Výpočet stlačitelného proudění metodou konečných objemů

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Výpočet stlačitelného proudění metodou konečných objemů"

Transkript

1 Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc.

2 Úvod V 80. letech: - vývoj profilů letadel, které pracují v transsonickém a supersonickém režimu rázová vlna interferuje s mezní vrstvou, stává se nestacionární a dochází ke kmitání částí letadla vývoj transsonického stupně turbíny (ÚTAV ČR ve spolupráci se Škoda Plzeň) proto vzniká potřeba vyšetřit chování proudového pole při přechodu do nadzvukové oblasti, tj. zejména polohu a intenzitu rázové vlny, úplav a turbulentní efekty Cíl diplomové práce: vytvořit vlastní software, který bude metodou konečných objemů řešit systém Eulerových rovnic na dané oblasti v transsonickém a supersonickém režimu zvolit oblast a definovat její okrajové podmínky danou oblast zasíťovat zvolit numerické schéma pro systém Eulerových rovnic získané výsledky srovnat s experimentem (R. Dvořák, Sympozium - transsonicum,1975) - vyladit software na definovanou úlohu

3 Fyzikální předpoklady Pro výpočet byl reálný plyn nahrazen plynem ideálním, pro nějž platí následující předpoklady: - plyn je ideální, nevazký a tepelně nevodivý vnitřní energie plynu je pouze funkcí teploty plyn je stlačitelný Použité vztahy: p=ρ rt - stavová rovnice ideálního plynu p c =κ =κ rt ρ - kvadrát rychlosti zvuku w 2 w M= - Machovo číslo 2 c Bernoulliho rovnice stavu na vstupu: κ p κ 1 = 1 M 2 κ 1 p0 2 1 ρ κ 1 = 1 M 2 κ 1 ρ0 2

4 Matematický model nelineární hyperbolický systém Eulerových rovnic v integrálním tvaru: WdV F,G n ds=0 t V V kde W F,G ρ ρw 1 W= ρw 2 e F= ρw 1 ρw 2 p ρw 2 ρw 1 w 2 G= ρw 2 p 1 ρw 1 w 2 w 1 e p 1 w 2 e p - vektor konzervativních proměnných - toky konzervativních proměnných uzavírající rovnice: [ 1 p= κ 1 e ρ w 2 w ] bezrozměrové proměnné: p - tlak ρ - hustota (w1, w2) - vektor rychlosti e - energie systému

5 Numerické řešení metodou konečných objemů Oblast a její okrajové podmínky, výpočetní síť pevná stěna na ABCD a A B C D (w1,w2)n=0 1 ρ0 p0 α A B C 5% H A. Kanál D p2/p0 Ω H y 0 Ax B C D L ukázka použité sítě, 250 x 20 buněk - změnou tlakového poměru p2/p0 na výstupu měníme proudové pole uvnitř oblasti - k daným okrajovým podmínkám je předpoklad subsonického vstupu a výstupu

6 Oblast a její okrajové podmínky, výpočetní síť B. Mříž periodická podmínka Wi0=WiY c profil DCA 8% M p2/p α c +a - M α p ukázka použité sítě, 150 x30 buněk pevná stěna na BC a B C (w1,w2)n=0 - oblast je zkosena pod úhlem 45, to umožní snadnou realizaci periodické podmínky - změnou velikosti Machova čísla M nebo úhlu α na vstupu, se změní proudové pole uvnitř oblasti - zeleně orámované podmínky jsou zadávány pro subsonický vstup či výstup - modře orámované podmínky jsou zadávány pro supersonický vstup či výstup

7 Numerická schémata pro hyperbolické rovnice - řešení metodou konečných objemů na strukturované síti Laxovo - Friedrichsovo schéma Δt W n 1 =W n ij ij μ ij 4 ε F Δy G Δx kn k kn k 4 k =1 4 W k n W ij n k=1 -explicitní, velká numerická vazkost, ε (0.8,1, O( x, y, t) Laxovo Wendroffovo schéma (Richtmyerova verze) P: 1 Δt W n 1/ 2 =W n ij ij μ ij 2 C: Δt W n 1 =W n ij ij μ ij 4 4 ε F Δy G Δx k n k k n k 4 W k n W ij n k =1 k =1 4 F k n 1/ 2 Δy k G k n 1/ 2 Δx k k =1 -explicitní, oscilace v místě nespojitosti, O( x2, y2, t2) Kompozitní schéma - ve formě : m x LW + 1 x LF, kde m počet časových iterací LW schématem

8 Proudění v kanále Vliv změny tlakového poměru p2/p0 na výstupu - výsledky jsou zobrazeny ve formě izočar Machova čísla ρ 0=1, p0 =1 M =0.699 α =0 p2 =0. 65 p0 nevyvinuté transsonické proudění p2 =0. 65 p0 M = x LW+1 x LF vyvinuté transsonické proudění p2 =0. 60 p0 M =0.770 LF schéma 40 x LW+1 x LF aerodynamické ucpání nelze zvýšit hmotnostní tok kanálem

9 Proudění v mříži Podzvukové vstupy (M <1) 1. je sledován vývoj transsonického obtékání mříže při zvyšujícím se M 2. výstupní tlak je nastaven na p2/p =1, jedná se o rovnotlakou mříž 3. jsou zadávány vstupní Machova čísla M a je měněn úhel nabíhajícího proudu α 4. řešení je vypočteno kompozitním schématem 5. velikost numerické vazkosti je měněna podle daných podmínek (změnou formy schématu), tak aby výsledek odpovídal co nejvíce experimentu 6. je sledována struktura izočar v poli, zejména tvar zvukové čáry 7. je srovnáno nastavení vstupních podmínek při výpočtu a v experimentu 8. výsledky jsou uvedeny ve formě izočar Machova čísla, M=0.025, zvuková čára je zvýrazněna tlustě 9. interferogramy jsou zobrazeny ve formě izočar hustoty, zvuková čára je zvýrazněna červeně

10 A) - vývoj supersonické oblasti na horním profilu M =0.813, α =0, p2/p =1 - vývoj supersonické oblasti na horním profilu i na spodním profilu M =0.845, α =0, p2/p =1, M1=0.818, 90.LW+1.LF B) M =0.832, α =0, p2/p =1 - vývoj supersonické oblasti na spodním profilu, na horním profilu zvětšení supersonické oblasti, mění se tvar izočar na vstupu do mříže - změna tvaru oblasti na spodním M =0.850, α =0.9, p2/p =1, M1=0.833, 90.LW+1.LF profilu, na horním profilu zvětšení supersonické oblasti, jiný úhel nabíhajícího proudu změní tvar izočar

11 C) - přemostění mezilopatkového kanálu zvukovou čarou, nedochází k aerodynamickému ucpání M =0.849, α =0, p2/p =1 M =0.930, α =-2.0, p2/p =1, M1=0.852, 20.LW+1.LF D) - zvýšena numerická vazkost schématu, přechod mezi supersonickou a subsonickou oblastí na horním profilu u odtokové hrany je méně ostrý, úhel náběhu mění tvar zvukové čáry - mění se tvar zvukové čáry, zvětšuje se supersonická oblast M =0.863, α =0, p2/p =1 - tvar zvukové čáry na vstupu do mříže se liší s tvarem zvukové čáry experimentu, který je ovlivněn poruchami v poli M =0.950, α =0, p2/p =1, M1=0.898, 40.LW+1.LF

12 Nadzvukové vstupy (M >1) 1. je sledován vývoj supersonického obtékání mříže při zvyšujícím se M 2. jsou zadávány vstupní Machova čísla M a je měněn úhel nabíhajícího proudu α 3. řešení je vypočteno kompozitním schématem 4. velikost numerické vazkosti je měněna podle daných podmínek (změnou formy schématu), tak aby výsledek odpovídal co nejvíce experimentu 5. je sledována struktura izočar v poli, zejména tvar zvukové čáry 6. je srovnáno nastavení vstupních podmínek při výpočtu a v experimentu 7. výsledky jsou uvedeny ve formě izočar Machova čísla, M=0.05, zvuková čára je zvýrazněna tlustě 8. interferogramy jsou zobrazeny ve formě izočar hustoty, zvuková čára je zvýrazněna červeně

13 A) Experiment: M =0.946, α =0, p2/p =1 Výpočet: M =1.05, α =0, p2/p =1, M1=0.965, 40.LW+1.LF - zvuková čára zasahuje nad střední proudnici mezilopatkového kanálu - uvnitř supersonické oblasti vzniká na spodním profilu rázová vlna, která není tak patrná v numerickém řešení (vlivem numerické vazkosti) a tato vlna uzavírá zvukovou čáru.

14 B) Experiment: M =0.982, α =0, p2/p =1 Výpočet: M =1.08, α =0, p2/p =1, M1=0.981, 70.LW+1.LF - uzavírací rázová vlna na spodním profilu se posouvá směrem k odtokové hraně - roste supersonická oblast

15 C) Experiment: M =1.013, α =0, p2/p =1 Výpočet: M =1.120, α =0, p2/p =1, M1=1.009, 55.LW+1.LF - uzavírací rázová vlna přechází v čelní rázovou vlnu sousedního profilu - zvuková čára se uzavírá mezi spodní hranou profilu a hranou k ní přivrácenou, vymezuje tak subsonickou oblast

16 D) Experiment: M =1.073, α =0, p2/p =1 Výpočet: M =1.150, α =0, p2/p =1, M1=1.030, 40.LW+1.LF - u odtokové hrany spodního profilu je dobře patrná šikmá rázová vlna - v numerickém řešení je již lehce patrná čelní rázová vlna

17 Závěr 2. Cíl diplomové práce, vytvořit vlastní software, který je schopen řešit systém Eulerových rovnic metodou konečných objemů na dané oblasti, byl dosažen. 3. Řešení proudového pole mezi profily se shoduje s proudovým polem experimentu, řešení proudového pole za mříží nedosahuje dobré shody s experimentem. 4. Výpočet s kompozitním schématem konverguje pomalu s nízkými rezidui. 5. Poruchy v proudovém poli způsobené vazkostí plynu a interakcí rázové vlny s mezní vrstvou a úplavem nelze s použitím matematického modelu systému Eulerových rovnic popsat. Budoucí cíle: - Použití Mac Cormackovo schématu s TVD vazkostí - Nahrazení modelu Eulerových rovnic modelem Navierových Stokesových rovnic, který popisuje stlačitelnou, vazkou tekutinu. Literatura [1] Dvořák R.: Transsonické proudění. Akademia, Praha, 1986 [2] Dvořák R., Kozel K.: Matematické modelování v aerodynamice. ČVUT, Praha, 1996 [3] Kozel K., Fürst J.: Numerické metody řešení problémů proudění I. ČVUT, Praha, 2001

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1

Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 NUMERICKÉ ŘEŠENÍ STACIONÁRNÍHO A NESTACIONÁRNÍHO TRANSSONICKÉHO PROUDĚNÍ VE VNĚJŠÍ AERODYNAMICE

Více

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert

Numerické řešení 2D stlačitelného proudění s kondenzací. Michal Seifert Numerické řešení 2D stlačitelného proudění s kondenzací Michal Seifert Úkoly diplomové práce Popsat matematické modely proudící tekutiny Popis numerických metod založených na metodě konečných objemů Porovnání

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

Simulace (nejen) fyzikálních jevů na počítači

Simulace (nejen) fyzikálních jevů na počítači Simulace (nejen) fyzikálních jevů na počítači V. Kučera Katedra numerické matematiky, MFFUK Praha 7.2.2013 Aerodynamický flutter Tacoma bridge, 1940 Fyzikální model Realita je komplikovaná Navier-Stokesovy

Více

Počítačová dynamika tekutin (CFD) - úvod -

Počítačová dynamika tekutin (CFD) - úvod - Počítačová dynamika tekutin (CFD) - úvod - Co je CFD? 2 Computational Fluid Dynamics (CFD) je moderní metoda jak získat představu o proudění tekutin, přenosu tepla a hmoty, průběhu chemických reakcích

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace

Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Optimalizace systémů tlakových kanalizací pomocí matematického modelování jejich provozních stavů Software pro modelování chování systému tlakové kanalizační sítě Popis metodiky a ukázka aplikace Ing.

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 0.11.14 Mechanika tekumn 1/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice.

Více

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika

Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika NUMERICKÉ ŘEŠENÍ BUDÍCÍCH SIL NA LOPATKY ROTORU ZA RŮZNÝCH OKRAJOVÝCH PODMÍNEK SVOČ FST 2008 ABSTRAKT Martin Červenka, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika Úkolem

Více

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH

MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH MODELOVÁNÍ PROUDĚNÍ VODY V OTEVŘENÝCH KORYTECH Ing., Martin KANTOR, ČVUT Praha Fakulta stavební, martin.kantor@fsv.cvut.cz Annotation This article deals with CFD modelling of free surface flow in a rectangular

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

U Úvod do modelování a simulace systémů

U Úvod do modelování a simulace systémů U Úvod do modelování a simulace systémů Vyšetřování rozsáhlých soustav mnohdy nelze provádět analytickým výpočtem.často je nutné zkoumat chování zařízení v mezních situacích, do kterých se skutečné zařízení

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE

NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE NUMERICKÝ VÝPOČET RADIÁLNÍHO VENTILÁTORU V KLIMATIZAČNÍ JEDNOTCE Autoři: Ing. Petr ŠVARC, Technická univerzita v Liberci, petr.svarc@tul.cz Ing. Václav DVOŘÁK, Ph.D., Technická univerzita v Liberci, vaclav.dvorak@tul.cz

Více

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU

VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU VLIV KMITÁNÍ TRUBKY NA PŘESTUP TEPLA V KANÁLU MEZIKRUHOVÉHO PRŮŘEZU Autoři: Ing. Petr KOVAŘÍK, Ph.D., Katedra energetických strojů a zařízení, FST, ZÁPADOČESKÁ UNIVERZITA V PLZNI, e-mail: kovarikp@ntc.zcu.cz

Více

Ústav termomechaniky AV ČR. Témata diplomových prací (2007) Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail:

Ústav termomechaniky AV ČR. Témata diplomových prací (2007) Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail: Ústav termomechaniky AV ČR Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail: uruba@it.cas.cz Témata diplomových prací (2007) Metody identifikace koherentních struktur ve 2D vektorových polích. Teoretická

Více

Únosnost kompozitních konstrukcí

Únosnost kompozitních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav letadlové techniky Únosnost kompozitních konstrukcí Optimalizační výpočet kompozitních táhel konstantního průřezu Technická zpráva Pořadové číslo:

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda oddělených elementů (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes

Více

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398

Univerzita obrany K-204. Laboratorní cvičení z předmětu AERODYNAMIKA. Měření rozložení součinitele tlaku c p na povrchu profilu Gö 398 Univerzita obrany K-204 Laboratorní cvičení z předmětu AERODYNAMIKA Měření rozložení součinitele tlaku c p na povrchu profilu Gö 39 Protokol obsahuje 12 listů Vypracoval: Vít Havránek Studijní skupina:

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

Posouzení stability svahu

Posouzení stability svahu Inženýrský manuál č. 25 Aktualizace 07/2016 Posouzení stability svahu Program: MKP Soubor: Demo_manual_25.gmk Cílem tohoto manuálu je vypočítat stupeň stability svahu pomocí metody konečných prvků. Zadání

Více

Základy letadlové techniky Ivan Jeřábek

Základy letadlové techniky Ivan Jeřábek Základy letadlové techniky Ivan Jeřábek Ústav letadlové techniky FS ČVUT Základy letadlové techniky Základy letadlové techniky-aeromechanika Názvosloví a popis základních částí letadla Vznik vztlaku na

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Vznik vztlaku a Aerodynamika rotoru větrné elektrárny

Vznik vztlaku a Aerodynamika rotoru větrné elektrárny Vznik vztlaku a Aerodynamika rotoru větrné elektrárny Ing.Jiří Špičák ČSVE - Stránka 1 - Vznik vztlaku Abychom si mohli vysvětlit vznik vztlakové síly, musíme si připomenout fyzikální podstatu proudění.

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

Proudové pole ve vstupní části aerodynamického tunelu

Proudové pole ve vstupní části aerodynamického tunelu Proudové pole ve vstupní části aerodynamického tunelu T. Hofer, P. Šafařík, M. Luxa 1 1. Úvod Pro měření úloh v aerodynamickém tunelu potřebujeme zajistit na vstupu do měřicího prostoru takový proud vzduchu,

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace

CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace CFD výpočtový model bazénu pro skladování použitého paliva na JE Temelín a jeho validace Ondřej Burian Pavel Zácha Václav Železný ČVUT v Praze, Fakulta strojní, Ústav energetiky NUSIM 2013 Co je to CFD?

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

I. Formulace problému

I. Formulace problému Motivace Numerické řešení Eulerových rovnic v balíku FENICS Radim Cajzl Letní semestr 215 Cílem je vytvořit model proudění části chladící heliové smyčky umístěné v CV Řež. Smyčka slouží k testování materiálů

Více

1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno

1 POPIS MATEMATICKÉHO MODELU. 1.1 Použitý software FLOW-3D. Vodní nádrže , Brno 1 POPIS MATEMATICKÉHO MODELU 1.1 Použitý software FLOW-3D Pro modelování proudění byl zvolen komerční softwarový balík FLOW-3D. Jedná se o CFD (Computional Fluid Dynamics) nástroj využívající matematické

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013

TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013 Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno

Více

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů -

Počítačová dynamika tekutin (CFD) Řešení rovnic. - metoda konečných objemů - Počítačová dynamika tekutin (CFD) Řešení rovnic - metoda konečných objemů - Rozdělení parciálních diferenciálních rovnic 2 Obecná parciální diferenciální rovnice se dvěma nezávislými proměnnými x a y:

Více

Sypaná hráz výpočet ustáleného proudění

Sypaná hráz výpočet ustáleného proudění Inženýrský manuál č. 32 Aktualizace: 3/2016 Sypaná hráz výpočet ustáleného proudění Program: MKP Proudění Soubor: Demo_manual_32.gmk Úvod Tento příklad ilustruje použití modulu GEO5 MKP Proudění při analýze

Více

1 Zatížení konstrukcí teplotou

1 Zatížení konstrukcí teplotou 1 ZATÍŽENÍ KONSTRUKCÍ TEPLOTOU 1 1 Zatížení konstrukcí teplotou Časově proměnné nepřímé zatížení Klimatické vlivy, zatížení stavebních konstrukcí požárem Účinky zatížení plynou z rozšířeného Hookeova zákona

Více

Propojení matematiky, fyziky a počítačů

Propojení matematiky, fyziky a počítačů Propojení matematiky, fyziky a počítačů Název projektu: Věda pro život, život pro vědu Registrační číslo: CZ..7/.3./45.9 V Ústí n. L., únor 5 Ing. Radek Honzátko, Ph.D. Propojení matematiky, fyziky a počítačů

Více

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY 10 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2011 June 16-17, 2011, Pilsen, Czech Republic EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY TŮMA Jan, KUBATA Jan, BĚTÁK

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL

POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL POSTUPY SIMULACÍ SLOŽITÝCH ÚLOH AERODYNAMIKY KOLEJOVÝCH VOZIDEL Autor: Dr. Ing. Milan SCHUSTER, ŠKODA VÝZKUM s.r.o., Tylova 1/57, 316 00 Plzeň, e-mail: milan.schuster@skodavyzkum.cz Anotace: V příspěvku

Více

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby

Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Modelování zdravotně významných částic v ovzduší v podmínkách městské zástavby Jiří Pospíšil, Miroslav Jícha pospisil.j@fme.vutbr.cz Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Spojitý popis plazmatu, magnetohydrodynamika

Spojitý popis plazmatu, magnetohydrodynamika Spojitý popis plazmatu, magnetohydrodynamika Spojitý popis plazmatu V mnoha případech nepotřebujeme znát detailně popis plazmatu, dalším možným popisem plazmatu je tzv. spojitý (fluidní), tj. makroskopický

Více

Přijímací odborná zkouška pro NMgr studium 2015 Letecká a raketová technika Modul Letecká technika

Přijímací odborná zkouška pro NMgr studium 2015 Letecká a raketová technika Modul Letecká technika Přijímací odborná zkouška pro NMgr studium 2015 Letecká a raketová technika Modul Letecká technika Číslo Otázka otázky 1. Kritickým stavem při proudění stlačitelné tekutiny je označován stav, kdy rychlost

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace

Více

Posouzení vlivu vnitřních svalků na průchodnost přivaděče zhotoveného z polyetylénových trub.

Posouzení vlivu vnitřních svalků na průchodnost přivaděče zhotoveného z polyetylénových trub. přivaděče zhotoveného z polyetylénových trub. Autor: Vedoucí diplomové práce: Konzultant: Prof. Ing. Jan Melichar, CSc. Ing. Tomáš Hyhlík Ph.D Obsah Cíle práce Aktuální stav Hydraulický výpočet gravitačního

Více

FLUENT přednášky. Metoda konečných objemů (MKO)

FLUENT přednášky. Metoda konečných objemů (MKO) FLUENT přednášky Metoda konečných objemů (MKO) Pavel Zácha zdroj: [Bakker, 2008], [Vodička, 2011], [Runchal, 2008], [Kozubková, 2008] Historie - zřejmě nestarší způsob řešení parciálních diferenciálních

Více

Počítačová dynamika tekutin užitečný nástroj pro inženýry

Počítačová dynamika tekutin užitečný nástroj pro inženýry Počítačová dynamika tekutin užitečný nástroj pro inženýry M. Jahoda Úvod Počítačová dynamika tekutin (Computational Fluid Dynamics, CFD) je moderní metoda, která se zabývá prouděním tekutin, přenosem tepla

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D.

Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. OPTIMALIZACE BRAMOVÉHO PLYNULÉHO ODLÉVÁNÍ OCELI ZA POMOCI NUMERICKÉHO MODELU TEPLOTNÍHO POLE Ing. Tomáš MAUDER prof. Ing. František KAVIČKA, CSc. doc. Ing. Josef ŠTĚTINA, Ph.D. Fakulta strojního inženýrství

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

VoF-Navier-Stokesových rovnic při. Jakub Smutek

VoF-Navier-Stokesových rovnic při. Jakub Smutek Vliv diskretizace konvekčních členů VoF-Navier-Stokesových rovnic při simulaci kapilaritou řízených dějů Jakub Smutek VŠCHT Praha, Ústav Matematiky 2. Seminář VŠCHT k OpenFOAM, Praha 13. Prosince Teoretický

Více

Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce

Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce Reflexní parotěsná SUNFLEX Roof-In Plus v praktické zkoušce Měření povrchových teplot předstěny s reflexní fólií a rozbor výsledků Tepelné vlastnosti SUNFLEX Roof-In Plus s tepelně reflexní vrstvou otestovala

Více

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek

Obyčejné diferenciální rovnice počáteční úloha. KMA / NGM F. Ježek Občejné diferenciální rovnice počáteční úloha KMA / NGM F. Ježek (JEZEK@KMA.ZCU.CZ) Základní pojm Tp rovnic a podmínek, řád rovnice Počáteční úloha pro občejné diferenciální rovnice Řád metod a počet kroků

Více

Bc. David Fenderl Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika

Bc. David Fenderl Západočeská univerzita v Plzni, Univerzitní 8, Plzeň Česká republika EXPERIMENTÁLNÍ OVĚŘENÍ VLASTNOSTÍ PROUDĚNÍ V LOPATKOVÉ KASKÁDĚ STŘEDORYCHLOSTNÍHO TUNELU A POTVRZENÍ VÝSLEDKŮ POMOCÍ CFD SIMULACÍ S OHLEDEM NA VLIV DRSNOSTI POVRCHŮ. SVOČ FST 2015 ABSTRAKT Bc. David Fenderl

Více

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23

Obsah PŘEDMLUVA 11 ÚVOD 13 1 Základní pojmy a zákony teorie elektromagnetického pole 23 Obsah PŘEDMLUVA... 11 ÚVOD... 13 0.1. Jak teoreticky řešíme elektrotechnické projekty...13 0.2. Dvojí význam pojmu pole...16 0.3. Elektromagnetické pole a technické projekty...20 1. Základní pojmy a zákony

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Numerická simulace přestupu tepla v segmentu výměníku tepla

Numerická simulace přestupu tepla v segmentu výměníku tepla Konference ANSYS 2009 Numerická simulace přestupu tepla v segmentu výměníku tepla M. Kůs Západočeská univerzita v Plzni, Výzkumné centrum Nové technologie, Univerzitní 8, 306 14 Plzeň Abstract: The article

Více

Hydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav

Hydraulické posouzení vzduchospalinové cesty. ustálený a neustálený stav Hydraulické posouzení vzduchospalinové cesty ustálený a neustálený stav Přednáška č. 8 Komínový tah 1 Princip vytvoření statického tahu - mezní křivky A a B Zobrazení teoretického podtlaku a přetlaku ve

Více

Pokud uvažujeme v dynamice tekutin nestlačitelné proudění, lze si vystačit pouze s rovnicí kontinuity a hybnostními rovnicemi. Pokud je ale uvažováno

Pokud uvažujeme v dynamice tekutin nestlačitelné proudění, lze si vystačit pouze s rovnicí kontinuity a hybnostními rovnicemi. Pokud je ale uvažováno Stlačitelnost je schopnost látek zmenšovat svůj objem při zvyšování tlaku, přičemž hmotnost sledované látky se nezmění. To znamená, že se mění hustota dané látky. Stlačitelnost lze také charakterizovat

Více

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD

STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD 19. Konference Klimatizace a větrání 010 OS 01 Klimatizace a větrání STP 010 STANOVENÍ SOUČINITELŮ MÍSTNÍCH ZTRÁT S VYUŽITÍM CFD Jan Schwarzer, Vladimír Zmrhal ČVUT v Praze, Fakulta strojní, Ústav techniky

Více

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí

Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Postupné, rovinné, monochromatické vlny v lineárním izotropním nemagnetickém prostředí Rovinné vlny 1 Při diskusi o řadě jevů je výhodné vycházet z rovinných vln. Vlny musí splňovat Maxwellovy rovnice

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY

VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY VYBRANÉ PARTIE Z NUMERICKÉ MATEMATIKY Jan Krejčí 31. srpna 2006 jkrejci@physics.ujep.cz http://physics.ujep.cz/~jkrejci Obsah 1 Přímé metody řešení soustav lineárních rovnic 3 1.1 Gaussova eliminace...............................

Více

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 12. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 2. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Ověřovací nástroj PENB MANUÁL

Ověřovací nástroj PENB MANUÁL Ověřovací nástroj PENB MANUÁL Průkaz energetické náročnosti budovy má umožnit majiteli a uživateli jednoduché a jasné porovnání kvality budov z pohledu spotřeb energií Ověřovací nástroj kvality zpracování

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf.

Experimentáln. lní toků ve VK EMO. XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký. www.vf. Experimentáln lní měření průtok toků ve VK EMO XXX. Dny radiační ochrany Liptovský Ján 10.11.-14.11.2008 Petr Okruhlica, Miroslav Mrtvý, Zdenek Kopecký Systém měření průtoku EMO Měření ve ventilačním komíně

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Semestrální práce z předmětu KMA/MM

Semestrální práce z předmětu KMA/MM Semestrální práce z předmětu MA/MM Jméno: Plánička Stanislav Mail: staplan@students.zcu.cz Os. Číslo: A8N44P Obsah OBSAH FYZIÁLNÍ MINIMUM 3 INEMATIA 3 Idealizace hmotným bodem 3 Zlatá rovnice kinematiky

Více

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně

Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky v Brně Vysoké učení technické v Brně Fakulta elektrotechniky a komunikačních technologíı Ústav automatizace a měřicí techniky Algoritmy řízení topného článku tepelného hmotnostního průtokoměru Autor práce: Vedoucí

Více

Analýza výpočtových metod pro únik a disperzi zkapalněného hořlavého plynu

Analýza výpočtových metod pro únik a disperzi zkapalněného hořlavého plynu Analýza výpočtových metod pro únik a disperzi zkapalněného hořlavého plynu Mária Skřínská 1*, Jan Skřínský 2, Vilém Sluka 1, Martina Pražáková 1, Stanislav Malý 1, Lenka Frišhansová 1, Josef Senčík 1 1

Více

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody

Vyučující: Jan Chleboun, místnost B-305, linka 3866 Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Předmět: MA04 Vyučující: Jan Chleboun, místnost B-305, linka 3866 (jan.chleboun@cvut.cz) Konzultace: čtvrtek 13:00-14:40 nebo dle dohody Sledovat informace na webových stránkách vyučujícího (o zkoušce,

Více

Autokláv reaktor pro promíchávané vícefázové reakce

Autokláv reaktor pro promíchávané vícefázové reakce Vysoká škola chemicko technologická v Praze Ústav organické technologie (111) Autokláv reaktor pro promíchávané vícefázové reakce Vypracoval : Bc. Tomáš Sommer Předmět: Vícefázové reaktory (prof. Ing.

Více

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav

Více

Numerické řešení obyčejných diferenciálních rovnic

Numerické řešení obyčejných diferenciálních rovnic Numerické řešení obyčejných diferenciálních rovnic Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

chemického modulu programu Flow123d

chemického modulu programu Flow123d Testovací úlohy pro ověření funkčnosti chemického modulu programu Flow123d Lukáš Zedek, Jan Šembera 20. prosinec 2010 Abstrakt Předkládaná zpráva představuje přehled funkcionalit a výsledky provedených

Více

Numerické řešení variačních úloh v Excelu

Numerické řešení variačních úloh v Excelu Numerické řešení variačních úloh v Excelu Miroslav Hanzelka, Lenka Stará, Dominik Tělupil Gymnázium Česká Lípa, Gymnázium Jírovcova 8, Gymnázium Brno MirdaHanzelka@seznam.cz, lenka.stara1@seznam.cz, dtelupil@gmail.com

Více

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická

Základní otázky ke zkoušce A2B17EPV. České vysoké učení technické v Praze ID Fakulta elektrotechnická Základní otázky ke zkoušce A2B17EPV Materiál z přednášky dne 10/5/2010 1. Síla současně působící na elektrický náboj v elektrickém a magnetickém poli (Lorentzova síla) 2. Coulombův zákon, orientace vektorů

Více

VÝPOČTY ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ VĚTREM WIND LOAD ANALYSIS OF BUILDING STRUCTURES

VÝPOČTY ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ VĚTREM WIND LOAD ANALYSIS OF BUILDING STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS VÝPOČTY ZATÍŽENÍ STAVEBNÍCH KONSTRUKCÍ

Více