne.

Test obsahoval 7 otevřených otázek a 2 uzavřené alternativní otázky s možností volby ano, ne. ! Cílem vysílání v rámci projektu ŠIK je také předávání praktických informací z oblasti rizikového chování. Vycházíme z přesvědčení, že člověk, který má dostatek pravdivých informací, má také větší "#$%&&%

Více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více

V praxi pracujeme s daty nominálními (nabývají pouze dvou hodnot), kategoriálními (nabývají více 10 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 10.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat, hledáme souvislosti mezi dvěma, případně

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

GRAFICKÉ MODELY V ANALÝZE FINANČNÍCH DAT

GRAFICKÉ MODELY V ANALÝZE FINANČNÍCH DAT ROBUST 2004 c JČMF 2004 GRAFICKÉ MODELY V ANALÝZE FINANČNÍCH DAT Jitka Zichová Klíčová slova: Grafický model, podmíněná nezávislost. Abstrakt: Grafické modely jsou jedním z nástrojů mnohorozměrné statistické

Více

5EN306 Aplikované kvantitativní metody I

5EN306 Aplikované kvantitativní metody I 5EN306 Aplikované kvantitativní metody I Přednáška 10 Zuzana Dlouhá Předmět a struktura kurzu 1. Úvod: struktura empirických výzkumů 2. Tvorba ekonomických modelů: teorie 3. Data: zdroje a typy dat, význam

Více

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.

Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D. Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní

Více

6. Lineární regresní modely

6. Lineární regresní modely 6. Lineární regresní modely 6.1 Jednoduchá regrese a validace 6.2 Testy hypotéz v lineární regresi 6.3 Kritika dat v regresním tripletu 6.4 Multikolinearita a polynomy 6.5 Kritika modelu v regresním tripletu

Více

Kontingenční tabulky, korelační koeficienty

Kontingenční tabulky, korelační koeficienty Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu

Více

Metodologie pro Informační studia a knihovnictví 2

Metodologie pro Informační studia a knihovnictví 2 Metodologie pro Informační studia a knihovnictví 2 Modul 7: Třídění druhého stupně. Kontingenční tabulky Co se dozvíte v tomto modulu? Co je třídění druhého stupně Jak vytvořit a interpretovat kontingenční

Více

ANTAGONISTICKE HRY 172

ANTAGONISTICKE HRY 172 5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí

Více

ADDS cvičení 7. Pavlína Kuráňová

ADDS cvičení 7. Pavlína Kuráňová ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005

STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Hornicko-geologická fakulta institut geoinformatiky STATISTIKA MIGRANTŮ PRO REGIONY V MORAVSKOSLEZSKÉM KRAJI A PRO KRAJ V OBDOBÍ 1992-2005 Speciální metody

Více

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008

Mannův-Whitneyův(Wilcoxonův) test pořadová obdoba dvouvýběrového t-testu. Statistika (MD360P03Z, MD360P03U) ak. rok 2007/2008 Statistika (MD30P03Z, MD30P03U) ak. rok 007/008 Karel Zvára karel.zvara@mff.cuni.cz http://www.karlin.mff.cuni.cz/ zvara (naposledy upraveno. listopadu 007) 1(4) Mann-Whitney párový Wilcoxon párový znaménkový

Více

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer

Analýza rozptylu. Přednáška STATISTIKA II - EKONOMETRIE. Jiří Neubauer ANOVA Přednáška STATISTIKA II - EKONOMETRIE Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími

Více

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.

Analýza rozptylu. Statistika II. Jiří Neubauer. Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob. ANOVA Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz ANOVA ANOVA je nástroj pro zkoumání vztahu mezi vysvětlovanými a vysvětlujícími proměnnými.

Více

Nezaměstnanost na Příbramsku - analýza faktorů ovlivňujících délku doby nezaměstnanosti využitím metod analýzy přežití

Nezaměstnanost na Příbramsku - analýza faktorů ovlivňujících délku doby nezaměstnanosti využitím metod analýzy přežití Nezaměstnanost na Příbramsku - analýza faktorů ovlivňujících délku doby nezaměstnanosti využitím metod analýzy přežití Jan Popelka Doktorand oboru Statistika Abstrakt: ento článek věnuje pozornost analýze

Více

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně Čísla v plovoucířádovéčárce INP 2008 FIT VUT v Brně Čísla v pevné vs plovoucí řádové čárce Pevnářádováčárka FX bez desetinné části (8 bitů) Přímý kód: 0 až 255 Doplňkový kód: -128 až 127 aj. s desetinnou

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích

Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Simulace systému hromadné obsluhy Nejčastější chyby v semestrálních pracích Nedostatešný popis systému a jeho modelu vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělit fyzickou nebo

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Semestrální práce z předmětu Matematika 6F

Semestrální práce z předmětu Matematika 6F vypracoval: Jaroslav Nušl dne: 17.6.24 email: nusl@cvut.org Semestrální práce z předmětu Matematika 6F Zádání: Cílem semestrální práce z matematiky 6F bylo zkoumání hudebního signálu. Pluginem ve Winampu

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Obsah předmětu 1 Podklady předmětu pro akademický rok 2006/2007 Radim Farana Obsah 2 Obsah předmětu, Požadavky kreditového systému, Datové typy jednoduché, složené, Programové struktury, Předávání dat. Obsah předmětu

Více

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY:

C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: C V I Č E N Í ZE STATISTIKY PRO BIOLOGY: S B Í R K A P Ř Í K L A D Ů (VERZE 1.3) Martin Duchoslav Olomouc 2004 Předložený text reprezentuje výběr příkladů, které doplňují přednášky a cvičení kurzu Základy

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika Katedra pravděpodobnosti a matematické statistiky Vedoucí

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika

Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE. Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Michal Rychnovský Postupná výstavba modelů ohodnocení kreditního rizika Katedra pravděpodobnosti a matematické statistiky Vedoucí

Více

Uplatnění mladých lidí na trhu práce po ukončení svého studia, Ondřej Nývlt prezentace IPN KREDO. www.kredo.reformy-msmt.cz

Uplatnění mladých lidí na trhu práce po ukončení svého studia, Ondřej Nývlt prezentace IPN KREDO. www.kredo.reformy-msmt.cz Uplatnění mladých lidí na trhu práce po ukončení svého studia, Ondřej Nývlt prezentace IPN KREDO www.kredo.reformy-msmt.cz Osoby ve věku 30-34 let podle vybraných typů dosaženého vzdělání a pohlaví (1995-2013)

Více