TERMOMECHANIKA 15. Základy přenosu tepla
|
|
- Olga Beránková
- před 8 lety
- Počet zobrazení:
Transkript
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný tok Tepelný tok vedením Tepelný tok konvekcí Tepelný tok zářením Přenos tepla je děj, kdy dochází k předávání tepelné energie mezi soustavou a okolím nebo mezi dvěma soustavami. 1
2 TŘI MECHANIZMY PŘENOSU TEPLA PŘENOS TEPLA VEDENÍM (KONDUKCÍ): Kinetická energie neuspořádaného pohybu molekul se předává srážkami na sousední molekuly, a tak se přenáší tepelná energie. Vedení dominuje v pevných látkách, ale i v tekutinách bez proudění. Vedení tepla zvyšují volné elektrony či ionty v tekutinách. PŘENOS TEPLA KONVEKCÍ (PROUDĚNÍM): Přemístěním molekul v prostoru při nuceném či přirozeném proudění se přenáší i tepelná energie. Přenos tepla konvekcí dominuje v tekutinách (existuje i v pevných látkách, viz difúze). PŘENOS TEPLA ZÁŘENÍM (RADIACÍ, SÁLÁNÍM): Každý objekt s T > K vyzařuje fotony, které jsou nositeli energie včetně tepelné. Fotony se šíří v transparentním prostředí rychlostí světla. Rozlišujeme přenos tepla stacionární a nestacionární 2
3 TEPELNÝ TOK V termodynamice je řešeno teplo předávané u různých dějů, v přenosu tepla nás zajímá intenzita předávání tepla v čase TEPELNÝ TOK Známé pojmy: TEPLO Q [J], MĚRNÉ TEPLO q [J.kg -1 ] Q Nové pojmy: TEPELNÝ TOK [] Platí: HUSTOTA TEPELNÉHO TOKU [.m -2 ] Q Q τ q S τ q [s] S [m 2 ] čas plocha kolmá k tepelnému toku Rozlišujeme: Tepelný tok vedením Tepelný tok konvekcí Tepelný tok radiací 3
4 TEPELNÝ TOK VEDENÍM - 1 Tepelný tok při přenosu tepla vedením je definován FOURIEROVÝM ZÁKONEM Vektor grad T je dán vztahem gradt n n T n gradt T n [m] jednotkový vektor normály k izotermické ploše (směřující do míst s vyššími teplotami) S [m 2 ] izotermická plocha kolmá k tepelnému toku [.m -1.K -1 ] součinitel tepelné vodivosti - lze najít pro různé látky v tabulkách je konstanta pro ideální plyny = f (T) = f (T, p) pro pevné látky a kapaliny Q - λs grad T q - λgrad T T+dT pro reálné plyny (kapaliny při vysokých tlacích) S Q n T
5 TEPELNÝ TOK VEDENÍM - 2 Součinitel tepelné vodivosti plynů = až,1.m -1.K -1 Součinitel tepelné vodivosti kapalin = až 1.m -1.K -1 Tekuté kovy až 1x větší Součinitel tepelné vodivosti pevných látek = až.m -1.K -1 Dural Textgumoid Čisté krystaly až 1 Elektrické vodiče mají větší Interferogramy tepelných deformací povrchů dvou strojních součástek o různé tepelné vodivosti, které byly shora navrtány. 1. expozice byla provedena po navrtání 2. expozice byla provedena po 5 min. 5
6 6 TEPELNÝ TOK KONVEKCÍ - 1 A) TEPELNÝ TOK PŘI PŘENOSU TEPLA KONVEKCÍ V potrubí (viz 1. zákon termodynamiky) Q m c p Ttek T ref Q V ρ c p T tek Tref Q w A ρ c T T p tek Tok entalpie koridorem s pevnými hranicemi ref Ve volném proudu v prostoru Volné hranice a míšení tekutiny T tek w V obecném proudu v prostoru Složité prostorové proudění A L 2J
7 TEPELNÝ TOK KONVEKCÍ - 2 B) TEPELNÝ TOK PŘI PŘESTUPU TEPLA mezi povrchem a tekutinou Přednášky se zabývají hlavně přestupem tepla, který je dán Newtonovým vztahem Q α S T T q α T T Izotermy Obtékání žebra S [m 2 ] [.m -2.K -1 ] plocha obtékaného povrchu součinitel přestupu tepla T [K] T [K] teplota povrchu teplota tekutiny Součinitel přestupu tepla závisí na vlastnostech tekutiny, na tvaru obtékaného povrchu, na konkrétním místě na povrchu a především na rychlosti proudění. Nelze jej exaktně tabelovat, ale přibližně platí: Přirozená konvekce Plyny = 2-25.m -2.K -1 Kapaliny = 5-1.m -2.K -1 Nucená konvekce Plyny = m -2.K -1 Kapaliny = 5-2.m -2.K -1 Konvekce s fázovou přeměnou = m -2.K -1 7
8 TEPELNÝ TOK KONVEKCÍ - 3 Při proudění tekutiny okolo povrchu vzniká tepelná mezní vrstva, jejíž tvar se mění s rychlostí proudění tekutiny. Příklady charakteristických tepelných mezních vrstev T T wx Bez konvekce Přirozená konvekce Nucená T T Přechodný režim proudění Nestability tepelné mezní vrstvy w y Nucená konvekce Turbulentní Laminární Příklady charakteristických dynamických mezních vrstev Přirozená konvekce y 8
9 TEPELNÝ TOK KONVEKCÍ - Součinitel přestupu tepla lze stanovit různými způsoby: Z tvaru teplotního profilu v mezní vrstvě (z výpočtu či z experimentu) Z teorie podobnosti (s použitím literatury) Výpočtem z diferenciálních rovnic Experimentálně (bilance, alfametry ) URČENÍ SOUČINITELE PŘESTUPU TEPLA Z TVARU TEPLOTNÍHO PROFILU V MEZNÍ VRSTVĚ - Tepelný tok konvekcí je roven tepelnému toku vedením v molekulové vrstvě tekutiny, která ulpívá na povrchu. Platí diferenciální rovnice přestupu tepla dt α T T - λ dy kde je tepelná vodivost tekutiny T Tepelná T w mezní vrstva u vertikální desky dt dy dt α - λ dy w T tg T y 1 T β 9
10 TEPELNÝ TOK ZÁŘENÍM - 1 Vlastní zářivost E [.m -2 ] dokonalého zářiče (černého tělesa) je definována STEFANOVÝM - BOLTZMANNOVÝM ZÁKONEM E σ T = 5, [.m -2.K - ] je Stefanova - Boltzmannova konstanta Dojde-li při dopadu fotonu na povrch k úplné přeměně energie zářením na energii tepelnou, lze pro vlastní tepelný tok z dokonalého zářiče psát q σ T Q σ S T Pro záření šedých těles (nedokonalých zářičů) platí: q σ ε T Q σ ε S T Tepelné záření cvičence [-] je poměrná zářivost šedého tělesa (emisivita), která má hodnotu až 1 a kterou lze určit z tabulek 1
11 TEPELNÝ TOK ZÁŘENÍM - 2 Vzájemný tepelný tok zářením mezi dvěma povrchy bude obsahem dalších přednášek. Například: Pro vzájemný tepelný tok zářením mezi povrchem malého tělesa a vzdálenými povrchy velkého okolního prostoru platí vztah: Q 12 σ ε 1S1 T1 -T2 Index 1 Index 2 T 2 [K] vztahuje se k malému tělesu vztahuje se k povrhům okolního prostoru je tzv. radiační teplota povrhů okolního prostoru Q 12 S 1 T 1 >T 2 1 T 2 11
1 Zatížení konstrukcí teplotou
1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona
VíceTermomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceU218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací
VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.
VíceTermomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceU218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí
Více5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
VíceZÁKLADY STAVEBNÍ FYZIKY
ZÁKLADY STAVEBNÍ FYZIKY Doc.Ing.Václav Kupilík, CSc. První termodynamická věta představuje zákon o zachování energie. Podle tohoto zákona nemůže energie samovolně vznikat nebo zanikat, ale může se pouze
VíceTERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
VíceŠíření tepla. Obecnéprincipy
Šíření tepla Obecnéprincipy Šíření tepla Obecně: Šíření tepla je výměna tepelné energie v tělese nebo mezi tělesy, která nastává při rozdílu teplot. Těleso s vyšší teplotou má větší tepelnou energii. Šíření
VíceTERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;
TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla
VíceVýpočtové nadstavby pro CAD
Výpočtové nadstavby pro CAD 4. přednáška eplotní úlohy v MKP Michal Vaverka, Martin Vrbka Přenos tepla Př: Uvažujme pro jednoduchost spalovací motor chlazený vzduchem. Spalováním vzniká teplo, které se
VíceTermomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceTERMOMECHANIKA 1. Základní pojmy
1 FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 1. Základní pojmy OSNOVA 1. KAPITOLY Termodynamická soustava Energie, teplo,
VíceZákladem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
Více102FYZB-Termomechanika
České vysoké učení technické v Praze Fakulta stavební katedra fyziky 102FYZB-Termomechanika Sbírka úloh (koncept) Autor: Doc. RNDr. Vítězslav Vydra, CSc Poslední aktualizace dne 20. prosince 2018 OBSAH
VíceTechnologie a procesy sušení dřeva
strana 1 Technologie a procesy sušení dřeva 3. Teplotní pole ve dřevě během sušení Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
VíceTeplotní roztažnost Přenos tepla Kinetická teorie plynů
Teplotní roztažnost Přenos tepla Kinetická teorie plynů Teplotní roztažnost pevných látek l a kapalin Teplotní délková roztažnost Teplotní objemová roztažnost a závislost hustoty na teplotě Objemová roztažnost
VíceStavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Stavební fyzika (L) Jan Tywoniak A48 tywoniak@fsv.cvut.cz součásti stavební fyziky Stavební tepelná technika Stavební akustika Denní osvětlení. 6 4
Více1 Vedení tepla stacionární úloha
1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace
VíceN_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích
Vysoká škola technická a ekonomická V Českých Budějovicích N_ Stavebně fyzikální aspekty budov Přednáška č. 3 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: prof. Ing. Ingrid
VíceKATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123MAIN tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123MAIN tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
VícePROCESY V TECHNICE BUDOV 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 12 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceSDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM I.
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 SDÍLENÍ TEPLA A ÚSPORY ZATEPLENÍM
VíceTepelná vodivost pevných látek
Tepelná vodivost pevných látek Přenos tepla vedení mřížková část tepelné vodivosti Dvouatomový lineární řetězec přiblížení např. NaCl (1) u -1 (A) u s-1 (B) u (A) u s (B) u s+1 (B) u +1 (A) Např. = příčné
VíceKATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM tepelně-fyzikální parametry
KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 123TVVM tepelně-fyzikální parametry Vedení tepla v látkách: vedením (kondukcí) předání kinetické energie neuspořádaných tepelných pohybů. Přenos z míst vyšší
VíceTermomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VícePROCESY V TECHNICE BUDOV 11
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 11 Dagmar Janáčová, Hana Charvátová, Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
VíceM T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22
M T I B ZATÍŽENÍ KONSTRUKCÍ KLIMATICKOU TEPLOTOU A ZÁKLADY VEDENÍ TEPLA Ing. Kamil Staněk, k124 2010/03/22 ROVNICE VEDENÍ TEPLA Cíl = získat rozložení teploty T T x, t Řídící rovnice (parciální diferenciální)
VíceTeplota jedna ze základních jednotek soustavy SI, vyjadřována je v Kelvinech (značka K) další používané stupnice: Celsiova, Fahrenheitova
1 Rozložení, distribuce tepla Teplota je charakteristika tepelného stavu hmoty je to stavová veličina, charakterizující termodynamickou rovnováhu systému. Teplo vyjadřuje kinetickou energii částic. Teplota
VíceU218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze
U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní
VíceMOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 4. TEPLO, TEPLOTA, TEPELNÁ VÝMĚNA Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. TEPLO Teplo je míra změny vnitřní energie, kterou systém vymění při styku s jiným
VíceEXPERIMENTÁLNÍ METODY I. 2. Zpracování měření
FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých
VícePřednáška č. 5: Jednorozměrné ustálené vedení tepla
Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace
VíceAutokláv reaktor pro promíchávané vícefázové reakce
Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.
VíceMěření prostupu tepla
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření prostupu tepla Úvod Prostup tepla je kombinovaný případ
VíceVI. Nestacionární vedení tepla
VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)
VíceBH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.
Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D. Průběh zkoušky, literatura Tepelně
VíceODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT
ODĚVNÍ KOMFORT TERMOFYZIOLOGICKÝ KOMFORT ČLOVĚK ODĚV - PROSTŘEDÍ FYZIOLOGICKÉ REAKCE ČLOVĚKA NA OKOLNÍ PROSTŘEDÍ Lidské tělo - nepřetržitý zdroj tepla Bazální metabolismus, teplo je produkováno na základě
VíceŠkolení CIUR termografie
Školení CIUR termografie 7. září 2009 Jan Pašek Stavební fakulta ČVUT v Praze Katedra konstrukcí pozemních staveb Část 1. Teorie šíření tepla a zásady nekontaktního měření teplot Terminologie Termografie
VícePřenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti. Ing. Kamil Staněk, Ph.D. 124XTDI TERMOVIZNÍ DIAGNOSTIKA.
124XTDI TERMOVIZNÍ DIAGNOSTIKA Přenos tepla 1: ustálený stav, okrajové podmínky, vliv vlhkosti Ing. Kamil Staněk, Ph.D. kamil.stanek@fsv.cvut.cz Praha, 30.10. 2012 1D Přenos tepla obvodovou konstrukcí
VíceEXPERIMENTÁLNÍ METODY I 3. Měření teplot
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 3. Měření teplot OSNOVA 3. KAPITOLY Úvod do problematiky měření teplot
VíceTermodynamika nevratných procesů
1 Nevratný proces Přenosové jevy.1 Sdílení tepla.1.1 Tepelný tok Hustota tepleného toku Celkový tepelný tok. Sdílení tepla vedením 3 Tepelná vodivost 3.1 Wiedemannův-Franzův zákon 4 Tepelný odpor 5 Sdílení
VíceMaturitní okruhy Fyzika 2015-2016
Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní
VíceMolekulová fyzika a termika:
Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta
VíceIdentifikátor materiálu: ICT 2 54
Identifikátor ateriálu: ICT 2 54 Registrační číslo projektu Název projektu Název příjece podpory název ateriálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního ateriálu Druh interaktivity
VíceOtázky pro Státní závěrečné zkoušky
Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR
VíceVNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika
VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má
VíceTepelně vlhkostní bilance budov
AT 02 TZB II a technická infrastruktura LS 2012 Tepelně vlhkostní bilance budov 10. Přednáška Ing. Olga Rubinová, Ph.D. Harmonogram t. část Přednáška Cvičení 1 UT Mikroklima budov, výpočet tepelných ztrát
VíceFBI nevratné procesy Nevratný proces Nevratný proces nevratný ireverzibilní děj relaxační procesy Fickův zákon Fourierův zákon Ohmův zákon
Přenosové jevy Procesy, které probíhají přirozeně, nemohou nikdy samy od sebe proběhnout opačným směrem. Takové procesy nazýváme nevratné procesy. Příklad: Nevratné procesy začínají nějakým vnějším zásahem,
VíceMechanika tekutin. Hydrostatika Hydrodynamika
Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,
Více1. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA
. FYZIKÁLNÍ ZÁKLADY ŠÍŘENÍ TEPLA. Veličiny, symboly, jednotky Teplota, teplotní rozdíl ϑ... teplota Θ... termodynamická teplota = ϑ - ϑ... teplotní rozdíl Θ = Θ - Θ... teplotní rozdíl C... stupeň Celsia
VíceMODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA ELEKTROTECHNICKÁ KATEDRA KYBERNETIKY MODELOVÁNÍ A SIMULACE MODEL PRŮBĚŽNÉ OHŘÍVACÍ PECE SEMESTRÁLNÍ PRÁCE Vypracoval: 2011 1 I. ZADÁNÍ Sestavte model průběžné
VíceUČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie
PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy
VíceStanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN
Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. Fakulta strojního inženýrství. Energetický ústav DIPLOMOVÁ PRÁCE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Energetický ústav DIPLOMOVÁ PRÁCE Brno 2004 Jiří Polák VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV ODBOR TERMOMECHANIKY
VíceEXPERIMENTÁLNÍ METODY I
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí EXPERIMENTÁLNÍ METODY I Pro studenty 4. ročníku Energetického ústavu prof. Ing.
VíceÚloha č. 1 pomůcky Šíření tepla v ustáleném stavu základní vztahy
Úloha č. pomůcky Šíření tepla v ustáleném stavu záklaní vztahy Veení Fourriérův zákon veení tepla, D: Hustota tepelného toku je úměrná změně teploty ve směru šíření tepla, konstantou úměrnosti je součinitel
VíceMol. fyz. a termodynamika
Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli
VícePočítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -
Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé
VíceČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.
ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.
VíceFyzika, maturitní okruhy (profilová část), školní rok 2014/2015 Gymnázium INTEGRA BRNO
1. Jednotky a veličiny soustava SI odvozené jednotky násobky a díly jednotek skalární a vektorové fyzikální veličiny rozměrová analýza 2. Kinematika hmotného bodu základní pojmy kinematiky hmotného bodu
VíceEXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění OSNOVA 6. KAPITOLY Úvod do měření rychlosti
VíceVLASTNOSTI VLÁKEN. 3. Tepelné vlastnosti vláken
VLASNOSI VLÁKEN 3. epelné vlastnosti vláken 3.. Úvod epelné vlastnosti vláken jsou velice důležité, neboť jsou rozhodující pro volbu vhodných parametrů zpracování i použití vláken. Závisí na chemickém
VíceRočník: 1. Mgr. Jan Zmátlík Zpracováno dne:
Označení materiálu: VY_32_INOVACE_ZMAJA_VYTAPENI_08 Název materiálu: Sdílení tepla Anotace: Prezentace uvádí příklady a popisuje způsoby sdílení tepla Tematická oblast: Vytápění 1. ročník Instalatér Očekávaný
Více9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad)
9 OHŘEV NOSNÍKU VYSTAVENÉHO LOKÁLNÍMU POŽÁRU (řešený příklad) Vypočtěte tepelný tok dopadající na strop a nejvyšší teplotu průvlaku z profilu I 3 při lokálním požáru. Výška požárního úseku je 2,8 m, plocha
VíceTermodynamika materiálů. Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn
Termodynamika materiálů Vztahy a přeměny různých druhů energie při termodynamických dějích podmínky nutné pro uskutečnění fázových přeměn Důležité konstanty Standartní podmínky Avogadrovo číslo N A = 6,023.10
VíceMolekulová fyzika a termika. Přehled základních pojmů
Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou
Víceþÿ PY e s t u p t e p l a
DSpace VSB-TUO http://www.dspace.vsb.cz þÿx a d a b e z p e n o s t n í i n~ e n ý r s t v í / S a f e t y E n gþÿx i n eae dr ia n g b es zep re i ens o s t n í i n~ e n ý r s t v í. 2 0 1 0, r o. 5 /
VíceOkruhy k maturitní zkoušce z fyziky
Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální
VíceVnitřní energie, práce a teplo
Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická
VíceFyzika - Sexta, 2. ročník
- Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence
VíceOtázky Termomechanika (2014)
Otázky Termomechanika (2014) 1. Základní pojmy a veličiny termomechaniky a. Makroskopický a mikroskopický popis systému, makroskopické veličiny b. Tlak: definice makroskopická a mikroskopické objasnění
VíceKontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
VíceEXPERIMENTÁLNÍ METODY I. 4. Měření tlaků
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA 4. KAPITOLY Úvod do problematiky měření tlaků Kapalinové tlakoměry
VícePřehled základních fyzikálních veličin užívaných ve výpočtech v termomechanice. Autor Ing. Jan BRANDA Jazyk Čeština
Identifikátor materiálu: ICT 2 41 Registrační číslo projektu CZ.1.07/1.5.00/34.0796 Název projektu Vzděláváme pro život Název příjemce podpory SOU plynárenské Pardubice název materiálu (DUM) Mechanika
VíceVedení tepla KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI
KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI Fyzikální praktikum z molekulové fyziky a termodynamiky Vedení tepla Úvod V nerovnovážném stavu, kdy na soustavu působí
VíceINOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA
VíceTabulace učebního plánu. Vzdělávací obsah pro vyučovací předmět : Fyzika. Ročník: I.ročník - kvinta
Tabulace učebního plánu Vzdělávací obsah pro vyučovací předmět : Fyzika Ročník: I.ročník - kvinta Fyzikální veličiny a jejich měření Fyzikální veličiny a jejich měření Soustava fyzikálních veličin a jednotek
VíceMaturitní témata fyzika
Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený
VíceMIKROPORÉZNÍ TECHNOLOGIE
MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Základní principy MIKROPORÉZNÍ TECHNOLOGIE Definice pojmů sdílení tepla a tepelná vodivost Co je to tepelná izolace? Jednoduše řečeno
Více133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška A3 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Obsah přednášky Teplotní analýza konstrukce Sdílení tepla
VíceTermomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceTermodynamika ideálních plynů
Za správnost neručím, cokoli s jinou než černou barvou je asi špatně Informace jsou primárně z přednášek Termodynamika ideálních plynů 1. Definice uzavřené termodynamické soustavy - neprochází přes ni
VíceVáclav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF
Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.
VíceHydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles
Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes
Více12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
Více4. Stanovení teplotního součinitele odporu kovů
4. Stanovení teplotního součinitele odporu kovů 4.. Zadání úlohy. Změřte teplotní součinitel odporu mědi v rozmezí 20 80 C. 2. Změřte teplotní součinitel odporu platiny v rozmezí 20 80 C. 3. Vyneste graf
VíceVýpočet stlačitelného proudění metodou konečných objemů
Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.
VíceProudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.
Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.
VíceStudentská tvůrčí činnost 2009
Studentská tvůrčí činnost 2009 Numerické řešení proudového pole v kompresorové lopatkové mříži Balcarová Lucie Vedoucí práce: Prof. Ing. P. Šafařík, CSc. a Ing. T. Hyhlík, PhD. Numerické řešení proudového
VíceTermomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
VíceBezkontaktní termografie
Bezkontaktní termografie Biofyzikální ústav LF MU Elektromagnetické spektrum http://cs.wikipedia.org/wiki/soubor:elmgspektrum.png Bezkontaktní termografie 2 Zdroje infračerveného záření Infračervené záření
VíceZákladní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická
Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů
VíceZákladní otázky pro teoretickou část zkoušky.
Základní otázky pro teoretickou část zkoušky. Platí shodně pro prezenční i kombinovanou formu studia. 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2.
VíceUţití elektrické energie. Laboratorní cvičení 21
Uţití elektrické energie. Laboratorní cvičení 21 3.1.5 Návrh, realizace a ověření vlastností topného článku Cíl: Cílem laboratorní úlohy je navázat na numerická cvičení, kde byl prezentován postup výpočtu
VíceÚloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
VíceCFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí
Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí Program celoživotního vzdělávání: kurz Klimatizace a Větrání 2013/2014 CFD Jan Schwarzer Počítačová
VíceMOLEKULOVÁ FYZIKA A TERMODYNAMIKA
MOLEKULOVÁ FYZIKA A TERMODYNAMIKA 2 metody zkoumání látek na základě vnějších projevů: I. KINETICKÁ TEORIE LÁTEK -studium vlastností látek na základě vnitřní struktury, pohybu a vzájemného působení jednotlivých
VíceTepelná vodivost. střední rychlost. T 1 > T 2 z. teplo přenesené za čas dt: T 1 T 2. tepelný tok střední volná dráha. součinitel tepelné vodivosti
Tepelná vodivost teplo přenesené za čas dt: T 1 > T z T 1 S tepelný tok střední volná dráha T součinitel tepelné vodivosti střední rychlost Tepelná vodivost součinitel tepelné vodivosti při T = 300 K součinitel
VíceHydromechanické procesy Obtékání těles
Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak
Více